| Title: | Cluster Extension for 'mlr3' | 
| Version: | 0.1.11 | 
| Description: | Extends the 'mlr3' package with cluster analysis. | 
| License: | LGPL-3 | 
| URL: | https://mlr3cluster.mlr-org.com, https://github.com/mlr-org/mlr3cluster | 
| BugReports: | https://github.com/mlr-org/mlr3cluster/issues | 
| Depends: | mlr3 (≥ 0.21.1), R (≥ 3.3.0) | 
| Imports: | backports (≥ 1.1.10), checkmate (≥ 2.0.0), clue, cluster, data.table (≥ 1.15.0), fpc, mlr3misc (≥ 0.15.0), paradox (≥ 1.0.1), R6, stats | 
| Suggests: | apcluster, ClusterR (≥ 1.3.1), dbscan, e1071, kernlab, LPCM, mclust, mlbench, RWeka, stream, testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.2 | 
| Collate: | 'LearnerClust.R' 'zzz.R' 'LearnerClustAffinityPropagation.R' 'LearnerClustAgnes.R' 'LearnerClustBICO.R' 'LearnerClustBIRCH.R' 'LearnerClustCMeans.R' 'LearnerClustCobweb.R' 'LearnerClustDBSCAN.R' 'LearnerClustDBSCANfpc.R' 'LearnerClustDiana.R' 'LearnerClustEM.R' 'LearnerClustFanny.R' 'LearnerClustFarthestFirst.R' 'LearnerClustFeatureless.R' 'LearnerClustHDBSCAN.R' 'LearnerClustHclust.R' 'LearnerClustKKMeans.R' 'LearnerClustKMeans.R' 'LearnerClustMclust.R' 'LearnerClustMeanShift.R' 'LearnerClustMiniBatchKMeans.R' 'LearnerClustOPTICS.R' 'LearnerClustPAM.R' 'LearnerClustSimpleKMeans.R' 'LearnerClustXMeans.R' 'MeasureClust.R' 'measures.R' 'MeasureClustInternal.R' 'PredictionClust.R' 'PredictionDataClust.R' 'TaskClust.R' 'TaskClust_ruspini.R' 'TaskClust_usarrest.R' 'as_prediction_clust.R' 'as_task_clust.R' 'bibentries.R' 'helper.R' | 
| NeedsCompilation: | no | 
| Packaged: | 2025-02-17 21:02:06 UTC; mmuecke | 
| Author: | Maximilian Mücke | 
| Maintainer: | Maximilian Mücke <muecke.maximilian@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-02-19 00:00:02 UTC | 
mlr3cluster: Cluster Extension for 'mlr3'
Description
Extends the 'mlr3' package with cluster analysis.
Author(s)
Maintainer: Maximilian Mücke muecke.maximilian@gmail.com (ORCID)
Authors:
- Damir Pulatov damirpolat@protonmail.com 
- Michel Lang michellang@gmail.com (ORCID) 
Other contributors:
- Marc Becker marcbecker@posteo.de (ORCID) [contributor] 
See Also
Useful links:
- Report bugs at https://github.com/mlr-org/mlr3cluster/issues 
Cluster Learner
Description
This Learner specializes mlr3::Learner for cluster problems:
-  task_typeis set to"clust".
- Creates mlr3::Predictions of class PredictionClust. 
- Possible values for - predict_typesare:-  "partition": Integer indicating the cluster membership.
-  "prob": Probability for belonging to each cluster.
 
-  
Predefined learners can be found in the mlr3misc::Dictionary mlr3::mlr_learners.
Super class
mlr3::Learner -> LearnerClust
Public fields
- assignments
- ( - NULL|- vector())
 Cluster assignments from learned model.
- save_assignments
- ( - logical())
 Should assignments for 'train' data be saved in the learner? Default is- TRUE.
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClust$new( id, param_set = ps(), predict_types = "partition", feature_types = character(), properties = character(), packages = character(), label = NA_character_, man = NA_character_ )
Arguments
- id
- ( - character(1))
 Identifier for the new instance.
- param_set
- (paradox::ParamSet) 
 Set of hyperparameters.
- predict_types
- ( - character())
 Supported predict types. Must be a subset of- mlr_reflections$learner_predict_types.
- feature_types
- ( - character())
 Feature types the learner operates on. Must be a subset of- mlr_reflections$task_feature_types.
- properties
- ( - character())
 Set of properties of the mlr3::Learner. Must be a subset of- mlr_reflections$learner_properties. The following properties are currently standardized and understood by learners in mlr3:-  "missings": The learner can handle missing values in the data.
-  "weights": The learner supports observation weights.
-  "importance": The learner supports extraction of importance scores, i.e. comes with an$importance()extractor function (see section on optional extractors in mlr3::Learner).
-  "selected_features": The learner supports extraction of the set of selected features, i.e. comes with a$selected_features()extractor function (see section on optional extractors in mlr3::Learner).
-  "oob_error": The learner supports extraction of estimated out of bag error, i.e. comes with aoob_error()extractor function (see section on optional extractors in mlr3::Learner).
 
-  
- packages
- ( - character())
 Set of required packages. A warning is signaled by the constructor if at least one of the packages is not installed, but loaded (not attached) later on-demand via- requireNamespace().
- label
- ( - character(1))
 Label for the new instance.
- man
- ( - character(1))
 String in the format- [pkg]::[topic]pointing to a manual page for this object. The referenced help package can be opened via method- $help().
Method reset()
Reset assignments field before calling parent's reset().
Usage
LearnerClust$reset()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClust$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Examples
library(mlr3)
library(mlr3cluster)
ids = mlr_learners$keys("^clust")
ids
# get a specific learner from mlr_learners:
learner = lrn("clust.kmeans")
print(learner)
Cluster Measure
Description
This measure specializes mlr3::Measure for cluster analysis:
-  task_typeis set to"clust".
- Possible values for - predict_typeare- "partition"and- "prob".
Predefined measures can be found in the mlr3misc::Dictionary mlr3::mlr_measures.
Super class
mlr3::Measure -> MeasureClust
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
MeasureClust$new( id, range, minimize = NA, aggregator = NULL, properties = character(), predict_type = "partition", task_properties = character(), packages = character(), label = NA_character_, man = NA_character_ )
Arguments
- id
- ( - character(1))
 Identifier for the new instance.
- range
- ( - numeric(2))
 Feasible range for this measure as- c(lower_bound, upper_bound). Both bounds may be infinite.
- minimize
- ( - logical(1))
 Set to- TRUEif good predictions correspond to small values, and to- FALSEif good predictions correspond to large values. If set to- NA(default), tuning this measure is not possible.
- aggregator
- ( - function(x))
 Function to aggregate individual performance scores- xwhere- xis a numeric vector. If- NULL, defaults to- mean().
- properties
- ( - character())
 Properties of the measure. Must be a subset of mlr_reflections$measure_properties. Supported by- mlr3:-  "requires_task"(requires the complete mlr3::Task),
-  "requires_learner"(requires the trained mlr3::Learner),
-  "requires_train_set"(requires the training indices from the mlr3::Resampling), and
-  "na_score"(the measure is expected to occasionally returnNAorNaN).
 
-  
- predict_type
- ( - character(1))
 Required predict type of the mlr3::Learner. Possible values are stored in mlr_reflections$learner_predict_types.
- task_properties
- ( - character())
 Required task properties, see mlr3::Task.
- packages
- ( - character())
 Set of required packages. A warning is signaled by the constructor if at least one of the packages is not installed, but loaded (not attached) later on-demand via- requireNamespace().
- label
- ( - character(1))
 Label for the new instance.
- man
- ( - character(1))
 String in the format- [pkg]::[topic]pointing to a manual page for this object. The referenced help package can be opened via method- $help().
See Also
Example cluster measures: clust.dunn
Prediction Object for Cluster Analysis
Description
This object wraps the predictions returned by a learner of class LearnerClust, i.e. the predicted partition and cluster probability.
Super class
mlr3::Prediction -> PredictionClust
Active bindings
- partition
- ( - integer())
 Access the stored partition.
- prob
- ( - matrix())
 Access to the stored probabilities.
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
PredictionClust$new( task = NULL, row_ids = task$row_ids, partition = NULL, prob = NULL, check = TRUE )
Arguments
- task
- (TaskClust) 
 Task, used to extract defaults for- row_ids.
- row_ids
- ( - integer())
 Row ids of the predicted observations, i.e. the row ids of the test set.
- partition
- ( - integer())
 Vector of cluster partitions.
- prob
- ( - matrix())
 Numeric matrix of cluster membership probabilities with one column for each cluster and one row for each observation. Columns must be named with cluster numbers, row names are automatically removed. If- probis provided, but- partitionis not, the cluster memberships are calculated from the probabilities using- max.col()with- ties.methodset to- "first".
- check
- ( - logical(1))
 If- TRUE, performs some argument checks and predict type conversions.
Method clone()
The objects of this class are cloneable with this method.
Usage
PredictionClust$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Examples
library(mlr3)
library(mlr3cluster)
task = tsk("usarrests")
learner = lrn("clust.kmeans")
p = learner$train(task)$predict(task)
p$predict_types
head(as.data.table(p))
Cluster Task
Description
This task specializes mlr3::Task for cluster problems.
As an unsupervised task, this task has no target column.
The task_type is set to "clust".
Predefined tasks are stored in the dictionary mlr3::mlr_tasks.
Super classes
mlr3::Task -> mlr3::TaskUnsupervised -> TaskClust
Methods
Public methods
Inherited methods
- mlr3::Task$add_strata()
- mlr3::Task$cbind()
- mlr3::Task$data()
- mlr3::Task$divide()
- mlr3::Task$droplevels()
- mlr3::Task$filter()
- mlr3::Task$format()
- mlr3::Task$formula()
- mlr3::Task$head()
- mlr3::Task$help()
- mlr3::Task$levels()
- mlr3::Task$missings()
- mlr3::Task$print()
- mlr3::Task$rbind()
- mlr3::Task$rename()
- mlr3::Task$select()
- mlr3::Task$set_col_roles()
- mlr3::Task$set_levels()
- mlr3::Task$set_row_roles()
Method new()
Creates a new instance of this R6 class.
Usage
TaskClust$new(id, backend, label = NA_character_)
Arguments
- id
- ( - character(1))
 Identifier for the new instance.
- backend
- (mlr3::DataBackend) 
 Either a mlr3::DataBackend, or any object which is convertible to a mlr3::DataBackend with- as_data_backend(). E.g., a- data.frame()will be converted to a mlr3::DataBackendDataTable.
- label
- ( - character(1))
 Label for the new instance.
Method clone()
The objects of this class are cloneable with this method.
Usage
TaskClust$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
See Also
Other Task: 
mlr_tasks_ruspini,
mlr_tasks_usarrests
Examples
library(mlr3)
library(mlr3cluster)
task = TaskClust$new("usarrests", backend = USArrests)
task$task_type
# possible properties:
mlr_reflections$task_properties$clust
Convert to a Cluster Prediction
Description
Convert object to a PredictionClust.
Usage
as_prediction_clust(x, ...)
## S3 method for class 'PredictionClust'
as_prediction_clust(x, ...)
## S3 method for class 'data.frame'
as_prediction_clust(x, ...)
Arguments
| x | (any) | 
| ... | (any) | 
Value
Examples
if (requireNamespace("e1071")) {
  # create a prediction object
  task = tsk("usarrests")
  learner = lrn("clust.kmeans")
  learner = lrn("clust.cmeans", predict_type = "prob")
  learner$train(task)
  p = learner$predict(task)
  # convert to a data.table
  tab = as.data.table(p)
  # convert back to a Prediction
  as_prediction_clust(tab)
  # split data.table into a 3 data.tables based on UrbanPop
  f = cut(task$data(rows = tab$row_ids)$UrbanPop, 3)
  tabs = split(tab, f)
  # convert back to list of predictions
  preds = lapply(tabs, as_prediction_clust)
  # calculate performance in each group
  sapply(preds, function(p) p$score(task = task))
}
Convert to a Cluster Task
Description
Convert object to a TaskClust. This is a S3 generic, specialized for at least the following objects:
-  TaskClust: ensure the identity. 
-  data.frame()and mlr3::DataBackend: provides an alternative to calling constructor of TaskClust.
Usage
as_task_clust(x, ...)
## S3 method for class 'TaskClust'
as_task_clust(x, clone = FALSE, ...)
## S3 method for class 'data.frame'
as_task_clust(x, id = deparse1(substitute(x)), ...)
## S3 method for class 'DataBackend'
as_task_clust(x, id = deparse1(substitute(x)), ...)
## S3 method for class 'formula'
as_task_clust(x, data, id = deparse1(substitute(data)), ...)
Arguments
| x | (any) | 
| ... | (any) | 
| clone | ( | 
| id | ( | 
| data | ( | 
Value
Examples
as_task_clust(datasets::USArrests)
Mini Batch K-Means Clustering Learner
Description
A LearnerClust for mini batch k-means clustering implemented in ClusterR::MiniBatchKmeans().
ClusterR::MiniBatchKmeans() doesn't have a default value for the number of clusters.
Therefore, the clusters parameter here is set to 2 by default.
The predict method uses ClusterR::predict_MBatchKMeans() to compute the
cluster memberships for new data.
The learner supports both partitional and fuzzy clustering.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.MBatchKMeans")
lrn("clust.MBatchKMeans")
Meta Information
- Task type: “clust” 
- Predict Types: “partition”, “prob” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, ClusterR 
Parameters
| Id | Type | Default | Levels | Range | 
| clusters | integer | 2 | [1, \infty) | |
| batch_size | integer | 10 | [1, \infty) | |
| num_init | integer | 1 | [1, \infty) | |
| max_iters | integer | 100 | [1, \infty) | |
| init_fraction | numeric | 1 | [0, 1] | |
| initializer | character | kmeans++ | optimal_init, quantile_init, kmeans++, random | - | 
| early_stop_iter | integer | 10 | [1, \infty) | |
| verbose | logical | FALSE | TRUE, FALSE | - | 
| CENTROIDS | untyped | NULL | - | |
| tol | numeric | 1e-04 | [0, \infty) | |
| tol_optimal_init | numeric | 0.3 | [0, \infty) | |
| seed | integer | 1 | (-\infty, \infty) | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMiniBatchKMeans
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustMiniBatchKMeans$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustMiniBatchKMeans$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Sculley, David (2010). “Web-scale k-means clustering.” In Proceedings of the 19th international conference on World wide web, 1177–1178.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("ClusterR")) {
  learner = mlr3::lrn("clust.MBatchKMeans")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
K-Means Clustering Learner from Weka
Description
A LearnerClust for Simple K Means clustering implemented in RWeka::SimpleKMeans().
The predict method uses RWeka::predict.Weka_clusterer() to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.SimpleKMeans")
lrn("clust.SimpleKMeans")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, RWeka 
Parameters
| Id | Type | Default | Levels | Range | 
| A | untyped | "weka.core.EuclideanDistance" | - | |
| C | logical | FALSE | TRUE, FALSE | - | 
| fast | logical | FALSE | TRUE, FALSE | - | 
| I | integer | 100 | [1, \infty) | |
| init | integer | 0 | [0, 3] | |
| M | logical | FALSE | TRUE, FALSE | - | 
| max_candidates | integer | 100 | [1, \infty) | |
| min_density | integer | 2 | [1, \infty) | |
| N | integer | 2 | [1, \infty) | |
| num_slots | integer | 1 | [1, \infty) | |
| O | logical | FALSE | TRUE, FALSE | - | 
| periodic_pruning | integer | 10000 | [1, \infty) | |
| S | integer | 10 | [0, \infty) | |
| t2 | numeric | -1 | (-\infty, \infty) | |
| t1 | numeric | -1.5 | (-\infty, \infty) | |
| V | logical | FALSE | TRUE, FALSE | - | 
| output_debug_info | logical | FALSE | TRUE, FALSE | - | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustSimpleKMeans
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustSimpleKMeans$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustSimpleKMeans$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.
Forgy, W E (1965). “Cluster analysis of multivariate data: efficiency versus interpretability of classifications.” Biometrics, 21, 768–769.
Lloyd, P S (1982). “Least squares quantization in PCM.” IEEE Transactions on Information Theory, 28(2), 129–137.
MacQueen, James (1967). “Some methods for classification and analysis of multivariate observations.” In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, 281–297.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("RWeka")) {
  learner = mlr3::lrn("clust.SimpleKMeans")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Agglomerative Hierarchical Clustering Learner
Description
A LearnerClust for agglomerative hierarchical clustering implemented in cluster::agnes().
The predict method uses stats::cutree() which cuts the tree resulting from
hierarchical clustering into specified number of groups (see parameter k).
The default number for k is 2.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.agnes")
lrn("clust.agnes")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, cluster 
Parameters
| Id | Type | Default | Levels | Range | 
| metric | character | euclidean | euclidean, manhattan | - | 
| stand | logical | FALSE | TRUE, FALSE | - | 
| method | character | average | average, single, complete, ward, weighted, flexible, gaverage | - | 
| trace.lev | integer | 0 | [0, \infty) | |
| k | integer | 2 | [1, \infty) | |
| par.method | untyped | - | - | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAgnes
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustAgnes$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustAgnes$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("cluster")) {
  learner = mlr3::lrn("clust.agnes")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Affinity Propagation Clustering Learner
Description
A LearnerClust for Affinity Propagation clustering implemented in apcluster::apcluster().
apcluster::apcluster() doesn't have set a default for similarity function.
The predict method computes the closest cluster exemplar to find the
cluster memberships for new data.
The code is taken from
StackOverflow
answer by the apcluster package maintainer.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.ap")
lrn("clust.ap")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, apcluster 
Parameters
| Id | Type | Default | Levels | Range | 
| s | untyped | - | - | |
| p | untyped | NA | - | |
| q | numeric | - | [0, 1] | |
| maxits | integer | 1000 | [1, \infty) | |
| convits | integer | 100 | [1, \infty) | |
| lam | numeric | 0.9 | [0.5, 1] | |
| includeSim | logical | FALSE | TRUE, FALSE | - | 
| details | logical | FALSE | TRUE, FALSE | - | 
| nonoise | logical | FALSE | TRUE, FALSE | - | 
| seed | integer | - | (-\infty, \infty) | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustAP
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustAP$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustAP$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Bodenhofer, Ulrich, Kothmeier, Andreas, Hochreiter, Sepp (2011). “APCluster: an R package for affinity propagation clustering.” Bioinformatics, 27(17), 2463–2464.
Frey, J B, Dueck, Delbert (2007). “Clustering by passing messages between data points.” science, 315(5814), 972–976.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("apcluster")) {
  learner = mlr3::lrn("clust.ap")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
BICO Clustering Learner
Description
BICO (Fast computation of k-means coresets in a data stream) clustering.
Calls stream::DSC_BICO() from stream.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.bico")
lrn("clust.bico")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, stream 
Parameters
| Id | Type | Default | Range | 
| k | integer | 5 | [1, \infty) | 
| space | integer | 10 | [1, \infty) | 
| p | integer | 10 | [1, \infty) | 
| iterations | integer | 10 | [1, \infty) | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBICO
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustBICO$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustBICO$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Fichtenberger, Hendrik, Gille, Marc, Schmidt, Melanie, Schwiegelshohn, Chris, Sohler, Christian (2013). “BICO: BIRCH Meets Coresets for k-Means Clustering.” In Algorithms–ESA 2013: 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings 21, 481–492. Springer.
Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("stream")) {
  learner = mlr3::lrn("clust.bico")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
BIRCH Clustering Learner
Description
BIRCH (Balanced Iterative Reducing Clustering using Hierarchies) clustering.
Calls stream::DSC_BIRCH() from stream.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.birch")
lrn("clust.birch")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, stream 
Parameters
| Id | Type | Default | Range | 
| threshold | numeric | - | [0, \infty) | 
| branching | integer | - | [1, \infty) | 
| maxLeaf | integer | - | [1, \infty) | 
| maxMem | integer | 0 | [0, \infty) | 
| outlierThreshold | numeric | 0.25 | (-\infty, \infty) | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustBIRCH
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustBIRCH$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustBIRCH$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1996). “BIRCH: An Efficient Data Clustering Method for Very Large Databases.” ACM sigmod record, 25(2), 103–114.
Zhang, Tian, Ramakrishnan, Raghu, Livny, Miron (1997). “BIRCH: A new data clustering algorithm and its applications.” Data Mining and Knowledge Discovery, 1, 141–182.
Hahsler M, Bolaños M, Forrest J (2017). “Introduction to stream: An Extensible Framework for Data Stream Clustering Research with R.” Journal of Statistical Software, 76(14), 1–50. doi:10.18637/jss.v076.i14.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("stream")) {
  learner = mlr3::lrn("clust.birch")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Fuzzy C-Means Clustering Learner
Description
A LearnerClust for fuzzy clustering implemented in e1071::cmeans().
e1071::cmeans() doesn't have a default value for the number of clusters.
Therefore, the centers parameter here is set to 2 by default.
The predict method uses clue::cl_predict() to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.cmeans")
lrn("clust.cmeans")
Meta Information
- Task type: “clust” 
- Predict Types: “partition”, “prob” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, e1071 
Parameters
| Id | Type | Default | Levels | Range | 
| centers | untyped | - | - | |
| iter.max | integer | 100 | [1, \infty) | |
| verbose | logical | FALSE | TRUE, FALSE | - | 
| dist | character | euclidean | euclidean, manhattan | - | 
| method | character | cmeans | cmeans, ufcl | - | 
| m | numeric | 2 | [1, \infty) | |
| rate.par | numeric | - | [0, 1] | |
| weights | untyped | 1L | - | |
| control | untyped | - | - | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCMeans
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustCMeans$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustCMeans$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Dimitriadou, Evgenia, Hornik, Kurt, Leisch, Friedrich, Meyer, David, Weingessel, Andreas (2008). “Misc functions of the Department of Statistics (e1071), TU Wien.” R package, 1, 5–24.
Bezdek, C J (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("e1071")) {
  learner = mlr3::lrn("clust.cmeans")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Cobweb Clustering Learner
Description
A LearnerClust for Cobweb clustering implemented in RWeka::Cobweb().
The predict method uses RWeka::predict.Weka_clusterer() to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.cobweb")
lrn("clust.cobweb")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, RWeka 
Parameters
| Id | Type | Default | Range | 
| A | numeric | 1 | [0, \infty) | 
| C | numeric | 0.002 | [0, \infty) | 
| S | integer | 42 | [1, \infty) | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustCobweb
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustCobweb$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustCobweb$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.
Fisher, H D (1987). “Knowledge acquisition via incremental conceptual clustering.” Machine learning, 2, 139–172.
Gennari, H J, Langley, Pat, Fisher, Doug (1989). “Models of incremental concept formation.” Artificial intelligence, 40(1-3), 11–61.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("RWeka")) {
  learner = mlr3::lrn("clust.cobweb")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner
Description
DBSCAN (Density-based spatial clustering of applications with noise) clustering.
Calls dbscan::dbscan() from dbscan.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.dbscan")
lrn("clust.dbscan")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, dbscan 
Parameters
| Id | Type | Default | Levels | Range | 
| eps | numeric | - | [0, \infty) | |
| minPts | integer | 5 | [0, \infty) | |
| borderPoints | logical | TRUE | TRUE, FALSE | - | 
| weights | untyped | - | - | |
| search | character | kdtree | kdtree, linear, dist | - | 
| bucketSize | integer | 10 | [1, \infty) | |
| splitRule | character | SUGGEST | STD, MIDPT, FAIR, SL_MIDPT, SL_FAIR, SUGGEST | - | 
| approx | numeric | 0 | (-\infty, \infty) | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCAN
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustDBSCAN$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustDBSCAN$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering with R.” Journal of Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01.
Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, Xu, Xiaowei, others (1996). “A density-based algorithm for discovering clusters in large spatial databases with noise.” In kdd, volume 96 number 34, 226–231.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("dbscan")) {
  learner = mlr3::lrn("clust.dbscan")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Density-based Spatial Clustering of Applications with Noise (DBSCAN) Clustering Learner
Description
DBSCAN (Density-based spatial clustering of applications with noise) clustering.
Calls fpc::dbscan() from fpc.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.dbscan_fpc")
lrn("clust.dbscan_fpc")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, fpc 
Parameters
| Id | Type | Default | Levels | Range | 
| eps | numeric | - | [0, \infty) | |
| MinPts | integer | 5 | [0, \infty) | |
| scale | logical | FALSE | TRUE, FALSE | - | 
| method | character | - | hybrid, raw, dist | - | 
| seeds | logical | TRUE | TRUE, FALSE | - | 
| showplot | untyped | FALSE | - | |
| countmode | untyped | NULL | - | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDBSCANfpc
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustDBSCANfpc$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustDBSCANfpc$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, Xu, Xiaowei, others (1996). “A density-based algorithm for discovering clusters in large spatial databases with noise.” In kdd, volume 96 number 34, 226–231.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("fpc")) {
  learner = mlr3::lrn("clust.dbscan_fpc")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Divisive Hierarchical Clustering Learner
Description
A LearnerClust for divisive hierarchical clustering implemented in cluster::diana().
The predict method uses stats::cutree() which cuts the tree resulting from
hierarchical clustering into specified number of groups (see parameter k).
The default value for k is 2.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.diana")
lrn("clust.diana")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, cluster 
Parameters
| Id | Type | Default | Levels | Range | 
| metric | character | euclidean | euclidean, manhattan | - | 
| stand | logical | FALSE | TRUE, FALSE | - | 
| trace.lev | integer | 0 | [0, \infty) | |
| k | integer | 2 | [1, \infty) | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustDiana
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustDiana$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustDiana$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("cluster")) {
  learner = mlr3::lrn("clust.diana")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Expectation-Maximization Clustering Learner
Description
A LearnerClust for Expectation-Maximization clustering implemented in
RWeka::list_Weka_interfaces().
The predict method uses RWeka::predict.Weka_clusterer() to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.em")
lrn("clust.em")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, RWeka 
Parameters
| Id | Type | Default | Levels | Range | 
| I | integer | 100 | [1, \infty) | |
| ll_cv | numeric | 1e-06 | [1e-06, \infty) | |
| ll_iter | numeric | 1e-06 | [1e-06, \infty) | |
| M | numeric | 1e-06 | [1e-06, \infty) | |
| max | integer | -1 | [-1, \infty) | |
| N | integer | -1 | [-1, \infty) | |
| num_slots | integer | 1 | [1, \infty) | |
| S | integer | 100 | [0, \infty) | |
| X | integer | 10 | [1, \infty) | |
| K | integer | 10 | [1, \infty) | |
| V | logical | FALSE | TRUE, FALSE | - | 
| output_debug_info | logical | FALSE | TRUE, FALSE | - | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustEM
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustEM$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustEM$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.
Dempster, P A, Laird, M N, Rubin, B D (1977). “Maximum likelihood from incomplete data via the EM algorithm.” Journal of the royal statistical society: series B (methodological), 39(1), 1–22.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("RWeka")) {
  learner = mlr3::lrn("clust.em")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Fuzzy Analysis Clustering Learner
Description
A LearnerClust for fuzzy clustering implemented in cluster::fanny().
cluster::fanny() doesn't have a default value for the number of clusters.
Therefore, the k parameter which corresponds to the number
of clusters here is set to 2 by default.
The predict method copies cluster assignments and memberships
generated for train data. The predict does not work for
new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.fanny")
lrn("clust.fanny")
Meta Information
- Task type: “clust” 
- Predict Types: “partition”, “prob” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, cluster 
Parameters
| Id | Type | Default | Levels | Range | 
| k | integer | - | [1, \infty) | |
| memb.exp | numeric | 2 | [1, \infty) | |
| metric | character | euclidean | euclidean, manhattan, SqEuclidean | - | 
| stand | logical | FALSE | TRUE, FALSE | - | 
| maxit | integer | 500 | [0, \infty) | |
| tol | numeric | 1e-15 | [0, \infty) | |
| trace.lev | integer | 0 | [0, \infty) | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFanny
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustFanny$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustFanny$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Kaufman, Leonard, Rousseeuw, J P (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("cluster")) {
  learner = mlr3::lrn("clust.fanny")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Featureless Clustering Learner
Description
A simple LearnerClust which randomly (but evenly) assigns observations to
num_clusters partitions (default: 1 partition).
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.featureless")
lrn("clust.featureless")
Meta Information
- Task type: “clust” 
- Predict Types: “partition”, “prob” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster 
Parameters
| Id | Type | Default | Range | 
| num_clusters | integer | - | [1, \infty) | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFeatureless
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustFeatureless$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustFeatureless$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("mlr3")) {
  learner = mlr3::lrn("clust.featureless")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Farthest First Clustering Learner
Description
A LearnerClust for Farthest First clustering implemented in RWeka::FarthestFirst().
The predict method uses RWeka::predict.Weka_clusterer() to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.ff")
lrn("clust.ff")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, RWeka 
Parameters
| Id | Type | Default | Levels | Range | 
| N | integer | 2 | [1, \infty) | |
| S | integer | 1 | [1, \infty) | |
| output_debug_info | logical | FALSE | TRUE, FALSE | - | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustFF
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustFarthestFirst$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustFarthestFirst$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.
Hochbaum, S D, Shmoys, B D (1985). “A best possible heuristic for the k-center problem.” Mathematics of operations research, 10(2), 180–184.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("RWeka")) {
  learner = mlr3::lrn("clust.ff")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Agglomerative Hierarchical Clustering Learner
Description
A LearnerClust for agglomerative hierarchical clustering implemented in stats::hclust().
Difference Calculation is done by stats::dist()
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.hclust")
lrn("clust.hclust")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, 'stats' 
Parameters
| Id | Type | Default | Levels | Range | 
| method | character | complete | ward.D, ward.D2, single, complete, average, mcquitty, median, centroid | - | 
| members | untyped | NULL | - | |
| distmethod | character | euclidean | euclidean, maximum, manhattan, canberra, binary, minkowski | - | 
| diag | logical | FALSE | TRUE, FALSE | - | 
| upper | logical | FALSE | TRUE, FALSE | - | 
| p | numeric | 2 | (-\infty, \infty) | |
| k | integer | 2 | [1, \infty) | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustHclust
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustHclust$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustHclust$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Becker, A R, Chambers, M J, Wilks, R A (1988). The New S Language. Wadsworth & Brooks/Cole.
Everitt, S B (1974). Cluster Analysis. Heinemann Educational Books.
Hartigan, A J (1975). Clustering Algorithms. John Wiley & Sons.
Sneath, HA P, Sokal, R R (1973). Numerical Taxonomy. Freeman.
Anderberg, R M (1973). Cluster Analysis for Applications. Academic Press.
Gordon, David A (1999). Classification, 2 edition. Chapman and Hall / CRC.
Murtagh, Fionn (1985). “Multidimensional Clustering Algorithms.” In COMPSTAT Lectures 4. Physica-Verlag.
McQuitty, L L (1966). “Similarity Analysis by Reciprocal Pairs for Discrete and Continuous Data.” Educational and Psychological Measurement, 26(4), 825–831. doi:10.1177/001316446602600402.
Legendre, Pierre, Legendre, Louis (2012). Numerical Ecology, 3 edition. Elsevier Science BV.
Murtagh, Fionn, Legendre, Pierre (2014). “Ward's Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward's Criterion?” Journal of Classification, 31, 274–295. doi:10.1007/s00357-014-9161-z.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("stats")) {
  learner = mlr3::lrn("clust.hclust")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Hierarchical DBSCAN (HDBSCAN) Clustering Learner
Description
HDBSCAN (Hierarchical DBSCAN) clustering.
Calls dbscan::hdbscan() from dbscan.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.hdbscan")
lrn("clust.hdbscan")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, dbscan 
Parameters
| Id | Type | Default | Levels | Range | 
| minPts | integer | - | [0, \infty) | |
| gen_hdbscan_tree | logical | FALSE | TRUE, FALSE | - | 
| gen_simplified_tree | logical | FALSE | TRUE, FALSE | - | 
| verbose | logical | FALSE | TRUE, FALSE | - | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustHDBSCAN
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustHDBSCAN$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustHDBSCAN$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering with R.” Journal of Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01.
Campello, JGB R, Moulavi, Davoud, Sander, Jörg (2013). “Density-based clustering based on hierarchical density estimates.” In Pacific-Asia conference on knowledge discovery and data mining, 160–172. Springer.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("dbscan")) {
  learner = mlr3::lrn("clust.hdbscan")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Kernel K-Means Clustering Learner
Description
A LearnerClust for kernel k-means clustering implemented in kernlab::kkmeans().
kernlab::kkmeans() doesn't have a default value for the number of clusters.
Therefore, the centers parameter here is set to 2 by default.
Kernel parameters have to be passed directly and not by using the kpar list in kkmeans.
The predict method finds the nearest center in kernel distance to
assign clusters for new data points.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.kkmeans")
lrn("clust.kkmeans")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, kernlab 
Parameters
| Id | Type | Default | Levels | Range | 
| centers | untyped | - | - | |
| kernel | character | rbfdot | vanilladot, polydot, rbfdot, tanhdot, laplacedot, besseldot, anovadot, splinedot | - | 
| sigma | numeric | - | [0, \infty) | |
| degree | integer | 3 | [1, \infty) | |
| scale | numeric | 1 | [0, \infty) | |
| offset | numeric | 1 | (-\infty, \infty) | |
| order | integer | 1 | (-\infty, \infty) | |
| alg | character | kkmeans | kkmeans, kerninghan | - | 
| p | numeric | 1 | (-\infty, \infty) | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKKMeans
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustKKMeans$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustKKMeans$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Karatzoglou, Alexandros, Smola, Alexandros, Hornik, Kurt, Zeileis, Achim (2004). “kernlab-an S4 package for kernel methods in R.” Journal of statistical software, 11, 1–20.
Dhillon, S I, Guan, Yuqiang, Kulis, Brian (2004). A unified view of kernel k-means, spectral clustering and graph cuts. Citeseer.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("kernlab")) {
  learner = mlr3::lrn("clust.kkmeans")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
K-Means Clustering Learner
Description
A LearnerClust for k-means clustering implemented in stats::kmeans().
stats::kmeans() doesn't have a default value for the number of clusters.
Therefore, the centers parameter here is set to 2 by default.
The predict method uses clue::cl_predict() to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.kmeans")
lrn("clust.kmeans")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, 'stats', clue 
Parameters
| Id | Type | Default | Levels | Range | 
| centers | untyped | - | - | |
| iter.max | integer | 10 | [1, \infty) | |
| algorithm | character | Hartigan-Wong | Hartigan-Wong, Lloyd, Forgy, MacQueen | - | 
| nstart | integer | 1 | [1, \infty) | |
| trace | integer | 0 | [0, \infty) | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustKMeans
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustKMeans$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustKMeans$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Forgy, W E (1965). “Cluster analysis of multivariate data: efficiency versus interpretability of classifications.” Biometrics, 21, 768–769.
Hartigan, A J, Wong, A M (1979). “Algorithm AS 136: A K-means clustering algorithm.” Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108. doi:10.2307/2346830.
Lloyd, P S (1982). “Least squares quantization in PCM.” IEEE Transactions on Information Theory, 28(2), 129–137.
MacQueen, James (1967). “Some methods for classification and analysis of multivariate observations.” In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, 281–297.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("stats") && requireNamespace("clue")) {
  learner = mlr3::lrn("clust.kmeans")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Gaussian Mixture Models-Based Clustering Learner
Description
A LearnerClust for model-based clustering implemented in mclust::Mclust().
The predict method uses mclust::predict.Mclust() to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.mclust")
lrn("clust.mclust")
Meta Information
- Task type: “clust” 
- Predict Types: “partition”, “prob” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, mclust 
Parameters
| Id | Type | Default | 
| G | untyped | 1:9 | 
| modelNames | untyped | - | 
| prior | untyped | - | 
| control | untyped | mclust::emControl() | 
| initialization | untyped | - | 
| x | untyped | - | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMclust
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustMclust$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustMclust$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Scrucca, Luca, Fop, Michael, Murphy, Brendan T, Raftery, E A (2016). “mclust 5: clustering, classification and density estimation using Gaussian finite mixture models.” The R journal, 8(1), 289.
Fraley, Chris, Raftery, E A (2002). “Model-based clustering, discriminant analysis, and density estimation.” Journal of the American statistical Association, 97(458), 611–631.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("mclust")) {
  learner = mlr3::lrn("clust.mclust")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Mean Shift Clustering Learner
Description
A LearnerClust for Mean Shift clustering implemented in LPCM::ms().
There is no predict method for LPCM::ms(), so the method
returns cluster labels for the 'training' data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.meanshift")
lrn("clust.meanshift")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, LPCM 
Parameters
| Id | Type | Default | Range | 
| h | untyped | - | - | 
| subset | untyped | - | - | 
| scaled | integer | 1 | [0, \infty) | 
| iter | integer | 200 | [1, \infty) | 
| thr | numeric | 0.01 | (-\infty, \infty) | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustMeanShift
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustMeanShift$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustMeanShift$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Cheng, Yizong (1995). “Mean shift, mode seeking, and clustering.” IEEE transactions on pattern analysis and machine intelligence, 17(8), 790–799.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.optics,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("LPCM")) {
  learner = mlr3::lrn("clust.meanshift")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Ordering Points to Identify the Clustering Structure (OPTICS) Clustering Learner
Description
OPTICS (Ordering points to identify the clustering structure) point ordering clustering.
Calls dbscan::optics() from dbscan.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.optics")
lrn("clust.optics")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, dbscan 
Parameters
| Id | Type | Default | Levels | Range | 
| eps | numeric | NULL | [0, \infty) | |
| minPts | integer | 5 | [0, \infty) | |
| search | character | kdtree | kdtree, linear, dist | - | 
| bucketSize | integer | 10 | [1, \infty) | |
| splitRule | character | SUGGEST | STD, MIDPT, FAIR, SL_MIDPT, SL_FAIR, SUGGEST | - | 
| approx | numeric | 0 | (-\infty, \infty) | |
| eps_cl | numeric | - | [0, \infty) | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustOPTICS
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustOPTICS$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustOPTICS$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Hahsler M, Piekenbrock M, Doran D (2019). “dbscan: Fast Density-Based Clustering with R.” Journal of Statistical Software, 91(1), 1–30. doi:10.18637/jss.v091.i01.
Ankerst, Mihael, Breunig, M M, Kriegel, Hans-Peter, Sander, Jörg (1999). “OPTICS: Ordering points to identify the clustering structure.” ACM Sigmod record, 28(2), 49–60.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.pam,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("dbscan")) {
  learner = mlr3::lrn("clust.optics")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Partitioning Around Medoids Clustering Learner
Description
A LearnerClust for PAM clustering implemented in cluster::pam().
cluster::pam() doesn't have a default value for the number of clusters.
Therefore, the k parameter which corresponds to the number
of clusters here is set to 2 by default.
The predict method uses clue::cl_predict() to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.pam")
lrn("clust.pam")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, cluster 
Parameters
| Id | Type | Default | Levels | Range | 
| k | integer | - | [1, \infty) | |
| metric | character | - | euclidian, manhattan | - | 
| medoids | untyped | NULL | - | |
| stand | logical | FALSE | TRUE, FALSE | - | 
| do.swap | logical | TRUE | TRUE, FALSE | - | 
| pamonce | integer | 0 | [0, 5] | |
| trace.lev | integer | 0 | [0, \infty) | |
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustPAM
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustPAM$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustPAM$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Reynolds, P A, Richards, Graeme, de la Iglesia, Beatriz, Rayward-Smith, J V (2006). “Clustering rules: a comparison of partitioning and hierarchical clustering algorithms.” Journal of Mathematical Modelling and Algorithms, 5, 475–504.
Schubert, Erich, Rousseeuw, J P (2019). “Faster k-medoids clustering: improving the PAM, CLARA, and CLARANS algorithms.” In Similarity Search and Applications: 12th International Conference, SISAP 2019, Newark, NJ, USA, October 2–4, 2019, Proceedings 12, 171–187. Springer.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.xmeans
Examples
if (requireNamespace("cluster")) {
  learner = mlr3::lrn("clust.pam")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
X-means Clustering Learner
Description
A LearnerClust for X-means clustering implemented in RWeka::XMeans().
The predict method uses RWeka::predict.Weka_clusterer() to compute the
cluster memberships for new data.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
mlr_learners$get("clust.xmeans")
lrn("clust.xmeans")
Meta Information
- Task type: “clust” 
- Predict Types: “partition” 
- Feature Types: “logical”, “integer”, “numeric” 
- Required Packages: mlr3, mlr3cluster, RWeka 
Parameters
| Id | Type | Default | Levels | Range | 
| B | numeric | 1 | [0, \infty) | |
| C | numeric | 0 | [0, \infty) | |
| D | untyped | "weka.core.EuclideanDistance" | - | |
| H | integer | 4 | [1, \infty) | |
| I | integer | 1 | [1, \infty) | |
| J | integer | 1000 | [1, \infty) | |
| K | untyped | "" | - | |
| L | integer | 2 | [1, \infty) | |
| M | integer | 1000 | [1, \infty) | |
| S | integer | 10 | [1, \infty) | |
| U | integer | 0 | [0, \infty) | |
| use_kdtree | logical | FALSE | TRUE, FALSE | - | 
| N | untyped | - | - | |
| O | untyped | - | - | |
| Y | untyped | - | - | |
| output_debug_info | logical | FALSE | TRUE, FALSE | - | 
Super classes
mlr3::Learner -> mlr3cluster::LearnerClust -> LearnerClustXMeans
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
LearnerClustXMeans$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
LearnerClustXMeans$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
References
Witten, H I, Frank, Eibe (2002). “Data mining: practical machine learning tools and techniques with Java implementations.” Acm Sigmod Record, 31(1), 76–77.
Pelleg, Dan, Moore, W A, others (2000). “X-means: Extending k-means with efficient estimation of the number of clusters.” In Icml, volume 1, 727–734.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3extralearners for more learners. 
-  as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
-  mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Extension packages for additional task types: -  mlr3proba for probabilistic supervised regression and survival analysis. 
-  mlr3cluster for unsupervised clustering. 
 
-  
-  mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner: 
mlr_learners_clust.MBatchKMeans,
mlr_learners_clust.SimpleKMeans,
mlr_learners_clust.agnes,
mlr_learners_clust.ap,
mlr_learners_clust.bico,
mlr_learners_clust.birch,
mlr_learners_clust.cmeans,
mlr_learners_clust.cobweb,
mlr_learners_clust.dbscan,
mlr_learners_clust.dbscan_fpc,
mlr_learners_clust.diana,
mlr_learners_clust.em,
mlr_learners_clust.fanny,
mlr_learners_clust.featureless,
mlr_learners_clust.ff,
mlr_learners_clust.hclust,
mlr_learners_clust.hdbscan,
mlr_learners_clust.kkmeans,
mlr_learners_clust.kmeans,
mlr_learners_clust.mclust,
mlr_learners_clust.meanshift,
mlr_learners_clust.optics,
mlr_learners_clust.pam
Examples
if (requireNamespace("RWeka")) {
  learner = mlr3::lrn("clust.xmeans")
  print(learner)
  # available parameters:
  learner$param_set$ids()
}
Calinski Harabasz Pseudo F-Statistic
Description
The score function calls fpc::cluster.stats() from package fpc.
"ch" is used subset output of the function call.
Format
R6::R6Class() inheriting from MeasureClust.
Construction
This measures can be retrieved from the dictionary mlr3::mlr_measures:
mlr_measures$get("clust.ch")
msr("clust.ch")
Meta Information
- Range: - [0, \infty)
- Minimize: - FALSE
- Required predict type: - partition
See Also
Dictionary of Measures: mlr3::mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) mlr3::Measure implementations.
Other cluster measures: 
mlr_measures_clust.dunn,
mlr_measures_clust.silhouette,
mlr_measures_clust.wss
Dunn Index
Description
The score function calls fpc::cluster.stats() from package fpc.
"dunn" is used subset output of the function call.
Format
R6::R6Class() inheriting from MeasureClust.
Construction
This measures can be retrieved from the dictionary mlr3::mlr_measures:
mlr_measures$get("clust.dunn")
msr("clust.dunn")
Meta Information
- Range: - [0, \infty)
- Minimize: - FALSE
- Required predict type: - partition
See Also
Dictionary of Measures: mlr3::mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) mlr3::Measure implementations.
Other cluster measures: 
mlr_measures_clust.ch,
mlr_measures_clust.silhouette,
mlr_measures_clust.wss
Rousseeuw's Silhouette Quality Index
Description
The score function calls cluster::silhouette() from package cluster.
"sil_width" is used subset output of the function call.
Format
R6::R6Class() inheriting from MeasureClust.
Construction
This measures can be retrieved from the dictionary mlr3::mlr_measures:
mlr_measures$get("clust.silhouette")
msr("clust.silhouette")
Meta Information
- Range: - [0, \infty)
- Minimize: - FALSE
- Required predict type: - partition
See Also
Dictionary of Measures: mlr3::mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) mlr3::Measure implementations.
Other cluster measures: 
mlr_measures_clust.ch,
mlr_measures_clust.dunn,
mlr_measures_clust.wss
Within Sum of Squares
Description
The score function calls fpc::cluster.stats() from package fpc.
"within.cluster.ss" is used subset output of the function call.
Format
R6::R6Class() inheriting from MeasureClust.
Construction
This measures can be retrieved from the dictionary mlr3::mlr_measures:
mlr_measures$get("clust.wss")
msr("clust.wss")
Meta Information
- Range: - [0, \infty)
- Minimize: - TRUE
- Required predict type: - partition
See Also
Dictionary of Measures: mlr3::mlr_measures
as.data.table(mlr_measures) for a complete table of all (also dynamically created) mlr3::Measure implementations.
Other cluster measures: 
mlr_measures_clust.ch,
mlr_measures_clust.dunn,
mlr_measures_clust.silhouette
Ruspini Cluster Task
Description
A cluster task for the cluster::ruspini data set.
Format
R6::R6Class inheriting from TaskClust.
Dictionary
This mlr3::Task can be instantiated via the dictionary mlr3::mlr_tasks or with the associated sugar function mlr3::tsk():
mlr_tasks$get("ruspini")
tsk("ruspini")
Meta Information
- Task type: “clust” 
- Dimensions: 75x2 
- Properties: - 
- Has Missings: - FALSE
- Target: - 
- Features: “x”, “y” 
References
Ruspini EH (1970). “Numerical methods for fuzzy clustering.” Information Sciences, 2(3), 319-350. doi:10.1016/S0020-0255(70)80056-1.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html 
- Package mlr3data for more toy tasks. 
- Package mlr3oml for downloading tasks from https://www.openml.org. 
- Package mlr3viz for some generic visualizations. 
-  as.data.table(mlr_tasks)for a table of available Tasks in the running session (depending on the loaded packages).
-  mlr3fselect and mlr3filters for feature selection and feature filtering. 
- Extension packages for additional task types: - Unsupervised clustering: mlr3cluster 
- Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/. 
 
Other Task: 
TaskClust,
mlr_tasks_usarrests
US Arrests Cluster Task
Description
A cluster task for the datasets::USArrests data set.
Rownames are stored as variable "states" with column role "name".
Format
R6::R6Class inheriting from TaskClust.
Dictionary
This mlr3::Task can be instantiated via the dictionary mlr3::mlr_tasks or with the associated sugar function mlr3::tsk():
mlr_tasks$get("usarrests")
tsk("usarrests")
Meta Information
- Task type: “clust” 
- Dimensions: 50x4 
- Properties: - 
- Has Missings: - FALSE
- Target: - 
- Features: “Assault”, “Murder”, “Rape”, “UrbanPop” 
References
Berry, Brian J (1979). “Interactive Data Analysis: A Practical Primer.” Journal of the Royal Statistical Society: Series C (Applied Statistics), 28, 181.
See Also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html 
- Package mlr3data for more toy tasks. 
- Package mlr3oml for downloading tasks from https://www.openml.org. 
- Package mlr3viz for some generic visualizations. 
-  as.data.table(mlr_tasks)for a table of available Tasks in the running session (depending on the loaded packages).
-  mlr3fselect and mlr3filters for feature selection and feature filtering. 
- Extension packages for additional task types: - Unsupervised clustering: mlr3cluster 
- Probabilistic supervised regression and survival analysis: https://mlr3proba.mlr-org.com/. 
 
Other Task: 
TaskClust,
mlr_tasks_ruspini