
Haskell Cheat Sheet

This cheat sheet lays out the fundamental elements
of the Haskell language: syntax, keywords and
other elements. It is presented as both an ex-
ecutable Haskell file and a printable document.
Load the source into your favorite interpreter to
play with code samples shown.

Syntax

Below the most basic syntax for Haskell is given.

Comments

A single line comment starts with ‘--’ and extends
to the end of the line. Multi-line comments start
with ’{-’ and extend to ’-}’. Comments can be
nested.

Comments above function definitions should
start with ‘{- |’ and those next to parameter types
with ‘-- ^’ for compatibility with Haddock, a sys-
tem for documenting Haskell code.

Reserved Words

The following lists the reserved words defined by
Haskell. It is a syntax error to give a variable or
function one of these names.

case, class, data, deriving, do,

else, if, import, in, infix, infixl,

infixr, instance, let, of, module,

newtype, then, type, where

Strings

"abc" – Unicode string.
'a' – Single character.

Multi-line Strings Normally, it is syntax error if
a string has any actual new line characters. That is,
this is a syntax error:

string1 = "My long

string."

However, backslashes (‘\’) can be used to “escape”
around the new line:

string1 = "My long \

\string."

The area between the backslashes is ignored. An
important note is that new lines in the string must
still be represented explicitly:

string2 = "My long \n\

\string."

That is, string1 evaluates to:

My long string.

While string2 evaluates to:

My long

string.

Numbers

1 - Integer
1.0, 1e10 - Floating point

Enumerations

[1..10] – List of numbers – 1, 2, . . ., 10.
[100..] – Infinite list of numbers – 100, 101,

102,
[110..100] – Empty list; ranges only go forwards.
[0, -1 ..] – Negative integers.
[-100..-110] – Syntax error; need [-100.. -110]

for negatives.
[1,3..100], [-1,3..100] – List from 1 to 100 by
2, -1 to 100 by 4.

In fact, any value which is in the Enum class can be
used. E.g.,:

['a' .. 'z'] – List of characters – a, b, . . ., z.
[1.0, 1.5 .. 2] – [1.0,1.5,2.0].
[UppercaseLetter ..] – List of GeneralCategory

values (from Data.Char).

Lists & Tuples

[] – Empty list.
[1,2,3] – List of three numbers.
1 : 2 : 3 : [] – Alternate way to write lists us-
ing “cons” (:) and “nil” ([]).
"abc" – List of three characters (strings are lists).
'a' : 'b' : 'c' : [] – List of characters (same
as "abc").
(1,"a") – 2-element tuple of a number and a string.
(head, tail, 3, 'a') – 4-element tuple of two
functions, a number and a character.

“Layout” rule, braces and semi-colons.

Haskell can be written using braces and semi-
colons, just like C. However, no one does. Instead,
the “layout” rule is used, where spaces represent

c© 2009 Justin Bailey. 1 jgbailey@codeslower.com

scope. The general rule is – always indent. When
the compiler complains, indent more.

Braces and semi-colons Semi-colons terminate
an expression, and braces represent scope. They
can be used after several keywords: where, let, do
and of. They cannot be used when defining a func-
tion body. For example, the below will not compile.

square2 x = { x * x; }

However, this will work fine:

square2 x = result

where { result = x * x; }

Function Definition Indent the body at least
one space from the function name:

square x =

x * x

Unless a where clause is present. In that case, in-
dent the where clause at least one space from the
function name and any function bodies at least one
space from the where keyword:

square x =

x2

where x2 =

x * x

Let Indent the body of the let at least one space
from the first definition in the let. If let appears
on its own line, the body of any definition must
appear in the column after the let:

square x =

let x2 =

x * x

in x2

As can be seen above, the in keyword must also be
in the same column as let. Finally, when multiple
definitions are given, all identifiers must appear in
the same column.

Keywords

Haskell keywords are listed below, in alphabetical
order.

Case

case is similar to a switch statement in C# or Java,
but can take action based on any possible value for
the type of the value being inspected. Consider a
simple data type such as the following:

data Choices = First String | Second |

Third | Fourth

case can be used to determine which choice was
given:

whichChoice ch =

case ch of

First _ -> "1st!"

Second -> "2nd!"

_ -> "Something else."

As with pattern-matching in function definitions,
the ‘_’ character is a “wildcard” and matches any
value.

Nesting & Capture Nested matching and argu-
ment capture are also allowed. Referring to the
definition of Maybe below, we can determine if any
choice was given using a nested match:

anyChoice1 ch =

case ch of

Nothing -> "No choice!"

Just (First _) -> "First!"

Just Second -> "Second!"

_ -> "Something else."

We can use argument capture to display the value
matched if we wish:

anyChoice2 ch =

case ch of

Nothing -> "No choice!"

Just score@(First "gold") ->

"First with gold!"

Just score@(First _) ->

"First with something else: "

++ show score

_ -> "Not first."

Matching Order Matching proceeds from top to
bottom. If we re-wrote anyChoice1 as below, we’ll
never know what choice was actually given because
the first pattern will always succeed:

anyChoice3 ch =

case ch of

_ -> "Something else."

Nothing -> "No choice!"

Just (First _) -> "First!"

Just Second -> "Second!"

Guards Guards, or conditional matches, can be
used in cases just like function definitions. The only
difference is the use of the -> instead of =. Here
is a simple function which does a case-insensitive
string match:

strcmp [] [] = True

strcmp s1 s2 = case (s1, s2) of

c© 2009 Justin Bailey. 2 jgbailey@codeslower.com

(s1:ss1, s2:ss2)

| toUpper s1 == toUpper s2 ->

strcmp ss1 ss2

| otherwise -> False

_ -> False

Class

A Haskell function is defined to work on a certain
type or set of types and cannot be defined more
than once. Most languages support the idea of
“overloading”, where a function can have different
behavior depending on the type of its arguments.
Haskell accomplishes overloading through class

and instance declarations. A class defines one
or more functions that can be applied to any types
which are members (i.e., instances) of that class. A
class is analogous to an interface in Java or C#, and
instances to a concrete implementation of the inter-
face.

A class must be declared with one or more type
variables. Technically, Haskell 98 only allows one
type variable, but most implementations of Haskell
support so-called multi-parameter type classes, which
allow more than one type variable.

We can define a class which supplies a flavor for
a given type:

class Flavor a where

flavor :: a -> String

Notice that the declaration only gives the type sig-
nature of the function - no implementation is given
here (with some exceptions, see “Defaults” below).
Continuing, we can define several instances:

instance Flavor Bool where

flavor _ = "sweet"

instance Flavor Char where

flavor _ = "sour"

Evaluating flavor True gives:

> flavor True

"sweet"

While flavor 'x' gives:

> flavor 'x'

"sour"

Defaults
Default implementations can be given for func-

tions in a class. These are useful when certain func-
tions can be defined in terms of others in the class.
A default is defined by giving a body to one of the
member functions. The canonical example is Eq,
which can defined /= (not equal) in terms of ==. :

class Eq a where

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

(/=) a b = not (a == b)

In fact, recursive definitions can be created, but one
class member must always be implemented by any
instance declarations.

Data

So-called algebraic data types can be declared as fol-
lows:

data MyType = MyValue1 | MyValue2

MyType is the type’s name. MyValue1 and
MyValue are values of the type and are called con-
structors. Multiple constructors are separated with

the ‘|’ character. Note that type and constructor
names must start with a capital letter. It is a syntax
error otherwise.

Constructors with Arguments The type above
is not very interesting except as an enumeration.
Constructors that take arguments can be declared,
allowing more information to be stored with your
type:

data Point = TwoD Int Int

| ThreeD Int Int Int

Notice that the arguments for each constructor are
type names, not constructors. That means this kind
of declaration is illegal:

data Poly = Triangle TwoD TwoD TwoD

instead, the Point type must be used:

data Poly = Triangle Point Point Point

Type and Constructor Names Type and con-
structor names can be the same, because they will
never be used in a place that would cause confu-
sion. For example:

data User = User String | Admin String

which declares a type named User with two con-
structors, User and Admin. Using this type in a
function makes the difference clear:

whatUser (User _) = "normal user."

whatUser (Admin _) = "admin user."

Some literature refers to this practice as type pun-
ning.

Type Variables Declaring so-called polymorphic
data types is as easy as adding type variables in the
declaration:

data Slot1 a = Slot1 a | Empty1

c© 2009 Justin Bailey. 3 jgbailey@codeslower.com

This declares a type Slot1 with two constructors,
Slot1 and Empty1. The Slot1 constructor can take
an argument of any type, which is represented by
the type variable a above.

We can also mix type variables and specific
types in constructors:

data Slot2 a = Slot2 a Int | Empty2

Above, the Slot2 constructor can take a value of
any type and an Int value.

Record Syntax Constructor arguments can be
declared either positionally, as above, or using
record syntax, which gives a name to each argu-
ment. For example, here we declare a Contact type
with names for appropriate arguments:

data Contact = Contact { ctName :: String

, ctEmail :: String

, ctPhone :: String }

These names are referred to as selector or accessor
functions and are just that, functions. They must
start with a lowercase letter or underscore and can-
not have the same name as another function in
scope. Thus the “ct” prefix on each above. Mul-
tiple constructors (of the same type) can use the
same accessor function for values of the same type,
but that can be dangerous if the accessor is not used
by all constructors. Consider this rather contrived
example:

data Con = Con { conValue :: String }

| Uncon { conValue :: String }

| Noncon

whichCon con = "convalue is " ++

conValue con

If whichCon is called with a Noncon value, a runtime
error will occur.

Finally, as explained elsewhere, these names
can be used for pattern matching, argument cap-
ture and “updating.”

Class Constraints Data types can be declared
with class constraints on the type variables, but
this practice is generally discouraged. It is gener-
ally better to hide the “raw” data constructors us-
ing the module system and instead export “smart”
constructors which apply appropriate constraints.
In any case, the syntax used is:

data (Num a) => SomeNumber a = Two a a

| Three a a a

This declares a type SomeNumber which has one
type variable argument. Valid types are those in
the Num class.

Deriving Many types have common operations
which are tedious to define yet very necessary, such
as the ability to convert to and from strings, com-
pare for equality, or order in a sequence. These
capabilities are defined as typeclasses in Haskell.

Because seven of these operations are so com-
mon, Haskell provides the deriving keyword
which will automatically implement the typeclass
on the associated type. The seven supported type-
classes are: Eq, Read, Show, Ord, Enum, Ix, and
Bounded.

Two forms of deriving are possible. The first is
used when a type only derives on class:

data Priority = Low | Medium | High

deriving Show

The second is used when multiple classes are de-
rived:

data Alarm = Soft | Loud | Deafening

deriving (Read, Show)

It is a syntax error to specify deriving for any other
classes besides the six given above.

Deriving

See the section on deriving under the data key-
word above.

Do

The do keyword indicates that the code to follow
will be in a monadic context. Statements are sepa-
rated by newlines, assignment is indicated by <-,
and a let form is introduce which does not require
the in keyword.

If and IO if is tricky when used with IO.
Conceptually it is are no different, but intuitively
it is hard to deal with. Consider the function
doesFileExists from System.Directory:

doesFileExist :: FilePath -> IO Bool

The if statement has this “signature”:

if-then-else :: Bool -> a -> a -> a

That is, it takes a Bool value and evaluates to some
other value based on the condition. From the type
signatures it is clear that doesFileExist cannot be
used directly by if:

wrong fileName =

if doesFileExist fileName

then ...

else ...

c© 2009 Justin Bailey. 4 jgbailey@codeslower.com

That is, doesFileExist results in an IO Bool value,
while if wants a Bool value. Instead, the correct
value must be “extracted” by running the IO ac-
tion:

right1 fileName = do

exists <- doesFileExist fileName

if exists

then return 1

else return 0

Notice the use of return, too. Because do puts us
“inside” the IO monad, we can’t “get out” except
through return. Note that we don’t have to use
if inline here - we can also use let to evaluate the
condition and get a value first:

right2 fileName = do

exists <- doesFileExist fileName

let result =

if exists

then 1

else 0

return result

Again, notice where return is. We don’t put it in
the let statement. Instead we use it once at the end
of the function.

Multiple do’s When using do with if or case,
another do is required if either branch has multiple
statements. An example with if:

countBytes1 f =

do

putStrLn "Enter a filename."

args <- getLine

if length args == 0

-- no 'do'.

then putStrLn "No filename given."

else

-- multiple statements require

-- a new 'do'.

do

f <- readFile args

putStrLn ("The file is " ++

show (length f)

++ " bytes long.")

And one with case:

countBytes2 =

do

putStrLn "Enter a filename."

args <- getLine

case args of

[] -> putStrLn "No args given."

file -> do

f <- readFile file

putStrLn ("The file is " ++

show (length f)

++ " bytes long.")

An alternative is to provide semi-colons and braces.
A do is still required, but no indenting is needed.
The below shows a case example but it applies to
if as well:

countBytes3 =

do

putStrLn "Enter a filename."

args <- getLine

case args of

[] -> putStrLn "No args given."

file -> do { f <- readFile file;

putStrLn ("The file is " ++

show (length f)

++ " bytes long."); }

Export

See the section on module below.

If, Then, Else

Remember, if always “returns” a value. It is an
expression, not just a control flow statement. This
function tests if the string given starts with a lower
case letter and, if so, converts it to upper case:

-- Use pattern-matching to

-- get first character

sentenceCase (s:rest) =

if isLower s

then toUpper s : rest

else s : rest

-- Anything else is empty string

sentenceCase _ = []

Import

See the section on module below.

In

See let.

Infix, infixl and infixr

See the section on operators below.

Instance

See the section on class above.

c© 2009 Justin Bailey. 5 jgbailey@codeslower.com

Let

Local functions can be defined within a function us-
ing let. let is always followed by in. in must ap-
pear in the same column as the let keyword. Func-
tions defined have access to all other functions and
variables within the same scope (including those
defined by let). In this example, mult multiplies
its argument n by x, which was passed to the orig-
inal multiples. mult is used by map to give the
multiples of x up to 10:

multiples x =

let mult n = n * x

in map mult [1..10]

let “functions” with no arguments are actually
constants and, once evaluated, will not evaluate
again. This is useful for capturing common por-
tions of your function and re-using them. Here is a
silly example which gives the sum of a list of num-
bers, their average, and their median:

listStats m =

let numbers = [1,3 .. m]

total = sum numbers

mid = head (take (m `div` 2)

numbers)

in "total: " ++ show total ++

", mid: " ++ show mid

Deconstruction The left-hand side of a let def-
inition can also deconstruct its argument, in case
sub-components are going to be accessed. This def-
inition would extract the first three characters from
a string

firstThree str =

let (a:b:c:_) = str

in "Initial three characters are: " ++

show a ++ ", " ++

show b ++ ", and " ++

show c

Note that this is different than the following, which
only works if the string has three characters:

onlyThree str =

let (a:b:c) = str

in "The characters given are: " ++

show a ++ ", " ++ show b ++

", and " ++ show c

Of

See the section on case above.

Module

A module is a compilation unit which exports func-
tions, types, classes, instances, and other modules.
A module can only be defined in one file, though
its exports may come from multiple sources. To
make a Haskell file a module, just add a module
declaration at the top:

module MyModule where

Module names must start with a capital letter but
otherwise can include periods, numbers and un-
derscores. Periods are used to give sense of struc-
ture, and Haskell compilers will use them as indi-
cations of the directory a particular source file is,
but otherwise they have no meaning.

The Haskell community has standardized a set
of top-level module names such as Data, System,
Network, etc. Be sure to consult them for an appro-
priate place for your own module if you plan on
releasing it to the public.

Imports The Haskell standard libraries are di-
vided into a number of modules. The functionality
provided by those libraries is accessed by import-
ing into your source file. To import all everything
exported by a library, just use the module name:

import Text.Read

Everything means everything: functions, data types
and constructors, class declarations, and even other
modules imported and then exported by the that
module. Importing selectively is accomplished by
giving a list of names to import. For example, here
we import some functions from Text.Read:

import Text.Read (readParen, lex)

Data types can imported in a number of ways. We
can just import the type and no constructors:

import Text.Read (Lexeme)

Of course, this prevents our module from pattern-
matching on the values of type Lexeme. We can
import one or more constructors explicitly:

import Text.Read (Lexeme(Ident, Symbol))

All constructors for a given type can also be im-
ported:

import Text.Read (Lexeme(..))

We can also import types and classes defined in the
module:

import Text.Read (Read, ReadS)

In the case of classes, we can import the functions
defined for the using syntax similar to importing
constructors for data types:

import Text.Read (Read(readsPrec

, readList))

c© 2009 Justin Bailey. 6 jgbailey@codeslower.com

Note that, unlike data types, all class functions are
imported unless explicitly excluded. To only import
the class, we use this syntax:

import Text.Read (Read())

Exclusions If most, but not all, names are going
to imported from a module, it would be tedious to
specify all those names except a few. For that rea-
son, imports can also be specified via the hiding

keyword:

import Data.Char hiding (isControl

, isMark)

Except for instance declarations, any type, function,
constructor or class can be hidden.

Instance Declarations It must be noted that
instance declarations cannot be excluded from im-
port. Any instance declarations in a module will
be imported when the module is imported.

Qualified Imports The names exported by a
module (i.e., functions, types, operators, etc.) can
have a prefix attached through qualified imports.
This is particularly useful for modules which have
a large number of functions having the same name
as Prelude functions. Data.Set is a good example:

import qualified Data.Set as Set

This form requires any function, type, constructor
or other name exported by Data.Set to now be pre-
fixed with the alias (i.e., Set) given. Here is one way
to remove all duplicates from a list:

removeDups a =

Set.toList (Set.fromList a)

A second form does not create an alias. Instead,
the prefix becomes the module name. We can write
a simple function to check if a string is all upper
case:

import qualified Char

allUpper str =

all Char.isUpper str

Except for the prefix specified, qualified imports
support the same syntax as normal imports. The
name imported can be limited in the same ways as
described above.

Exports If an export list is not provided, then all
functions, types, constructors, etc. will be available
to anyone importing the module. Note that any im-
ported modules are not exported in this case. Limit-
ing the names exported is accomplished by adding
a parenthesized list of names before the where key-
word:

module MyModule (MyType

, MyClass

, myFunc1

...)

where

The same syntax as used for importing can be used
here to specify which functions, types, construc-
tors, and classes are exported, with a few differ-
ences. If a module imports another module, it can
also export that module:

module MyBigModule (module Data.Set

, module Data.Char)

where

import Data.Set

import Data.Char

A module can even re-export itself, which can be
useful when all local definitions and a given im-
ported module are to be exported. Below we export
ourselves and Data.Set, but not Data.Char:

module AnotherBigModule (module Data.Set

, module AnotherBigModule)

where

import Data.Set

import Data.Char

Newtype

While data introduces new values and type just
creates synonyms, newtype falls somewhere be-
tween. The syntax for newtype is quite restricted –
only one constructor can be defined, and that con-
structor can only take one argument. Continuing
the example above, we can define a Phone type like
the following:

newtype Home = H String

newtype Work = W String

data Phone = Phone Home Work

As opposed to type, the H and W “values” on
Phone are not just String values. The typechecker
treats them as entirely new types. That means our
lowerName function from above would not compile.
The following produces a type error:

lPhone (Phone hm wk) =

Phone (lower hm) (lower wk)

Instead, we must use pattern-matching to get to the
“values” to which we apply lower:

lPhone (Phone (H hm) (W wk)) =

Phone (H (lower hm)) (W (lower wk))

c© 2009 Justin Bailey. 7 jgbailey@codeslower.com

The key observation is that this keyword does not
introduce a new value; instead it introduces a new
type. This gives us two very useful properties:

• No runtime cost is associated with the new
type, since it does not actually produce new
values. In other words, newtypes are abso-
lutely free!

• The type-checker is able to enforce that com-
mon types such as Int or String are used in
restricted ways, specified by the programmer.

Finally, it should be noted that any deriving

clause which can be attached to a data declaration
can also be used when declaring a newtype.

Return

See do above.

Type

This keyword defines a type synonym (i.e., alias).
This keyword does not define a new type, like data

or newtype. It is useful for documenting code but
otherwise has no effect on the actual type of a given
function or value. For example, a Person data type
could be defined as:

data Person = Person String String

where the first constructor argument represents
their first name and the second their last. How-
ever, the order and meaning of the two arguments
is not very clear. A type declaration can help:

type FirstName = String

type LastName = String

data Person = Person FirstName LastName

Because type introduces a synonym, type checking
is not affected in any way. The function lower, de-
fined as:

lower s = map toLower s

which has the type

lower :: String -> String

can be used on values with the type FirstName or
LastName just as easily:

lName (Person f l) =

Person (lower f) (lower l)

Because type is just a synonym, it can’t declare
multiple constructors like data can. Type variables
can be used, but there cannot be more than the
type variables declared with the original type. That
means a synonym like the following is possible:

type NotSure a = Maybe a

but this not:

type NotSure a b = Maybe a

Note that fewer type variables can be used, which
useful in certain instances.

Where

Similar to let, where defines local functions and
constants. The scope of a where definition is the
current function. If a function is broken into multi-
ple definitions through pattern-matching, then the
scope of a particular where clause only applies to
that definition. For example, the function result

below has a different meaning depending on the
arguments given to the function strlen:

strlen [] = result

where result = "No string given!"

strlen f = result ++ " characters long!"

where result = show (length f)

Where vs. Let A where clause can only be de-
fined at the level of a function definition. Usually,
that is identical to the scope of let definition. The
only difference is when guards are being used. The
scope of the where clause extends over all guards.
In contrast, the scope of a let expression is only
the current function clause and guard, if any.

Declarations, Etc.

The following section details rules on function dec-
larations, list comprehensions, and other areas of
the language.

Function Definition

Functions are defined by declaring their name, any
arguments, and an equals sign:

square x = x * x

All functions names must start with a lowercase let-
ter or “_”. It is a syntax error otherwise.

Pattern Matching Multiple “clauses” of a func-
tion can be defined by “pattern-matching” on the
values of arguments. Here, the the agree function
has four separate cases:

-- Matches when the string "y" is given.

agree1 "y" = "Great!"

-- Matches when the string "n" is given.

agree1 "n" = "Too bad."

-- Matches when string beginning

c© 2009 Justin Bailey. 8 jgbailey@codeslower.com

-- with 'y' given.

agree1 ('y':_) = "YAHOO!"

-- Matches for any other value given.

agree1 _ = "SO SAD."

Note that the ‘_’ character is a wildcard and
matches any value.

Pattern matching can extend to nested values.
Assuming this data declaration:

data Bar = Bil (Maybe Int) | Baz

and recalling Maybe is defined as:

data Maybe a = Just a | Nothing

we can match on nested Maybe values when Bil is
present:

f (Bil (Just _)) = ...

f (Bil Nothing) = ...

f Baz = ...

Pattern-matching also allows values to be assigned
to variables. For example, this function determines
if the string given is empty or not. If not, the value
captures in str is converted to to lower case:

toLowerStr [] = []

toLowerStr str = map toLower str

In reality, str is the same as _ in that it will match
anything, except the value matched is also given a
name.

n + k Patterns This sometimes controversial
pattern-matching facility makes it easy to match
certain kinds of numeric expressions. The idea
is to define a base case (the “n” portion) with a
constant number for matching, and then to define
other matches (the “k” portion) as additives to the
base case. Here is a rather inefficient way of testing
if a number is even or not:

isEven 0 = True

isEven 1 = False

isEven (n + 2) = isEven n

Argument Capture Argument capture is useful
for pattern-matching a value AND using it, with-
out declaring an extra variable. Use an @ symbol
in between the pattern to match and the variable to
assign the value to. This facility is used below to
capture the head of the list in l for display, while
also capturing the entire list in ls in order to com-
pute its length:

len ls@(l:_) = "List starts with " ++

show l ++ " and is " ++

show (length ls) ++ " items long."

len [] = "List is empty!"

Guards Boolean functions can be used as
“guards” in function definitions along with pattern
matching. An example without pattern matching:

which n

| n == 0 = "zero!"

| even n = "even!"

| otherwise = "odd!"

Notice otherwise – it always evaluates to true and
can be used to specify a “default” branch.

Guards can be used with patterns. Here is a
function that determines if the first character in a
string is upper or lower case:

what [] = "empty string!"

what (c:_)

| isUpper c = "upper case!"

| isLower c = "lower case"

| otherwise = "not a letter!"

Matching & Guard Order Pattern-matching
proceeds in top to bottom order. Similarly, guard
expressions are tested from top to bottom. For ex-
ample, neither of these functions would be very in-
teresting:

allEmpty _ = False

allEmpty [] = True

alwaysEven n

| otherwise = False

| n `div` 2 == 0 = True

Record Syntax Normally pattern matching oc-
curs based on the position of arguments in the
value being matched. Types declared with record
syntax, however, can match based on those record
names. Given this data type:

data Color = C { red

, green

, blue :: Int }

we can match on green only:

isGreenZero (C { green = 0 }) = True

isGreenZero _ = False

Argument capture is possible with this syntax,
though it gets clunky. Continuing the above, now
define a Pixel type and a function to replace values
with non-zero green components with all black:

data Pixel = P Color

-- Color value untouched if green is 0

setGreen (P col@(C { green = 0 })) = P col

setGreen _ = P (C 0 0 0)

c© 2009 Justin Bailey. 9 jgbailey@codeslower.com

Lazy Patterns This syntax, also known as ir-
refutable patterns, allows pattern matches which al-
ways succeed. That means any clause using the
pattern will succeed, but if it tries to actually use
the matched value an error may occur. This is gen-
erally useful when an action should be taken on
the type of a particular value, even if the value isn’t
present.

For example, define a class for default values:

class Def a where

defValue :: a -> a

The idea is you give defValue a value of the right
type and it gives you back a default value for that
type. Defining instances for basic types is easy:

instance Def Bool where

defValue _ = False

instance Def Char where

defValue _ = ' '

Maybe is a littler trickier, because we want to get
a default value for the type, but the constructor
might be Nothing. The following definition would
work, but it’s not optimal since we get Nothing

when Nothing is passed in.

instance Def a => Def (Maybe a) where

defValue (Just x) = Just (defValue x)

defValue Nothing = Nothing

We’d rather get a Just (default value) back instead.
Here is where a lazy pattern saves us – we can pre-
tend that we’ve matched Just x and use that to get
a default value, even if Nothing is given:

instance Def a => Def (Maybe a) where

defValue ~(Just x) = Just (defValue x)

As long as the value x is not actually evaluated,
we’re safe. None of the base types need to look at x
(see the “_” matches they use), so things will work
just fine.

One wrinkle with the above is that we must
provide type annotations in the interpreter or the
code when using a Nothing constructor. Nothing

has type Maybe a but, if not enough other informa-
tion is available, Haskell must be told what a is.
Some example default values:

-- Return "Just False"

defMB = defValue (Nothing :: Maybe Bool)

-- Return "Just ' '"

defMC = defValue (Nothing :: Maybe Char)

List Comprehensions

A list comprehension consists of four types of ele-
ments - generators, guards, local bindings, and targets.
A list comprehension creates a list of target values
based on the generators and guards given. This
comprehension generates all squares:

squares = [x * x | x <- [1..]]

x <- [1..] generates a list of all Integer values
and puts them in x, one by one. x * x creates each
element of the list by multiplying x by itself.

Guards allow certain elements to be excluded.
The following shows how divisors for a given num-
ber (excluding itself) can be calculated. Notice how
d is used in both the guard and target expression.

divisors n =

[d | d <- [1..(n `div` 2)]

, n `mod` d == 0]

Local bindings provide new definitions for use in
the generated expression or subsequent generators

and guards. Below, z is used to represent the mini-
mum of a and b:

strange = [(a,z) | a <-[1..3]

, b <-[1..3]

, c <- [1..3]

, let z = min a b

, z < c]

Comprehensions are not limited to numbers. Any
list will do. All upper case letters can be generated:

ups =

[c | c <- [minBound .. maxBound]

, isUpper c]

Or to find all occurrences of a particular break
value br in a list word (indexing from 0):

idxs word br =

[i | (i, c) <- zip [0..] word

, c == br]

A unique feature of list comprehensions is that pat-
tern matching failures do not cause an error - they
are just excluded from the resulting list.

Operators

There are very few predefined “operators” in
Haskell - most that do look predefined are actu-
ally syntax (e.g., “=”). Instead, operators are simply
functions that take two arguments and have special
syntax support. Any so-called operator can be ap-
plied as a normal function using parentheses:

3 + 4 == (+) 3 4

To define a new operator, simply define it as a nor-
mal function, except the operator appears between
the two arguments. Here’s one which takes inserts
a comma between two strings and ensures no extra
spaces appear:

c© 2009 Justin Bailey. 10 jgbailey@codeslower.com

first ## last =

let trim s = dropWhile isSpace

(reverse (dropWhile isSpace

(reverse s)))

in trim last ++ ", " ++ trim first

> " Haskell " ## " Curry "

Curry, Haskell

Of course, full pattern matching, guards, etc. are
available in this form. Type signatures are a bit dif-
ferent, though. The operator “name” must appear
in parentheses:

(##) :: String -> String -> String

Allowable symbols which can be used to define op-
erators are:

$ % & * + . / < = > ? @ \ ^ | - ~

However, there are several “operators” which can-
not be redefined. They are: <-, -> and =. The last,
=, cannot be redefined by itself, but can be used as
part of multi-character operator. The “bind” func-
tion, >>=, is one example.

Precedence & Associativity The precedence
and associativity, collectively called fixity, of any
operator can be set through the infix, infixr and
infixl keywords. These can be applied both to
top-level functions and to local definitions. The
syntax is:

infix | infixr | infixl precedence op

where precedence varies from 0 to 9. Op can actu-
ally be any function which takes two arguments
(i.e., any binary operation). Whether the operator
is left or right associative is specified by infixl or

infixr, respectively. infix declarations have no as-
sociativity.

Precedence and associativity make many of the
rules of arithmetic work “as expected.” For ex-
ample, consider these minor updates to the prece-
dence of addition and multiplication:

infixl 8 `plus1`

plus1 a b = a + b

infixl 7 `mult1`

mult1 a b = a * b

The results are surprising:

> 2 + 3 * 5

17

> 2 `plus1` 3 `mult1` 5

25

Reversing associativity also has interesting effects.
Redefining division as right associative:

infixr 7 `div1`

div1 a b = a / b

We get interesting results:

> 20 / 2 / 2

5.0

> 20 `div1` 2 `div1` 2

20.0

Currying

In Haskell, functions do not have to get all of
their arguments at once. For example, consider the
convertOnly function, which only converts certain
elements of string depending on a test:

convertOnly test change str =

map (\c -> if test c

then change c

else c) str

Using convertOnly, we can write the l33t function
which converts certain letters to numbers:

l33t = convertOnly isL33t toL33t

where

isL33t 'o' = True

isL33t 'a' = True

-- etc.

isL33t _ = False

toL33t 'o' = '0'

toL33t 'a' = '4'

-- etc.

toL33t c = c

Notice that l33t has no arguments specified. Also,
the final argument to convertOnly is not given.
However, the type signature of l33t tells the whole
story:

l33t :: String -> String

That is, l33t takes a string and produces a string.
It is a “constant”, in the sense that l33t always re-
turns a value that is a function which takes a string
and produces a string. l33t returns a “curried”
form of convertOnly, where only two of its three
arguments have been supplied.

This can be taken further. Say we want to write
a function which only changes upper case letters.
We know the test to apply, isUpper, but we don’t
want to specify the conversion. That function can
be written as:

convertUpper = convertOnly isUpper

c© 2009 Justin Bailey. 11 jgbailey@codeslower.com

which has the type signature:

convertUpper :: (Char -> Char)

-> String -> String

That is, convertUpper can take two arguments. The
first is the conversion function which converts indi-
vidual characters and the second is the string to be
converted.

A curried form of any function which takes
multiple arguments can be created. One way to
think of this is that each “arrow” in the function’s
signature represents a new function which can be
created by supplying one more argument.

Sections Operators are functions, and they can
be curried like any other. For example, a curried
version of “+” can be written as:

add10 = (+) 10

However, this can be unwieldy and hard to read.
“Sections” are curried operators, using parenthe-
ses. Here is add10 using sections:

add10 = (10 +)

The supplied argument can be on the right or left,
which indicates what position it should take. This
is important for operations such as concatenation:

onLeft str = (++ str)

onRight str = (str ++)

Which produces quite different results:

> onLeft "foo" "bar"

"barfoo"

> onRight "foo" "bar"

"foobar"

“Updating” values and record syntax

Haskell is a pure language and, as such, has no
mutable state. That is, once a value is set it never
changes. “Updating” is really a copy operation,
with new values in the fields that “changed.” For
example, using the Color type defined earlier, we
can write a function that sets the green field to zero
easily:

noGreen1 (C r _ b) = C r 0 b

The above is a bit verbose and we can rewrite us-
ing record syntax. This kind of “update” only sets
values for the field(s) specified and copies the rest:

noGreen2 c = c { green = 0 }

Above, we capture the Color value in c and return
a new Color value. That value happens to have the
same value for red and blue as c and it’s green

component is 0. We can combine this with pattern
matching to set the green and blue fields to equal
the red field:

makeGrey c@(C { red = r }) =

c { green = r, blue = r }

Notice we must use argument capture (“c@”) to get
the Color value and pattern matching with record
syntax (“C { red = r}”) to get the inner red field.

Anonymous Functions

An anonymous function (i.e., a lambda expression
or lambda for short), is a function without a name.
They can be defined at any time like so:

\c -> (c, c)

which defines a function which takes an argument
and returns a tuple containing that argument in
both positions. They are useful for simple func-
tions which don’t need a name. The following de-
termines if a string has mixed case (or is all whites-
pace):

mixedCase str =

all (\c -> isSpace c ||

isLower c ||

isUpper c) str

Of course, lambdas can be the returned from func-
tions too. This classic returns a function which will
then multiply its argument by the one originally
given:

multBy n = \m -> n * m

For example:

> let mult10 = multBy 10

> mult10 10

100

Type Signatures

Haskell supports full type-inference, meaning in
most cases no types have to be written down. Type
signatures are still useful for at least two reasons.

Documentation – Even if the compiler can figure
out the types of your functions, other pro-
grammers or even yourself might not be able
to later. Writing the type signatures on all
top-level functions is considered very good
form.

Specialization – Typeclasses allow functions with
overloading. For example, a function to
negate any list of numbers has the signature:

c© 2009 Justin Bailey. 12 jgbailey@codeslower.com

negateAll :: Num a => [a] -> [a]

However, for efficiency or other reasons you
may only want to allow Int types. You would
accomplish that with a type signature:

negateAll :: [Int] -> [Int]

Type signatures can appear on top-level func-
tions and nested let or where definitions. Gen-
erally this is useful for documentation, though in
some case you may use it prevent polymorphism.
A type signature is first the name of the item which
will be typed, followed by a ::, followed by the
types. An example of this has already been seen
above.

Type signatures do not need to appear directly
above their implementation. They can be specified
anywhere in the containing module (yes, even be-
low!). Multiple items with the same signature can
also be defined together:

pos, neg :: Int -> Int

...

pos x | x < 0 = negate x

| otherwise = x

neg y | y > 0 = negate y

| otherwise = y

Type Annotations
Sometimes Haskell will not be able to deter-

mine what type you meant. The classic demonstra-
tion of this is the “show . read” problem:

canParseInt x = show (read x)

Haskell cannot compile that function because it
does not know the type of x. We must limit the
type through an annotation:

canParseInt x = show ((read x) :: Int)

Annotations have a similar syntax as type signa-
tures, except they appear in-line with functions.

Unit

() – “unit” type and “unit” value. The value and
type that represents no useful information.

Contributors

My thanks to those who contributed patches and
useful suggestions: Dave Bayer, Cale Gibbard,
Stephen Hicks, Kurt Hutchinson, Adrian Neu-
mann, Barak Pearlmutter, Lanny Ripple, Markus
Roberts, Holger Siegel, Leif Warner, and Jeff
Zaroyko.

Version

This is version 1.7. The source can be found
at GitHub1. The latest released version of the
PDF can be downloaded from Hackage2. Visit
CodeSlower.com3 for other projects and writings.

1git://github.com/m4dc4p/cheatsheet.git
2http://hackage.haskell.org/cgi-bin/hackage-scripts/package/CheatSheet
3http://blog.codeslower.com

c© 2009 Justin Bailey. 13 jgbailey@codeslower.com

