Title: | Diagnostics for Nonlinear Mixed-Effect Models |
Version: | 4.7.3 |
Depends: | R (≥ 2.2.0), lattice |
Imports: | Hmisc, survival, dplyr, tibble, methods, lazyeval, gam, splines, grid, readr |
Suggests: | testthat |
Description: | A model building aid for nonlinear mixed-effects (population) model analysis using NONMEM, facilitating data set checkout, exploration and visualization, model diagnostics, candidate covariate identification and model comparison. The methods are described in Keizer et al. (2013) <doi:10.1038/psp.2013.24>, and Jonsson et al. (1999) <doi:10.1016/s0169-2607(98)00067-4>. |
LazyLoad: | yes |
LazyData: | yes |
ByteCompile: | true |
License: | LGPL (≥ 3) |
URL: | https://uupharmacometrics.github.io/xpose4/, https://github.com/UUPharmacometrics/xpose4 |
BugReports: | https://github.com/UUPharmacometrics/xpose4/issues |
Copyright: | 2009-2022 Andrew C. Hooker, E. Niclas Jonsson and Mats O. Karlsson. 2005-2008 Andrew C. Hooker, Justin J. Wilkins, Mats O. Karlsson and E. Niclas Jonsson. 1998-2004 E. Niclas Jonsson and Mats Karlsson. |
RoxygenNote: | 7.3.1 |
Encoding: | UTF-8 |
NeedsCompilation: | no |
Packaged: | 2024-02-22 09:37:29 UTC; ancho179 |
Author: | Andrew C. Hooker [aut, cre, cph], Mats O. Karlsson [aut, cph], Justin J. Wilkins [aut], E. Niclas Jonsson [aut, trl, cph], Ron Keizer [ctb] (functionality for bootstrap of GAM and SCM) |
Maintainer: | Andrew C. Hooker <andrew.hooker@farmaci.uu.se> |
Repository: | CRAN |
Date/Publication: | 2024-02-22 10:00:03 UTC |
The Xpose Package
Description
Xpose is an R-based model building aid for population analysis using NONMEM. It facilitates data set checkout, exploration and visualization, model diagnostics, candidate covariate identification and model comparison.
Details
Xpose takes output from NONMEM output and/or PsN output and generates graphs or other analyses. It is assumed that each NONMEM run can be uniquely identified by a run number (see section below for how to generate the appropriate input to Xpose). Xpose is implemented using the lattice graphics library.
The Xpose package can be divided up into six subsections (functions associated with each of the different subsections are linked in the "See Also" section):
- Data Functions
Functions for managing the input data and manipulating the Xpose database.
- Generic Functions
Generic wrapper functions around the lattice functions. These functions can be invoked by the user but require quite detailed instructions to generate the desired output.
- Specific Functions
These functions are single purpose functions that generate specific output given only the Xpose database as input. The behavior can, to some extent, be influenced by the user.
- Classic Functions
Xpose has a text based menu interface to make it simple for the user to invoke the Xpose specific functions. This interface is called Xpose Classic. Given the limitations a text based interface imposes, Xpose Classic is not very flexible but may be useful for quick assessment of a model and for learning to use Xpose.
- PsN Functions
These functions are the interface between Xpose and PsN, i.e. they do not post-process NONMEM output but rather PsN output.
- GAM Functions
Functions take an Xpose object and performs a generalized additive model (GAM) stepwise search for influential covariates on a single model parameter.
How to make NONMEM generate input to Xpose
Xpose recognizes NONMEM runs, and files associated to a particular run, though the run number. This is a number that is used in the name of NONMEM model files, output files and table files. The fundamental input to Xpose is one or more NONMEM table files. These table files should be named as below followed by the run number, for example xptab1 for run number 1. Xpose looks for files according to the following pattern, where * is your run number:
sdtab* Standard table file, containing ID, IDV, DV, PRED, IPRED, WRES, IWRES, RES, IRES, etc.
patab* Parameter table, containing model parameters - THETAs, ETAs and EPSes
catab* Categorical covariates, e.g. SEX, RACE
cotab* Continuous covariates, e.g. WT, AGE
extra*, mutab*, mytab*, xptab*, cwtab* Other variables you might need to have available to Xpose
run*.mod Model specification file
run*.lst NONMEM output
Strictly, only one table file is needed for xpose (for example sdtab* or xptab*). However, using patab*, cotab*, catab* will influence the way that Xpose interprets the data and are recommended to get full benefit from Xpose.
You can use code in NONMEM similar to the following to generate the tables you need. NONMEM automatically appends DV, PRED, WRES and RES unless NOAPPEND is specified. Don't forget to leave at least one blank line at the end of the NONMEM model specification file.
$TABLE ID TIME IPRED IWRES EVID MDV NOPRINT ONEHEADER FILE=sdtab1
$TABLE ID CL V2 KA K SLP KENZ NOPRINT ONEHEADER FILE=patab1
$TABLE ID WT HT AGE BMI PKG NOPRINT ONEHEADER FILE=cotab1
$TABLE ID SEX SMOK ALC NOPRINT ONEHEADER FILE=catab1
Author(s)
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins and Andrew Hooker
References
See Also
Useful links:
Report bugs at https://github.com/UUPharmacometrics/xpose4/issues
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xsubset()
Other generic functions:
gof()
,
xpose.multiple.plot
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
Other classic functions:
xpose4()
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
Other GAM functions:
GAM_summary_and_plot
,
xp.get.disp()
,
xp.scope3()
,
xpose.bootgam()
,
xpose.gam()
Examples
## Not run:
# run the classic interface
library(xpose4)
xpose4()
# command line interface
library(xpose4)
xpdb <- xpose.data(5)
basic.gof(xpdb)
## End(Not run)
GAM functions for Xpose 4
Description
These are functions for summarizing and plotting the results of the generalized additive model within Xpose
Usage
xp.akaike.plot(
gamobj = NULL,
title = "Default",
xlb = "Akaike value",
ylb = "Models",
...
)
xp.cook(gam.object)
xp.ind.inf.fit(
gamobj = NULL,
plot.ids = TRUE,
idscex = 0.7,
ptscex = 0.7,
title = "Default",
recur = FALSE,
xlb = NULL,
ylb = NULL,
...
)
xp.ind.inf.terms(
gamobj = NULL,
xlb = NULL,
ylb = NULL,
plot.ids = TRUE,
idscex = 0.7,
ptscex = 0.7,
prompt = TRUE,
...
)
xp.ind.stud.res(
gamobj = NULL,
title = "Default",
recur = FALSE,
xlb = NULL,
ylb = NULL
)
xp.plot(
gamobj = NULL,
plot.ids = TRUE,
idscex = 0.7,
ptscex = 0.7,
prompt = TRUE,
...
)
xp.summary(gamobj = NULL)
Arguments
gamobj |
A GAM object to use in the plot. IF null then the user is asked to choose from a list of GAM objects in memory. |
title |
A text string indicating plot title. If |
xlb |
A text string indicating x-axis legend. If |
ylb |
A text string indicating y-axis legend. If |
... |
Other arguments passed to the GAM functions. |
gam.object |
A GAM object (see |
plot.ids |
Logical, specifies whether or not ID numbers should be displayed. |
idscex |
ID label size. |
ptscex |
Point size. |
recur |
If dispersion should be used in the GAM object. |
prompt |
Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is TRUE. |
object |
An xpose.data object. |
Value
Plots or summaries.
Functions
-
xp.akaike.plot()
: An Akaike plot of the results. -
xp.cook()
: Individual parameters to GAM fit. -
xp.ind.inf.fit()
: Individual influence on GAM fit. -
xp.ind.inf.terms()
: Individual influence on GAM terms. -
xp.ind.stud.res()
: Studentized residuals. -
xp.plot()
: GAM residuals of base model vs. covariates. -
xp.summary()
: Summarize GAM.
Author(s)
Niclas Jonsson & Andrew Hooker
See Also
Other GAM functions:
xp.get.disp()
,
xp.scope3()
,
xpose.bootgam()
,
xpose.gam()
,
xpose4-package
Absolute conditional weighted residuals vs covariates for Xpose 4
Description
This creates a stack of box and whisker plot of absolute population conditional weighted residuals (|CWRES|) vs covariates, and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the codexpose.plot.bw function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.
Usage
absval.cwres.vs.cov.bw(object, xlb = "|CWRES|", main = "Default", ...)
Arguments
object |
An xpose.data object. |
xlb |
A string giving the label for the x-axis. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling box-and-whisker plots are
available. See xpose.plot.bw
for details.
Value
Returns a stack of box-and-whisker plots of |CWRES| vs covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.bw
, xpose.panel.bw
,
compute.cwres
, bwplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
absval.cwres.vs.cov.bw(xpdb)
Absolute population conditional weighted residuals vs population predictions for Xpose 4
Description
This is a plot of absolute population conditional weighted residuals
(|CWRES|) vs population predictions (PRED), a specific function in Xpose 4.
It is a wrapper encapsulating arguments to the xpose.plot.default
function. Most of the options take their default values from xpose.data
object but may be overridden by supplying them as arguments.
Usage
absval.cwres.vs.pred(object, idsdir = "up", type = "p", smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns an xyplot of |CWRES| vs PRED.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## End(Not run)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.cwres.vs.pred(xpdb)
## A conditioning plot
absval.cwres.vs.pred(xpdb, by="HCTZ")
## Custom heading and axis labels
absval.cwres.vs.pred(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED")
## Custom colours and symbols, no IDs
absval.cwres.vs.pred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
Absolute value of the conditional weighted residuals vs. population predictions, conditioned on covariates, for Xpose 4
Description
This is a plot of absolute population conditional weighted residuals
(|CWRES|) vs population predictions (PRED) conditioned by covariates, a
specific function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
Usage
absval.cwres.vs.pred.by.cov(
object,
covs = "Default",
ylb = "|CWRES|",
type = "p",
smooth = TRUE,
idsdir = "up",
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
covs |
A vector of covariates to use in the plot. If "Default" the
the covariates defined in |
ylb |
A string giving the label for the y-axis. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
The main
argument is not supported owing to the multiple plots
generated by the function.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns a stack of xyplots of |CWRES| vs PRED, conditioned on covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
absval.cwres.vs.pred
,
xpose.plot.default
, xpose.panel.default
,
xyplot
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
absval.cwres.vs.pred.by.cov(simpraz.xpdb, covs=c("HCTZ","WT"), max.plots.per.page=2)
Absolute population weighted residuals vs population predictions, and absolute individual weighted residuals vs individual predictions, for Xpose 4
Description
This is a matrix plot of absolute population weighted residuals (|CWRES|) vs
population predictions (PRED) and absolute individual weighted residuals
(|IWRES|) vs individual predictions (IPRED), a specific function in Xpose 4.
It is a wrapper encapsulating arguments to the absval.cwres.vs.pred
and absval.iwres.vs.ipred
functions.
Usage
absval.iwres.cwres.vs.ipred.pred(object, main = "Default", ...)
absval.iwres.wres.vs.ipred.pred(object, main = "Default", ...)
Arguments
object |
An xpose.data object. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
The plots created by the absval.wres.vs.pred
and
absval.iwres.vs.ipred
functions are presented side by side for
comparison.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns a compound plot.
Functions
-
absval.iwres.wres.vs.ipred.pred()
: absolute population weighted residuals (|WRES|) vs population predictions (PRED) and absolute individual weighted residuals (|IWRES|) vs individual predictions (IPRED)
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
absval.wres.vs.pred
,
absval.iwres.vs.ipred
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## A vanilla plot
absval.iwres.wres.vs.ipred.pred(xpdb)
absval.iwres.cwres.vs.ipred.pred(xpdb)
## Custom colours and symbols
absval.iwres.cwres.vs.ipred.pred(xpdb, cex=0.6, pch=8, col=1)
box and whisker plots of the absolute value of the individual weighted residuals vs. covariates
Description
box and whisker plots of the absolute value of the individual weighted residuals vs. covariates
Usage
absval.iwres.vs.cov.bw(object, xlb = "|iWRES|", main = "Default", ...)
Arguments
object |
An "xpose.data" object. |
xlb |
A string giving the label for the x-axis. |
main |
A string giving the plot title or |
... |
Other arguments passed to |
Value
An xpose.multiple.plot object
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
absolute value of the individual weighted residuals vs. the independent variable
Description
absolute value of the individual weighted residuals vs. the independent variable
Usage
absval.iwres.vs.idv(
object,
ylb = "|iWRES|",
smooth = TRUE,
idsdir = "up",
type = "p",
...
)
Arguments
object |
An "xpose.data" object. |
ylb |
A string giving the label for the y-axis. |
smooth |
A |
idsdir |
a string indicating the directions of the extremes to include in labelling. Possible values are "up", "down" and "both". |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
... |
Other arguments passed to |
Value
A lattice object
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Absolute individual weighted residuals vs individual predictions for Xpose 4
Description
This is a plot of absolute individual weighted residuals (|IWRES|) vs
individual predictions (IPRED), a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
function.
Most of the options take their default values from xpose.data object but may
be overridden by supplying them as arguments.
Usage
absval.iwres.vs.ipred(
object,
ylb = "|iWRES|",
type = "p",
ids = FALSE,
idsdir = "up",
smooth = TRUE,
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
ids |
Should id values be displayed? |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns an xyplot of |IWRES| vs IPRED.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
,
runsum
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.iwres.vs.ipred(xpdb)
## A conditioning plot
absval.iwres.vs.ipred(xpdb, by="HCTZ")
## Custom heading and axis labels
absval.iwres.vs.ipred(xpdb, main="My conditioning plot", ylb="|IWRES|", xlb="IPRED")
## Custom colours and symbols, no IDs
absval.iwres.vs.ipred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
Absolute individual weighted residuals vs individual predictions, conditioned on covariates, for Xpose 4
Description
This is a plot of absolute individual weighted residuals (|IWRES|) vs
individual predictions (IPRED) conditioned by covariates, a specific
function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
Usage
absval.iwres.vs.ipred.by.cov(
object,
ylb = "|IWRES|",
idsdir = "up",
type = "p",
smooth = TRUE,
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns a stack of xyplots of |IWRES| vs IPRED, conditioned by covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
absval.iwres.vs.ipred
,
xpose.plot.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.iwres.vs.ipred.by.cov(xpdb)
## Custom axis labels
absval.iwres.vs.ipred.by.cov(xpdb, ylb="|IWRES|", xlb="IPRED")
## Custom colours and symbols, no IDs
absval.iwres.vs.ipred.by.cov(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
## End(Not run)
Absolute individual weighted residuals vs population predictions or independent variable for Xpose 4
Description
This is a plot of absolute individual weighted residuals (|IWRES|) vs
individual predictions (PRED) or independent variable (IDV), specific
functions in Xpose 4. These functions are wrappers encapsulating arguments
to the xpose.plot.default
function. Most of the options take their
default values from xpose.data object but may be overridden by supplying
them as arguments.
Usage
absval.iwres.vs.pred(
object,
ylb = "|IWRES|",
smooth = TRUE,
idsdir = "up",
type = "p",
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns an xyplot of |IWRES| vs PRED or |IWRES| vs IDV.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## End(Not run)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.iwres.vs.pred(xpdb)
## A conditioning plot
absval.iwres.vs.pred(xpdb, by="HCTZ")
## Custom heading and axis labels
absval.iwres.vs.pred(xpdb, main="My conditioning plot", ylb="|IWRES|", xlb="PRED")
## Custom colours and symbols, no IDs
absval.iwres.vs.pred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
Absolute weighted residuals vs covariates for Xpose 4
Description
This creates a stack of box and whisker plot of absolute population weighted
residuals (|WRES| or |iWRES|) vs covariates. It is a wrapper encapsulating
arguments to the xpose.plot.bw
function. Most of the options take
their default values from the xpose.data object but may be overridden by
supplying them as arguments.
Usage
absval.wres.vs.cov.bw(object, xlb = "|WRES|", main = "Default", ...)
Arguments
object |
An xpose.data object. |
xlb |
A string giving the label for the x-axis. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling box-and-whisker plots are
available. See xpose.plot.bw
for details.
Value
Returns a stack of box-and-whisker plots of |WRES| vs covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.bw
, xpose.panel.bw
,
bwplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.wres.vs.cov.bw(xpdb)
## A custom plot
absval.wres.vs.cov.bw(xpdb, bwdotcol="white",
bwdotpch=15,
bwreccol="red",
bwrecfill="red",
bwumbcol="red",
bwoutpch=5,
bwoutcol="black")
## A vanilla plot using IWRES
absval.iwres.vs.cov.bw(xpdb)
## End(Not run)
Absolute value of (C)WRES vs. independent variable plot in Xpose4.
Description
This is a plot of the absolute value of the CWRES (default, other residuals
as an option) vs independent variable, a specific function in Xpose 4. It is
a wrapper encapsulating arguments to the xpose.plot.default
function. Most of the options take their default values from the xpose.data
object but may be overridden by supplying them as arguments.
Usage
absval.wres.vs.idv(
object,
idv = "idv",
wres = "Default",
ylb = "Default",
smooth = TRUE,
idsdir = "up",
type = "p",
...
)
Arguments
object |
An xpose.data object. |
idv |
the independent variable. |
wres |
Which weighted residual to use. |
ylb |
Y-axis label. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns an xyplot of |CWRES| vs idv (often TIME, defined by
xvardef
).
Author(s)
Andrew Hooker
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
help
, ~~~
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## End(Not run)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.wres.vs.idv(xpdb)
## A conditioning plot
absval.wres.vs.idv(xpdb, by="HCTZ")
## Custom heading and axis labels
absval.wres.vs.idv(xpdb, main="Hello World", ylb="|CWRES|", xlb="IDV")
## Custom colours and symbols
absval.wres.vs.idv(xpdb, cex=0.6, pch=3, col=1)
## using the NPDEs instead of CWRES
absval.wres.vs.idv(xpdb,wres="NPDE")
## subsets
absval.wres.vs.idv(xpdb,subset="TIME<10")
Absolute population weighted residuals vs population predictions for Xpose 4
Description
This is a plot of absolute population weighted residuals (|WRES|) vs
population predictions (PRED), a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
function.
Most of the options take their default values from xpose.data object but may
be overridden by supplying them as arguments.
Usage
absval.wres.vs.pred(
object,
ylb = "|WRES|",
idsdir = "up",
type = "p",
smooth = TRUE,
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns an xyplot of |WRES| vs PRED.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## End(Not run)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.wres.vs.pred(xpdb)
## A conditioning plot
absval.wres.vs.pred(xpdb, by="HCTZ")
## Custom heading and axis labels
absval.wres.vs.pred(xpdb, main="My conditioning plot",
ylb="|WRES|", xlb="PRED")
## Custom colours and symbols
absval.wres.vs.pred(xpdb, cex=0.6, pch=19, col=1,
smcol="blue", smlty=2)
Absolute population weighted residuals vs population predictions, conditioned on covariates, for Xpose 4
Description
This is a plot of absolute population weighted residuals (|WRES|) vs
population predictions (PRED) conditioned by covariates, a specific function
in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
Usage
absval.wres.vs.pred.by.cov(
object,
ylb = "|WRES|",
type = "p",
smooth = TRUE,
ids = FALSE,
idsdir = "up",
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
ids |
Logical. Should id labels on points be shown? |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns a stack of xyplots of |WRES| vs PRED, conditioned on covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
absval.wres.vs.pred
,
xpose.plot.default
, xpose.panel.default
,
xyplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
absval.wres.vs.pred.by.cov(xpdb)
## Custom axis labels
absval.wres.vs.pred.by.cov(xpdb, ylb="|CWRES|", xlb="PRED")
## Custom colours and symbols, IDs
absval.wres.vs.pred.by.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
## End(Not run)
Model comparison plots, of absolute differences in goodness-of-fit predictors against covariates, for Xpose 4
Description
These functions plot absolute differences in PRED, IPRED, WRES, CWRES and IWRES against covariates for two specified model fits.
Usage
absval.dcwres.vs.cov.model.comp(
object,
object.ref = NULL,
type = NULL,
ylb = expression(paste("|", Delta, "CWRES|")),
main = "Default",
...
)
absval.dipred.vs.cov.model.comp(
object,
object.ref = NULL,
type = NULL,
ylb = expression(paste("|", Delta, "IPRED|")),
main = "Default",
...
)
absval.diwres.vs.cov.model.comp(
object,
object.ref = NULL,
type = NULL,
ylb = expression(paste("|", Delta, "IWRES|")),
main = "Default",
...
)
absval.dpred.vs.cov.model.comp(
object,
object.ref = NULL,
type = NULL,
ylb = expression(paste("|", Delta, "PRED|")),
main = "Default",
...
)
absval.dwres.vs.cov.model.comp(
object,
object.ref = NULL,
type = NULL,
ylb = expression(paste("|", Delta, "WRES|")),
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
object.ref |
An xpose.data object. If not supplied, the user will be prompted. |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
ylb |
A string giving the label for the y-axis. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Conditional weighted residuals (CWRES) may require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns a stack of plots comprising comparisons of PRED, IPRED, WRES (or CWRES) and IWRES for the two specified runs.
Functions
-
absval.dcwres.vs.cov.model.comp()
: The absolute differences in individual predictions against covariates for two specified model fits. -
absval.dipred.vs.cov.model.comp()
: The absolute differences in individual predictions against covariates for two specified model fits. -
absval.diwres.vs.cov.model.comp()
: The absolute differences in individual weighted residuals against covariates for two specified model fits. -
absval.dpred.vs.cov.model.comp()
: The absolute differences in population predictions against covariates for two specified model fits. -
absval.dwres.vs.cov.model.comp()
: The absolute differences in population weighted residuals against covariates for two specified model fits.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
compute.cwres
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for runs
## 5 and 6 in the current working directory
xpdb5 <- xpose.data(5)
xpdb6 <- xpose.data(6)
## A basic dWRES plot, without prompts
absval.dwres.vs.cov.model.comp(xpdb5, xpdb6)
## Custom colours and symbols, no user IDs
absval.dpred.vs.cov.model.comp(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL)
## End(Not run)
Print tables or text in a grid object
Description
These functions take an array of values and labels or an array of text and add it to one or many grid viewports in an orderly fashion.
Usage
add.grid.table(
txt,
col.nams = NULL,
ystart,
xstart = unit(0, "npc"),
start.pt = 1,
vp,
vp.num = 1,
minrow = 5,
cell.padding = 0.5,
mult.col.padding = 1,
col.optimize = TRUE,
equal.widths = FALSE,
space.before.table = 1,
center.table = FALSE,
use.rect = FALSE,
fill.type = NULL,
fill.col = "grey",
cell.lines.lty = 0,
...
)
Arguments
txt |
The text or table values to add to the grid object. |
col.nams |
the column names of the table values |
ystart |
The y location to start printing in the grid viewport |
xstart |
The x location to start printing in the grid viewport |
start.pt |
The start point (row) in the table array to start printing |
vp |
The viewport(s) to add the table or text to |
vp.num |
the viewport number in |
minrow |
The minimum rows before printing more columns to use in the table |
cell.padding |
padding between cells in the table |
mult.col.padding |
padding between multiple columns in the table |
col.optimize |
should we column optimize ( |
equal.widths |
Should all columns have equal widths |
space.before.table |
Should there be a space before the table |
center.table |
should we center the table in the viewport? |
use.rect |
Should we make rectangles with background color around the
table entries |
fill.type |
Which rectangles should be filled. Allowed values are
|
fill.col |
The color of the filled rectangles |
cell.lines.lty |
The line-type for the lines between the cells, using the same values as lty. |
... |
Other arguments passed to the various functions. |
Value
A List is returned with the following components
ystart |
new starting point for new text |
stop.pt |
null if everything gets printed |
vp.num |
the viewport needed for next text printed |
xpose.table |
A grob object that can be plotted. |
Author(s)
Andrew Hooker
See Also
Additional model comparison plots, for Xpose 4
Description
This creates a stack of four plots, comparing absolute values of PRED, absolute values of IPRED, delta CWRES (or WRES) and delta IWRES estimates for the two specified model fits.
Usage
add.model.comp(
object,
object.ref = NULL,
onlyfirst = FALSE,
inclZeroWRES = FALSE,
subset = xsubset(object),
main = "Default",
force.wres = FALSE,
...
)
Arguments
object |
An xpose.data object. |
object.ref |
An xpose.data object. If not supplied, the user will be prompted. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. The default is TRUE. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
main |
The title of the plot. If |
force.wres |
Should we use the WRES in the plots instead of CWRES
(logical |
... |
Other arguments passed to |
Details
Four model comparison plots are displayed in sequence.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns a stack of plots comprising comparisons of absolute values of PRED, absolute values of IPRED, absolute differences in CWRES (or WRES) and absolute differences in IWRES for the two specified runs.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
compute.cwres
, xpose.prefs-class
,
xpose.data-class
Examples
## Not run:
## We expect to find the required NONMEM run and table files for runs
## 5 and 6 in the current working directory
xpdb5 <- xpose.data(5)
xpdb6 <- xpose.data(6)
## A vanilla plot, without prompts
add.model.comp(xpdb5, xpdb6, prompt = FALSE)
## Custom colours and symbols, no user IDs
add.model.comp(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL)
## End(Not run)
Column-transformation functions for Xpose 4
Description
These functions transform existing Xpose 4 data columns, adding new columns.
Usage
add.absval(object, listall = TRUE, classic = FALSE)
add.dichot(object, listall = TRUE, classic = FALSE)
add.exp(object, listall = TRUE, classic = FALSE)
add.log(object, listall = TRUE, classic = FALSE)
add.tad(object, classic = FALSE)
Arguments
object |
An |
listall |
A logical operator specifying whether the items in the database should be listed. |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
Details
These functions may be used to create new data columns within the Xpose data object by transforming existing ones.
Value
An xpose.data
object (classic == FALSE) or null
(classic == TRUE).
Functions
-
add.absval()
: Create a column containing the absolute values of data in another column. -
add.dichot()
: Create a categorical data column based on a continuous data column -
add.exp()
: Create an exponentiated version of an existing variable -
add.log()
: Create a log transformation of an existing variable -
add.tad()
: Create a time-after-dose (TAD) data item based upon the dose and time variables in the dataset.
Author(s)
Niclas Jonsson, Justin Wilkins and Andrew Hooker
See Also
Other data functions:
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Create a column containing the absolute values of data in another
## column
add.absval(xpdb5)
## Create a categorical data column based on a continuous data column,
## and do not list variables
add.dichot(xpdb5, listall = FALSE)
## Create a column containing the exponentiated values of data in
## another column
add.exp(xpdb5)
## Create a column containing log-transformations of data in another
## column
add.log(xpdb5)
## Create a time-after-dose column
add.tad(xpdb5)
## End(Not run)
Generic internal functions for Xpose 4
Description
These are internal functions relating to the Xpose generic functions.
Usage
addid(
x,
y,
ids = ids,
idsmode = NULL,
idsext = 0.05,
idscex = 0.7,
idsdir = "both",
gridmode = TRUE
)
computePI(
x,
y,
object,
limits = object@Prefs@Graph.prefs$PIlimits,
logy = FALSE,
logx = FALSE,
onlyfirst = FALSE,
inclZeroWRES = FALSE,
PI.subset = NULL,
subscripts
)
create.rand(data, object, frac, seed = NULL)
create.strat.rand(data, object, x, y, frac, dilci, seed = NULL)
eq.xpose(x, number = 6, overlap = 0.5)
get.refrunno(database = ".ref.db")
xpose.stack(data, object, select, rep, subset = NULL, ...)
Details
These are internal Xpose functions, for adding ID numbers, computing prediction intervals, randomization, stacking, and binning. They are not intended for direct use.
Value
Internal helper functions for the generic Xpose functions.
Author(s)
Justin Wilkins and Andrew Hooker
Additional goodness-of-fit plots, for Xpose 4
Description
This is a compound plot consisting of plots of weighted population residuals
(WRES) vs population predictions (PRED), absolute individual weighted
residuals (|IWRES|) vs independent variable (IDV), WRES vs IDV, and weighted
population residuals vs log(IDV), a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the wres.vs.pred
,
iwres.vs.idv
and wres.vs.idv
functions.
Usage
addit.gof(
object,
type = "p",
title.size = 0.02,
title.just = c("center", "top"),
main = "Default",
force.wres = FALSE,
...
)
Arguments
object |
An xpose.data object. |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
title.size |
Amount, in a range of 0-1, of how much space the title should take up in the plot) |
title.just |
how the title should be justified |
main |
The title of the plot. If |
force.wres |
Plot the WRES even if other residuals are available. |
... |
Other arguments passed to |
Details
Four additional goodness-of-fit plots are presented side by side for comparison.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and
xpose.multiple.plot.default
for details.
Value
Returns a compound plot comprising plots of weighted population residuals (WRES) vs population predictions (PRED), absolute individual weighted residuals (|IWRES|) vs independent variable (IDV), WRES vs IDV, and weighted population residuals vs log(IDV).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
wres.vs.pred
, iwres.vs.idv
,
wres.vs.idv
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## A vanilla plot
addit.gof(xpdb)
Autocorrelation of conditional weighted residuals for Xpose 4
Description
This is an autocorrelation plot of conditional weighted residuals, a specific function in Xpose 4. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.
Usage
autocorr.cwres(
object,
type = "p",
smooth = TRUE,
ids = F,
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
type |
1-character string giving the type of plot desired. The
following values are possible, for details, see |
smooth |
Logical value indicating whether a smooth should be superimposed. |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
Value
Returns an autocorrelation plot for conditional weighted population residuals (CWRES).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xyplot
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## End(Not run)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
autocorr.cwres(xpdb)
## A conditioning plot
autocorr.cwres(xpdb, dilution=TRUE)
## Custom heading and axis labels
autocorr.cwres(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED")
## Custom colours and symbols, IDs
autocorr.cwres(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
autocorrelation of the individual weighted residuals
Description
autocorrelation of the individual weighted residuals
Usage
autocorr.iwres(
object,
type = "p",
smooth = TRUE,
ids = F,
main = "Default",
...
)
Arguments
object |
An "xpose.data" object. |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
smooth |
A |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
main |
A string giving the plot title or |
... |
Other arguments passed to |
Value
A Lattice object
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Autocorrelation of weighted residuals for Xpose 4
Description
This is an autocorrelation plot of weighted residuals. Most of the options take their default values from the xpose.data object but may be overridden by supplying them as arguments.
Usage
autocorr.wres(
object,
type = "p",
smooth = TRUE,
ids = F,
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
type |
1-character string giving the type of plot desired. The
following values are possible, for details, see |
smooth |
Logical value indicating whether a smooth should be superimposed. |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns an autocorrelation plot for weighted population residuals (WRES) or individual weighted residuals (IWRES).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins & Andrew Hooker
See Also
xyplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## End(Not run)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
autocorr.wres(xpdb)
## A conditioning plot
autocorr.wres(xpdb, dilution=TRUE)
## Custom heading and axis labels
autocorr.wres(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED")
## Custom colours and symbols, IDs
autocorr.wres(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
## A vanilla plot with IWRES
autocorr.iwres(xpdb)
Basic goodness-of-fit plots, for Xpose 4
Description
This is a compound plot consisting of plots of observations (DV) vs
population predictions (PRED), observations (DV) vs individual predictions
(IPRED), absolute individual weighted residuals (|IWRES|) vs IPRED, and
weighted population residuals (CWRES) vs independent variable (IDV), a
specific function in Xpose 4. WRES are also supported. It is a wrapper
encapsulating arguments to the dv.vs.pred
, dv.vs.ipred
,
absval.iwres.vs.ipred
and wres.vs.idv
functions.
Usage
basic.gof(object, force.wres = FALSE, main = "Default", use.log = FALSE, ...)
Arguments
object |
An xpose.data object. |
force.wres |
Should the plots use WRES? Values can be
|
main |
The title of the plot. If |
use.log |
Should we use log transformations in the plots? |
... |
Other arguments passed to |
Details
Four basic goodness-of-fit plots are presented side by side for comparison.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
basic.gof.cwres
is just a wrapper for basic.gof
with
use.cwres=TRUE
.
Value
Returns a compound plot comprising plots of observations (DV) vs population predictions (PRED), DV vs individual predictions (IPRED), absolute individual weighted residuals (|IWRES|) vs IPRED, and weighted populations residuals (WRES) vs the independent variable (IDV).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
dv.vs.pred
, dv.vs.ipred
,
absval.iwres.vs.ipred
, wres.vs.idv
,
cwres.vs.idv
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
compute.cwres
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
basic.gof(simpraz.xpdb)
Basic model comparison plots, for Xpose 4
Description
This creates a stack of four plots, comparing PRED, IPRED, WRES (or CWRES), and IWRES estimates for the two specified model fits.
Usage
basic.model.comp(
object,
object.ref = NULL,
onlyfirst = FALSE,
inclZeroWRES = FALSE,
subset = xsubset(object),
main = "Default",
force.wres = FALSE,
...
)
Arguments
object |
An xpose.data object. |
object.ref |
An xpose.data object. If not supplied, the user will be prompted. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. The default is TRUE. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
main |
The title of the plot. If |
force.wres |
Force function to use WRES? |
... |
Other arguments passed to |
Details
Four basic model comparison plots are displayed in sequence.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Value
Returns a stack of plots comprising comparisons of PRED, IPRED, WRES (or CWRES) and IWRES for the two specified runs.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
compute.cwres
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for runs
## 5 and 6 in the current working directory
xpdb5 <- xpose.data(5)
xpdb6 <- xpose.data(6)
## A vanilla plot, without prompts
basic.model.comp(xpdb5, xpdb6, prompt = FALSE)
## Custom colours and symbols, no user IDs
basic.model.comp.cwres(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL)
## End(Not run)
Function to create histograms of results from the bootstrap
tool in
PsN
Description
Reads results from the bootstrap
tool in PsN
and then creates histograms.
Usage
boot.hist(
results.file = "raw_results_run1.csv",
incl.ids.file = "included_individuals1.csv",
min.failed = FALSE,
cov.failed = FALSE,
cov.warnings = FALSE,
boundary = FALSE,
showOriginal = TRUE,
showMean = FALSE,
showMedian = FALSE,
showPCTS = FALSE,
PCTS = c(0.025, 0.975),
excl.id = c(),
layout = NULL,
sort.plots = TRUE,
main = "Default",
...
)
Arguments
results.file |
The location of the results file from the
|
incl.ids.file |
The location of the included ids file from the
|
min.failed |
Should NONMEM runs that had failed minimization be
skipped? |
cov.failed |
Should NONMEM runs that had a failed covariance step be
skipped? |
cov.warnings |
Should NONMEM runs that had covariance step warnings be
skipped? |
boundary |
Should NONMEM runs that had boundary warnings be skipped?
|
showOriginal |
Should we show the value from the original NONMEM run in
the histograms? |
showMean |
Should we show the mean of the histogram data? |
showMedian |
Should we show the median of the histogram data?
|
showPCTS |
Should we show the percentiles of the histogram data?
|
PCTS |
the percentiles to show. Can be a vector of any length. For
example, |
excl.id |
Vector of id numbers to exclude. |
layout |
Layout of plots. A vector of number of rows and columns in
each plot. |
sort.plots |
Should the plots be sorted based on type of parameter. Sorting on parameters, standard errors, shrinkage and eigenvalues. |
main |
The title of the plot. |
... |
Additional arguments that can be passed to xpose.plot.histogram, xpose.panel.histogram, histogram and other lattice-package functions. |
Value
A lattice object
Author(s)
Andrew Hooker
References
See Also
xpose.plot.histogram, xpose.panel.histogram, histogram and other lattice-package functions.
Other PsN functions:
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
boot.hist(results.file="./boot1/raw_results_run1.csv",
incl.ids.file="./boot1/included_individuals1.csv")
## End(Not run)
Print summary information for a bootgam or bootscm
Description
This functions prints some summary information for a bootgam performed in Xpose, or for a bootscm performed in PsN.
Usage
bootgam.print(bootgam.obj = NULL)
Arguments
bootgam.obj |
The bootgam or bootscm object. |
Value
No value returned
Author(s)
Ron Keizer
Examples
## Not run:
bootgam.print(current.bootgam) # Print summary for the current Xpose bootgam object
bootgam.print(current.bootscm) # Print summary for the current Xpose bootscm object
## End(Not run)
Import bootscm data into R/Xpose
Description
This function imports data generated by the PsN boot_scm function into the Xpose / R environment.
Usage
bootscm.import(
scm.folder = NULL,
silent = FALSE,
n.bs = NULL,
cov.recoding = NULL,
group.by.cov = NULL,
skip.par.est.import = FALSE,
dofv.forward = 3.84,
dofv.backward = 6.64,
runno = NULL,
return.obj = FALSE
)
Arguments
scm.folder |
The folder in which the PsN-generated bootscm data are. |
silent |
Don't output any progress report. Default is FALSE. |
n.bs |
The number of bootstraps performed. Defaults to 100. |
cov.recoding |
For categorical covariates that are recoded to dichotomous covariates within the bootscm configuration file, a list can be specified containing data frames for recoding. See the example below for details. |
group.by.cov |
Group inclusion frequencies by covariate, instead of calculating them per parameter-covariates relationship. Default is NULL, which means that the user will be asked to make a choice. |
skip.par.est.import |
Skip the import of all parameter estimates (in each final model in all scm's, as well as parameter estimates in first step of each scm). These data are required to make plot that show inclusion bias and correlation in parameter estimates. Importing these data takes a bit of time (may take a minute or so), so if you don't intend to make these plots anyhow this step can be skipped. Default is FALSE. |
dofv.forward |
dOFV value used in forward step of scm. |
dofv.backward |
dOFV value used in backward step of scm. |
runno |
The run-number of the base model for this bootSCM. |
return.obj |
Should the bootscm object be returned by the function? |
Author(s)
Ron Keizer
See Also
Other bootscm:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other PsN functions:
boot.hist()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Categorical observations vs. independent variable using stacked bars.
Description
Categorical observations vs. independent variable using stacked bars.
Usage
cat.dv.vs.idv.sb(
object,
dv = xvardef("dv", object),
idv = xvardef("idv", object),
by = NULL,
groups = dv,
force.by.factor = FALSE,
recur = F,
xlb = idv,
ylb = "Proportion",
subset = NULL,
vary.width = T,
level.to.plot = NULL,
refactor.levels = TRUE,
main = xpose.create.title.text(idv, dv, "Proportions of", object, subset = subset, ...),
stack = TRUE,
horizontal = FALSE,
strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)),
scales = list(),
inclZeroWRES = TRUE,
onlyfirst = FALSE,
samp = NULL,
aspect = object@Prefs@Graph.prefs$aspect,
auto.key = "Default",
mirror = FALSE,
mirror.aspect = "fill",
pass.plot.list = FALSE,
x.cex = NULL,
y.cex = NULL,
main.cex = NULL,
mirror.internal = list(strip.missing = missing(strip)),
...
)
Arguments
object |
Xpose data object. |
dv |
The dependent variable (e.g. |
idv |
The independent variable (e.g. |
by |
Conditioning variable |
groups |
How we should group values in each conditional plot. |
force.by.factor |
Should we force the data to be treated as factors? |
recur |
Not used. |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
subset |
Subset of data. |
vary.width |
Should we vary the width of the bars to match amount of information? |
level.to.plot |
Which levels of the DV to plot. |
refactor.levels |
Should we refactor the levels? |
main |
The title of the plot. |
stack |
Should we stack the bars? |
horizontal |
Should the bars be horizontal? |
strip |
Defining how the strips should appear in the conditioning plots. |
scales |
Scales argument to |
inclZeroWRES |
Include rows with WRES=0? |
onlyfirst |
Only include first data point for each individual? |
samp |
Sample to use in mirror plot (a number). |
aspect |
Aspect argument to |
auto.key |
Make a legend. |
mirror |
Mirror can be |
mirror.aspect |
Aspect for mirror. |
pass.plot.list |
Should the plot list be passed back to user? |
x.cex |
Size of x axis label. |
y.cex |
Size of Y axis label. |
main.cex |
Size of Title. |
mirror.internal |
Internal stuff. |
... |
Other arguments passed to function. |
Author(s)
Andrew Hooker
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## read in table files
runno <- 45
xpdb <- xpose.data(runno)
## make some stacked bar plots
cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F)
cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F,by="DOSE")
cat.dv.vs.idv.sb(xpdb,idv="DOSE")
cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F,by="TIME")
cat.dv.vs.idv.sb(xpdb,idv="TIME")
cat.dv.vs.idv.sb(xpdb,idv="CAVH")
cat.dv.vs.idv.sb(xpdb,idv="TIME",by="DOSE",scales=list(x=list(rot=45)))
## make some mirror plots
cat.dv.vs.idv.sb(xpdb,idv="DOSE",mirror=1)
cat.dv.vs.idv.sb(xpdb,idv="CAVH",mirror=1,auto.key=F)
## End(Not run)
Categorical (visual) predictive check.
Description
Categorical (visual) predictive check plots.
Usage
cat.pc(
object,
dv = xvardef("dv", object),
idv = xvardef("idv", object),
level.to.plot = NULL,
subset = NULL,
histo = T,
median.line = F,
PI.lines = F,
xlb = if (histo) {
paste("Proportion of ", dv)
} else {
paste(idv)
},
ylb = if (histo) {
paste("Percent of Total")
} else {
paste("Proportion of Total")
},
main = xpose.create.title.text(NULL, dv, "Predictive check of", object, subset =
subset, ...),
strip = "Default",
...
)
Arguments
object |
Xpose data object. |
dv |
The dependent variable (e.g. |
idv |
The independent variable (e.g. |
level.to.plot |
The levels to plot. |
subset |
Subset of data. |
histo |
If |
median.line |
Make a median line? |
PI.lines |
Make prediction interval lines? |
xlb |
Label for x axis. |
ylb |
label for y axis. |
main |
Main title. |
strip |
Defining how the strips should appear in the conditioning plots. |
... |
Extra arguments passed to the function. |
Author(s)
Andrew C. Hooker
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## read in table files
runno <- 45
xpdb <- xpose.data(runno)
## create proportion (visual) predictive check
cat.pc(xpdb,idv=NULL)
cat.pc(xpdb,idv="DOSE")
cat.pc(xpdb,idv="DOSE",histo=F)
cat.pc(xpdb,idv="TIME",histo=T,level.to.plot=1)
## End(Not run)
Generic table functions for Xpose 4
Description
These are internal table functions relating to the Xpose summary functions.
Usage
categorical.table(
object,
vars,
onlyfirst = TRUE,
subset = xsubset(object),
inclZeroWRES = FALSE,
miss = object@Prefs@Miss
)
continuous.table(
object,
vars,
onlyfirst = TRUE,
subset = xsubset(object),
inclZeroWRES = FALSE,
miss = object@Prefs@Miss
)
Details
These are internal Xpose functions for outputting summary tables. They are not intended for direct use.
Value
Internal helper functions for the generic Xpose summary functions.
Author(s)
Niclas Jonsson, Justin Wilkins and Andrew Hooker
Change parameter scope.
Description
Function to change the parameter scope.
Usage
change.parm(object, listall = TRUE, classic = FALSE)
Arguments
object |
The xpose data object. |
listall |
whether we should list all the current parameters. |
classic |
true if used in the classic menu system (for internal use). |
Value
If classic then return nothing. Otherwise return the new data object.
Author(s)
Andrew C. Hooker
Changes the name of an Xpose data item
Description
This function allows the names of data items in the Xpose database to be changed.
Usage
change.var.name(object, classic = FALSE)
Arguments
object |
An |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
Details
This function facilitates the changing of data item names in the object@Data slot.
Value
An xpose.data
object.
Author(s)
Niclas Jonsson & Justin Wilkins
See Also
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
xpdb5 <- change.var.name(xpdb5)
## End(Not run)
Changes the label of an Xpose data item
Description
This function allows the labels of data items in the Xpose database to be changed.
Usage
change.xlabel(object, listall = TRUE, classic = FALSE)
Arguments
object |
An |
listall |
A logical operator specifying whether the items in the database should be listed. |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
Details
This function facilitates the changing of data item labels in the object@Prefs@Labels slot.
Value
An xpose.data
object.
Author(s)
Justin Wilkins
See Also
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
xpdb5 <- change.xlabel(xpdb5)
## End(Not run)
Change Xpose variable definitions.
Description
These functions allow for the changing of Xpose variable definitions like "idv" and "dv". These variable definitions are used to refer to columns of the observed data in a generic way, so that generic plotting functions can be created.
Usage
change.xvardef(
object,
var = ".ask",
def = ".ask",
listall = TRUE,
classic = FALSE,
check.var = FALSE,
...
)
change.xvardef(
object,
var,
listall = FALSE,
classic = FALSE,
check.var = FALSE,
...
) <- value
Arguments
object |
An |
var |
The Xpose variable you would like to change or add to the current
object. A one-element character vector (e.g. |
def |
A vector of column names from NONMEM table files
( |
listall |
Should the function list the database values? |
classic |
Is the function being used from the classic interface. This is an internal option. |
check.var |
Should the variables be checked against the current variables in the object? |
... |
Items passed to functions within this function. |
value |
a vector of values |
Value
If called from the the command line then this function returns an xpose database. If called from the classic interface this function updates the current xpose database (.cur.db).
Functions
-
change.xvardef( object, var, listall = FALSE, classic = FALSE, check.var = FALSE, ... ) <- value
: Change the covariate scope of the xpose database object
Additional arguments
The default xpose variables are:
- id
Individual identifier column in dataset
- idlab
values used for plotting ID values on data points in plots
- occ
The occasion variable
- dv
The dv variable
- pred
The pred variable
- ipred
The ipred variable
- wres
The wres variable
- cwres
The cwres variable
- res
The res variable
- parms
The parameters in the database
- covariates
The covariates in the database
- ranpar
The random parameters in the database
Author(s)
Andrew Hooker
See Also
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
# Change the "id" variable to point to "PRED" in the xpose object
xpdb <- change.xvardef(xpdb,var="id",def="PRED")
# Check the value of the "id" variable
xvardef("id",xpdb)
# Change the "idv" variable
change.xvardef(xpdb,var="idv") <- "TIME"
# Change the covariate scope
change.xvardef(xpdb,var="covariates") <- c("SEX","AGE","WT")
## Not run:
# Use the interactive capabilities of the function
xpdb <- change.xvardef(xpdb)
## End(Not run)
Functions changing variable definitions in Xpose 4
Description
These functions allow customization of Xpose's graphics settings.
Usage
change.ab.graph.par(object, classic = FALSE)
change.bw.graph.par(object, classic = FALSE)
change.cond.graph.par(object, classic = FALSE)
change.dil.graph.par(object, classic = FALSE)
change.label.par(object, classic = FALSE)
change.lm.graph.par(object, classic = FALSE)
change.misc.graph.par(object, classic = FALSE)
change.pi.graph.par(object, classic = FALSE)
change.smooth.graph.par(object, classic = FALSE)
Arguments
object |
An |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
Details
Settings can be saved and loaded using export.graph.par
and
import.graph.par
, respectively.
Value
An xpose.data
object (classic == FALSE) or null
(classic == TRUE).
Functions
-
change.ab.graph.par()
: change settings for the line of identity. -
change.bw.graph.par()
: sets preferences for box-and-whisker plots -
change.cond.graph.par()
: sets preferences for conditioning -
change.dil.graph.par()
: responsible for dilution preferences -
change.label.par()
: responsible for labelling preferences -
change.lm.graph.par()
: responsible for linear regression lines. -
change.misc.graph.par()
: sets basic graphics parameters, including plot type, point type and size, colour, line type, and line width. -
change.pi.graph.par()
: responsible for prediction interval plotting preferences -
change.smooth.graph.par()
: sets preferences for loess smooths.
Author(s)
Niclas Jonsson & Justin Wilkins
See Also
xpose.plot.default
,xpose.panel.default
,
xpose.plot.bw
,xpose.panel.bw
,
xpose.plot.default
,import.graph.par
,
export.graph.par
,plot.default
,
par
,import.graph.par
,panel.abline
,
panel.lmline
,lm
,panel.loess
,
loess.smooth
,loess
,panel.bwplot
,
shingle
,reorder.factor
Other data functions:
add_transformed_columns
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Change default miscellaneous graphic preferences
xpdb5 <- change.misc.graph.par(xpdb5)
## Change default linear regression line preferences, creating a new
## object
xpdb5.a <- change.lm.graph.par(xpdb5)
## Change conditioning preferences
xpdb5 <- change.cond.graph.par(xpdb5)
## End(Not run)
Functions changing miscellaneous parameter settings in Xpose 4
Description
These functions allow viewing and changing of settings relating to subsets, categorical threshold values, documentation and numbers indicating missing data values.
Usage
change.cat.cont(
object,
listall = TRUE,
classic = FALSE,
to.cat.vec = NULL,
to.cont.vec = NULL,
change.type.vec = NULL,
...
)
change.cat.cont(
object,
listall = TRUE,
classic = FALSE,
to.cat.vec = NULL,
to.cont.vec = NULL,
...
) <- value
change.cat.levels(object, classic = FALSE, cat.limit = NULL, ...)
change.cat.levels(object, classic = FALSE, ...) <- value
change.dv.cat.levels(object, classic = FALSE, dv.cat.limit = NULL, ...)
change.dv.cat.levels(object, classic = FALSE, ...) <- value
change.miss(object, classic = FALSE)
change.subset(object, classic = FALSE)
get.doc(object, classic = FALSE)
set.doc(object, classic = FALSE)
Arguments
object |
An |
listall |
A logical operator specifying whether the items in the database should be listed. |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
to.cat.vec |
A vector of strings specifying the names of the categorical variables that should be transformed to continuous. |
to.cont.vec |
A vector of strings specifying the names of the continuous variables that should be transformed to categorical. |
change.type.vec |
A vector of strings specifying the names of the variables that should be transformed to/from continuous/categorical. |
... |
arguments passed to other functions. |
value |
This is the value that will be replaced in the xpose data
object |
cat.limit |
The limit for which we treat a list of values as
categorical. If there are |
dv.cat.limit |
The limit for which we treat DV as categorical. If
there are |
Value
An xpose.data
object, except get.doc
, which
returns the value of object@Doc.
Functions
-
change.cat.cont()
: allows interchange between categorical and continuous data formats within the Xpose database. This in turn affects how plots are drawn. -
change.cat.cont( object, listall = TRUE, classic = FALSE, to.cat.vec = NULL, to.cont.vec = NULL, ... ) <- value
: allows interchange between categorical and continuous data formats within the Xpose database. This in turn affects how plots are drawn. -
change.cat.levels()
: change settings for the number of unique data values required in a variable in order to define it as continuous for ordinary variables. -
change.cat.levels(object, classic = FALSE, ...) <- value
: change settings for the number of unique data values required in a variable in order to define it as continuous for ordinary variables. -
change.dv.cat.levels()
: change settings for the number of unique data values required in a variable in order to define it as continuous for the dependent variable. -
change.dv.cat.levels(object, classic = FALSE, ...) <- value
: change settings for the number of unique data values required in a variable in order to define it as continuous for the dependent variable. -
change.miss()
: change the value to use as 'missing'. -
change.subset()
: is used for setting the data item's subset field. To specify a subset of the data to process, you use the variable names and the regular R selection operators. To combine a subset over two or more variables, the selection expressions for the two variables are combined using R's unary logical operators.The variable names are those that are specified in the NONMEM table files (e.g. PRED, TIME, SEX).
The selection operators are: == (equal) != (not equal) || (or) > (greater than) < (less than)
For example, to specify that TIME less than 24 should be processed, you type the expression: TIME < 24.
The unary logical operators are: & (and) | (or)
For example, to specify TIME less than 24 and males (SEX equal to 1), you type the expression: TIME < 24 & SEX == 1
This subset selection scheme works on all variables, including ID numbers.
The subset selection is not entirely stable. For example, there is no check that the user enters a valid expression, nor that the user specifies existing variable names. An erroneous expression will not become evident until a plot is attempted and the expression takes effect.
-
get.doc()
: get the documentation field in the Xpose data object. -
set.doc()
: set the documentation field in the Xpose data object.
Author(s)
Andrew Hooker, Niclas Jonsson & Justin Wilkins
See Also
Data
, SData
, subset
,
xpose.data
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Change default subset
xpdb5 <- change.subset(xpdb5)
## Set documentation field
xpdb5 <- set.doc(xpdb5)
## View it
view.doc(xpdb5)
## change the categorical limit for the dv variable
change.dv.cat.levels(xpdb5) <- 10
## change the categorical limit for non DV variables
change.cat.levels(xpdb5) <- 2
## or
xpdb5 <- change.cat.levels(xpdb5,cat.levels=2)
## chnage variables from categorical to continuous
xpdb5 <- change.cat.cont(xpdb5,to.cat.vec=c("AGE"),to.cont.vec=c("SEX"))
xpdb5 <- change.cat.cont(xpdb5,change.type.vec=c("AGE","SEX"))
change.cat.cont(xpdb5) <- c("AGE","SEX")
## End(Not run)
Data functions for Xpose 4
Description
These functions perform various tasks in managing Xpose data objects.
Usage
check.vars(vars, object, silent = FALSE)
is.readable.file(filename)
test.xpose.data(object)
xpose.bin(data, y, bins = 10)
Arguments
vars |
List of variables to be checked. |
object |
An |
silent |
A logical operator specifying whether output should be displayed. |
filename |
A filename to be checked for readability. |
Details
These are internal Xpose functions, not intended for direct use.
Value
TRUE, FALSE or NULL.
Author(s)
Niclas Jonsson and Andrew Hooker
See Also
Compute the Conditional Weighted Residuals
Description
This function computes the conditional weighted residuals (CWRES) from a NONMEM run. CWRES are an extension of the weighted residuals (WRES), but are calculated based on the first-order with conditional estimation (FOCE) method of linearizing a pharmacometric model (WRES are calculated based on the first-order (FO) method). The function requires a NONMEM table file and an extra output file that must be explicitly asked for when running NONMEM, see details below.
Usage
compute.cwres(
run.number,
tab.prefix = "cwtab",
sim.suffix = "",
est.tab.suffix = ".est",
deriv.tab.suffix = ".deriv",
old.file.convention = FALSE,
id = "ALL",
printToOutfile = TRUE,
onlyNonZero = TRUE,
...
)
xpose.calculate.cwres(
object,
cwres.table.prefix = "cwtab",
tab.suffix = "",
sim.suffix = "sim",
est.tab.suffix = ".est",
deriv.tab.suffix = ".deriv",
old.file.convention = FALSE,
id = "ALL",
printToOutfile = TRUE,
onlyNonZero = FALSE,
classic = FALSE,
...
)
Arguments
run.number |
The run number of the NONMEM from which the CWRES are to be calculated. |
tab.prefix |
The prefix to two NONMEM file containing the needed values for the computation of the CWRES, described in the details section. |
sim.suffix |
The suffix ,before the ".", of the NONMEM file containing
the needed values for the computation of the CWRES, described in the details
section. For example, the table files might be named |
est.tab.suffix |
The suffix, after the ".", of the NONMEM file containing the estimated parameter values needed for the CWRES calculation. |
deriv.tab.suffix |
The suffix, after the ".", of the NONMEM file containing the derivatives of the model with respect to the random parameters needed for the CWRES calculation. |
old.file.convention |
For backwards compatibility. Use this if you are using the previous file convention for CWRES (table files named cwtab1, cwtab1.50, cwtab1.51, ... , cwtab.58 for example). |
id |
Can be either "ALL" or a number matching an ID label in the
|
printToOutfile |
Logical (TRUE/FALSE) indicating whether the CWRES
values calculated should be appended to a copy of the |
onlyNonZero |
Logical (TRUE/FALSE) indicating if the return value (the
CWRES values) of |
... |
Other arguments passed to basic functions in code. |
object |
An xpose.data object. |
cwres.table.prefix |
The prefix to the NONMEM table file containing the derivative of the model with respect to the etas and epsilons, described in the details section. |
tab.suffix |
The suffix to the NONMEM table file containing the derivative of the model with respect to the etas and epsilons, described in the details section. |
classic |
Indicates if the function is to be used in the classic menu system. |
Details
The function reads in the following two files:
paste(tab.prefix,run.number,sim.suffix,est.tab.suffix,sep="")
paste(tab.prefix,run.number,sim.suffix,deriv.tab.suffix,sep="")
Which might be for example:
cwtab1.est cwtab1.deriv
and (depending on the input values to the function) returns the CWRES in vector form as well as creating a new table file named:
paste(tab.prefix,run.number,sim.suffix,sep="")
Which might be for example:
cwtab1
Value
- compute.cwres
Returns a vector containing the values of the CWRES.
- xpose.calculate.cwres
Returns an Xpose data object that contains the CWRES. If simulated data is present, then the CWRES will also be calculated for that data.
Functions
-
xpose.calculate.cwres()
: This function is a wrapper around the functioncompute.cwres
. It computes the CWRES for the model file associated with the Xpose data object input to the function. If possible it also computes the CWRES for any simulated data associated with the current Xpose data object. If you have problems with this function try usingcompute.cwres
and then rereading your dataset into Xpose.
Setting up the NONMEM model file
In order for this function to calculate the CWRES, NONMEM must be run while requesting certain tables and files to be created. How these files are created differs depending on if you are using $PRED or ADVAN as well as the version of NONMEM you are using. These procedures are known to work for NONMEM VI but may be different for NONMEM V and NONMEM VII. We have attempted to indicate where NONMEM V may be different, but this has not been extensively tested! For NONMEM VII the CWRES are calculated internally so this function is rarely needed.
This procedure can be done automatically using Perl Speaks NONMEM (PsN) and
we highly recommend using PsN for this purpose. After installing PsN just
type 'execute [modelname] -cwres
'. See
https://uupharmacometrics.github.io/PsN/ for more details.
There are five main insertions needed in your NONMEM control file:
$ABB COMRES=X.
Insert this line directly after your $DATA line. The value of X is the number of ETA() terms plus the number of EPS() terms in your model. For example for a model with three ETA() terms and two EPS() terms the code would look like this:
$DATA temp.csv IGNORE=@ $ABB COMRES=5 $INPUT ID TIME DV MDV AMT EVID $SUB ADVAN2 TRANS2
Verbatim code.
Using ADVAN.
If you are using ADVAN routines in your model, then Verbatim code should be inserted directly after the $ERROR section of your model file. The length of the code depends again on the number of ETA() terms and EPS() terms in your model. For each ETA(y) in your model there is a corresponding term G(y,1) that you must assign to a COM() variable. For each EPS(y) in your model, there is a corresponding HH(y,1) term that you must assign to a COM() variable.
For example for a model using ADVAN routines with three ETA() terms and two EPS() terms the code would look like this:
"LAST " COM(1)=G(1,1) " COM(2)=G(2,1) " COM(3)=G(3,1) " COM(4)=HH(1,1) " COM(5)=HH(2,1)
Using PRED.
If you are using $PRED, the verbatim code should be inserted directly after the $PRED section of your model file. For each ETA(y) in your model there is a corresponding term G(y,1) that you must assign to a COM() variable. For each EPS(y) in your model, there is a corresponding H(y,1) term that you must assign to a COM() variable. The code would look like this for three ETA() terms and two EPS() terms:
"LAST " COM(1)=G(1,1) " COM(2)=G(2,1) " COM(3)=G(3,1) " COM(4)=H(1,1) " COM(5)=H(2,1)
INFN routine.
Using ADVAN with NONMEM VI and higher.
If you are using ADVAN routines in your model, then an $INFN section should be placed directly after the $PK section using the following code. In this example we are assuming that the model file is named something like 'run1.mod', thus the prefix to these file names 'cwtab' has the same run number attached to it (i.e. 'cwtab1'). This should be changed for each new run number.
$INFN IF (ICALL.EQ.3) THEN OPEN(50,FILE='cwtab1.est') WRITE(50,*) 'ETAS' DO WHILE(DATA) IF (NEWIND.LE.1) WRITE (50,*) ETA ENDDO WRITE(50,*) 'THETAS' WRITE(50,*) THETA WRITE(50,*) 'OMEGAS' WRITE(50,*) OMEGA(BLOCK) WRITE(50,*) 'SIGMAS' WRITE(50,*) SIGMA(BLOCK) ENDIF
Using ADVAN with NONMEM V.
If you are using ADVAN routines in your model, then you need to use an INFN subroutine. If we call the INFN subroutine 'myinfn.for' then the $SUBS line of your model file should include the INFN option. That is, if we are using ADVAN2 and TRANS2 in our model file then the $SUBS line would look like:
$SUB ADVAN2 TRANS2 INFN=myinfn.for
The 'myinfn.for' routine for 4 thetas, 3 etas and 1 epsilon is shown below. If your model has different numbers of thetas, etas and epsilons then the values of NTH, NETA, and NEPS, should be changed respectively. These vales are found in the DATA statement of the subroutine. additionally, in this example we are assuming that the model file is named something like 'run1.mod', thus the prefix to the output file names ('cwtab') in this subroutine has the same run number attached to it (i.e. 'cwtab1'). This number should be changed for each new run number (see the line beginning with 'OPEN').
SUBROUTINE INFN(ICALL,THETA,DATREC,INDXS,NEWIND) DIMENSION THETA(*),DATREC(*),INDXS(*) DOUBLE PRECISION THETA COMMON /ROCM6/ THETAF(40),OMEGAF(30,30),SIGMAF(30,30) COMMON /ROCM7/ SETH(40),SEOM(30,30),SESIG(30,30) COMMON /ROCM8/ OBJECT COMMON /ROCM9/ IERE,IERC DOUBLE PRECISION THETAF, OMEGAF, SIGMAF DOUBLE PRECISION OBJECT REAL SETH,SEOM,SESIG DOUBLE PRECISION ETA(10) INTEGER J,I INTEGER IERE,IERC INTEGER MODE INTEGER NTH,NETA,NEPS DATA NTH,NETA,NEPS/4,3,1/ IF (ICALL.EQ.0) THEN C open files here, if necessary OPEN(50,FILE='cwtab1.est') ENDIF IF (ICALL.EQ.3) THEN MODE=0 CALL PASS(MODE) MODE=1 WRITE(50,*) 'ETAS' 20 CALL PASS(MODE) IF (MODE.EQ.0) GO TO 30 IF (NEWIND.NE.2) THEN CALL GETETA(ETA) WRITE (50,97) (ETA(I),I=1,NETA) ENDIF GO TO 20 30 CONTINUE WRITE (50,*) 'THETAS' WRITE (50,99) (THETAF(J),J=1,NTH) WRITE(50,*) 'OMEGAS' DO 7000 I=1,NETA 7000 WRITE (50,99) (OMEGAF(I,J),J=1,NETA) WRITE(50,*) 'SIGMAS' DO 7999 I=1,NEPS 7999 WRITE (50,99) (SIGMAF(I,J),J=1,NEPS) ENDIF 99 FORMAT (20E15.7) 98 FORMAT (2I8) 97 FORMAT (10E15.7) RETURN END
Using $PRED with NONMEM VI and higher.
If you are using $PRED, then an the following code should be placed at the end of the $PRED section of the model file (together with the verbatim code). In this example we are assuming that the model file is named something like 'run1.mod', thus the prefix to these file names 'cwtab' has the same run number attached to it (i.e. 'cwtab1'). This should be changed for each new run number.
IF (ICALL.EQ.3) THEN OPEN(50,FILE='cwtab1.est') WRITE(50,*) 'ETAS' DO WHILE(DATA) IF (NEWIND.LE.1) WRITE (50,*) ETA ENDDO WRITE(50,*) 'THETAS' WRITE(50,*) THETA WRITE(50,*) 'OMEGAS' WRITE(50,*) OMEGA(BLOCK) WRITE(50,*) 'SIGMAS' WRITE(50,*) SIGMA(BLOCK) ENDIF
Using $PRED with NONMEM V.
If you are using $PRED with NONMEM V, then you need to add verbatim code immediately after the $PRED command. In this example we assume 4 thetas, 3 etas and 1 epsilon. If your model has different numbers of thetas, etas and epsilons then the values of NTH, NETA, and NEPS, should be changed respectively. These vales are found in the DATA statement below.
$PRED "FIRST " COMMON /ROCM6/ THETAF(40),OMEGAF(30,30),SIGMAF(30,30) " COMMON /ROCM7/ SETH(40),SEOM(30,30),SESIG(30,30) " COMMON /ROCM8/ OBJECT " DOUBLE PRECISION THETAF, OMEGAF, SIGMAF " DOUBLE PRECISION OBJECT " REAL SETH,SEOM,SESIG " INTEGER J,I " INTEGER MODE " INTEGER NTH,NETA,NEPS " DATA NTH,NETA,NEPS/4,3,1/
After this verbatim code you add all of the abbreviated code needed for the $PRED routine in your model file. After the abbreviated code more verbatim code is needed. This verbatim code should be added before the verbatim code discussed above under point 2. In the example below we are assuming that the model file is named something like 'run1.mod', thus the prefix to the output file names ('cwtab') has the same run number attached to it (i.e. 'cwtab1'). This number should be changed for each new run number (see the line beginning with 'OPEN').
" IF (ICALL.EQ.0) THEN "C open files here, if necessary " OPEN(50,FILE='cwtab1.est') " ENDIF " IF (ICALL.EQ.3) THEN " MODE=0 " CALL PASS(MODE) " MODE=1 " WRITE(50,*) 'ETAS' "20 CALL PASS(MODE) " IF (MODE.EQ.0) GO TO 30 " IF (NEWIND.NE.2) THEN " CALL GETETA(ETA) " WRITE (50,97) (ETA(I),I=1,NETA) " ENDIF " GO TO 20 "30 CONTINUE " WRITE (50,*) 'THETAS' " WRITE (50,99) (THETAF(J),J=1,NTH) " WRITE (50,*) 'OMEGAS' " DO 7000 I=1,NETA "7000 WRITE (50,99) (OMEGAF(I,J),J=1,NETA) " WRITE (50,*) 'SIGMAS' " DO 7999 I=1,NEPS "7999 WRITE (50,99) (SIGMAF(I,J),J=1,NEPS) " ENDIF "99 FORMAT (20E15.7) "98 FORMAT (2I8) "97 FORMAT (10E15.7)
cwtab*.deriv table file.
A special table file needs to be created to print out the values contained in the
COMRES
variables. In addition theID, IPRED, MDV, DV, PRED and RES
data items are needed for the computation of the CWRES. The following code should be added to the NONMEM model file. In this example we continue to assume that we are using a model with three ETA() terms and two EPS() terms, extra terms should be added for new ETA() and EPS() terms in the model file. We also assume the model file is named something like 'run1.mod', thus the prefix to these file names 'cwtab' has the same run number attached to it (i.e. 'cwtab1'). This should be changed for each new run number.$TABLE ID COM(1)=G11 COM(2)=G21 COM(3)=G31 COM(4)=H11 COM(5)=H21 IPRED MDV NOPRINT ONEHEADER FILE=cwtab1.deriv
$ESTIMATION.
To compute the CWRES, the NONMEM model file must use (at least) the FO method with the
POSTHOC
step. If the FO method is used and thePOSTHOC
step is not included then the CWRES values will be equivalent to the WRES. The CWRES calculations are based on the FOCE approximation, and consequently give an idea of the ability of the FOCE method to fit the model to the data. If you are using another method of parameter estimation (e.g. FOCE with interaction), the CWRES will not be calculated based on the same model linearization procedure.
Author(s)
Andrew Hooker
References
Hooker AC, Staatz CE, Karlsson MO. Conditional weighted residuals, an improved model diagnostic for the FO/FOCE methods. PAGE 15 (2006) Abstr 1001 [http://www.page-meeting.org/?abstract=1001].
Hooker AC, Staatz CE and Karlsson MO, Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method, Pharm Res, 24(12): p. 2187-97, 2007, [doi:10.1007/s11095-007-9361-x].
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
## Not run:
## Capture CWRES from cwtab5.est and cwtab5.deriv
cwres <- compute.cwres(5)
mean(cwres)
var(cwres)
## Capture CWRES from cwtab1.est and cwtab1.deriv, do not print out, allow zeroes
cwres <- compute.cwres("1", printToOutFile = FALSE,
onlyNonZero = FALSE)
## Capture CWRES for ID==1
cwres.1 <- compute.cwres("1", id=1)
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Compare WRES, CWRES
xpdb5 <- xpose.calculate.cwres(xpdb5)
cwres.wres.vs.idv(xpdb5)
## End(Not run)
Plot scatterplot matrices of parameters, random parameters or covariates
Description
These functions plot scatterplot matrices of parameters, random parameters and covariates.
Usage
cov.splom(
object,
main = xpose.multiple.plot.title(object = object, plot.text =
"Scatterplot matrix of covariates", ...),
varnames = NULL,
onlyfirst = TRUE,
smooth = TRUE,
lmline = NULL,
...
)
parm.splom(
object,
main = xpose.multiple.plot.title(object = object, plot.text =
"Scatterplot matrix of parameters", ...),
varnames = NULL,
onlyfirst = TRUE,
smooth = TRUE,
lmline = NULL,
...
)
ranpar.splom(
object,
main = xpose.multiple.plot.title(object = object, plot.text =
"Scatterplot matrix of random parameters", ...),
varnames = NULL,
onlyfirst = TRUE,
smooth = TRUE,
lmline = NULL,
...
)
Arguments
object |
An xpose.data object. |
main |
A string giving the plot title or |
varnames |
A vector of strings containing labels for the variables in the scatterplot matrix. |
onlyfirst |
Logical value indicating if only the first row per individual is included in the plot. |
smooth |
A |
lmline |
logical variable specifying whether a linear regression line
should be superimposed over an |
... |
Other arguments passed to |
Details
The parameters or covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$parms
, object@Prefs@Xvardef$ranpar
or
object@Prefs@Xvardef$covariates
, are plotted together as scatterplot
matrices.
A wide array of extra options controlling scatterplot matrices are
available. See xpose.plot.splom
for details.
To control the appearance of the labels and names in the scatterplot matrix
plots you can try varname.cex=0.5
and axis.text.cex=0.5
(this
changes the tick labels and the variable names to be half as large as
normal).
Value
Delivers a scatterplot matrix.
Functions
-
cov.splom()
: A scatterplot matrix of covariates -
parm.splom()
: A scatterplot matrix of parameters -
ranpar.splom()
: A scatterplot matrix of random parameters
Author(s)
Andrew Hooker & Justin Wilkins
See Also
xpose.plot.splom
, xpose.panel.splom
,
splom
, xpose.data-class
,
xpose.prefs-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## A scatterplot matrix of parameters, grouped by sex
parm.splom(xpdb, groups="SEX")
## A scatterplot matrix of ETAs, grouped by sex
ranpar.splom(xpdb, groups="SEX")
## Covariate scatterplots, with text customization
cov.splom(xpdb, varname.cex=0.4, axis.text.cex=0.4, smooth=NULL, cex=0.4)
Function to create mirror plots from the generic Xpose plotting commands
Description
This function takes the generic plotting functions from Xpose 4 and calls them multiple times with the current arguments to the functions, changing the arguments as needed for mirror plotting.
Usage
create.mirror(
fun,
arg.list,
mirror,
plotTitle,
fix.y.limits = TRUE,
fix.x.limits = TRUE,
...
)
Arguments
fun |
The function name that we will call multiple times |
arg.list |
The arguments to that function |
mirror |
The type of mirror plots desired (1 or 3 mirror plots can be created) |
plotTitle |
The title for the plots |
fix.y.limits |
Should we fix all the y axes to be the same? |
fix.x.limits |
Should we fix all the x axes to be the same? |
... |
additional arguments passed to the function. |
Details
mostly and internal function for Xpose
Value
a list of plots, or NULL.
Author(s)
Andrew Hooker
See Also
xpose.plot.default
,
xpose.plot.histogram
, xpose.plot.qq
,
xpose.plot.splom
Create xpose.multiple.plot class.
Description
Creates a class for viewing and plotting xpose plots with multiple plots on the same page or multiple pages.
Usage
create.xpose.plot.classes()
Author(s)
Niclas Jonsson and Andrew C. Hooker
This function creates the Xpose data classes ("xpose.data" and "xpose.prefs")
Description
This function defines and sets the Xpose data classes.
Usage
createXposeClasses(nm7 = F)
Arguments
nm7 |
|
Note
All the default settings are defined in this function.
Author(s)
Niclas Jonsson and Andrew C. Hooker
See Also
xpose.data-class
,xpose.prefs-class
Histogram of conditional weighted residuals (CWRES), for Xpose 4
Description
This is a histogram of the distribution of conditional weighted residuals
(CWRES) in the dataset, a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.histogram
function.
Usage
cwres.dist.hist(object, ...)
Arguments
object |
An xpose.data object. |
... |
Other arguments passed to |
Details
Displays a histogram of the conditional weighted residuals (CWRES).
Value
Returns a histogram of conditional weighted residuals (CWRES).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.histogram
,
xpose.panel.histogram
, histogram
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## A vanilla plot
cwres.dist.hist(xpdb)
Quantile-quantile plot of conditional weighted residuals (CWRES), for Xpose 4
Description
This is a QQ plot of the distribution of conditional weighted residuals
(CWRES) in the dataset, a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.qq
function.
Usage
cwres.dist.qq(object, ...)
Arguments
object |
An xpose.data object. |
... |
Other arguments passed to |
Details
Displays a QQ plot of the conditional weighted residuals (CWRES).
Value
Returns a QQ plot of conditional weighted residuals (CWRES).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.qq
, xpose.panel.qq
,
qqmath
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
cwres.dist.qq(simpraz.xpdb)
Conditional Weighted residuals (CWRES) plotted against covariates, for Xpose 4
Description
This creates a stack of plots of conditional weighted residuals (CWRES)
plotted against covariates, and is a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
and
xpose.plot.histogram
functions. Most of the options take their
default values from xpose.data object but may be overridden by supplying
them as arguments.
Usage
cwres.vs.cov(
object,
ylb = "CWRES",
smooth = TRUE,
type = "p",
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
smooth |
A |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots and histograms are
available. See xpose.plot.default
and
xpose.plot.histogram
for details.
Value
Returns a stack of xyplots and histograms of CWRES versus covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.plot.histogram
, xyplot
,
histogram
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
cwres.vs.cov(xpdb)
Population conditional weighted residuals (CWRES) plotted against the independent variable (IDV) for Xpose 4
Description
This is a plot of population conditional weighted residuals (CWRES) vs the
independent variable (IDV), a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
Usage
cwres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
A |
... |
Other arguments passed to |
Details
Conditional weighted residuals (CWRES) are plotted against the independent
variable, as specified in object@Prefs@Xvardef$idv
.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns an xyplot of CWRES vs IDV.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## A vanilla plot
cwres.vs.idv(xpdb)
## A conditioning plot
cwres.vs.idv(xpdb, by="HCTZ")
Box-and-whisker plot of conditional weighted residuals vs the independent variable for Xpose 4
Description
This creates a box and whisker plot of conditional weighted residuals
(CWRES) vs the independent variable (IDV), and is a specific function in
Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.bw
function. Most of the options take their default values
from xpose.data object but may be overridden by supplying them as arguments.
Usage
cwres.vs.idv.bw(object, ...)
Arguments
object |
An xpose.data object. |
... |
Other arguments passed to |
Details
This creates a box and whisker plot of conditional weighted residuals
(CWRES) vs the independent variable (IDV), and is a specific function in
Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.bw
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling bwplots are available. See
xpose.plot.bw
and xpose.panel.bw
for details.
Value
Returns a stack of box-and-whisker plots of CWRES vs IDV.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.bw
, xpose.panel.bw
,
bwplot
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
cwres.vs.idv.bw(xpdb)
Population conditional weighted residuals (CWRES) plotted against population predictions (PRED) for Xpose 4
Description
This is a plot of population conditional weighted residuals (cwres) vs
population predictions (PRED), a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
function.
Most of the options take their default values from xpose.data object but may
be overridden by supplying them as arguments.
Usage
cwres.vs.pred(object, abline = c(0, 0), smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns an xyplot of CWRES vs PRED.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
cwres.vs.pred(xpdb)
## A conditioning plot
cwres.vs.pred(xpdb, by="HCTZ")
Box-and-whisker plot of conditional weighted residuals vs population predictions for Xpose 4
Description
This creates a box and whisker plot of conditional weighted residuals
(CWRES) vs population predictions (PRED), and is a specific function in
Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.bw
function. Most of the options take their default values
from xpose.data object but may be overridden by supplying them as arguments.
Usage
cwres.vs.pred.bw(object, ...)
Arguments
object |
An xpose.data object. |
... |
Other arguments passed to |
Details
This creates a box and whisker plot of conditional weighted residuals
(CWRES) vs population predictions (PRED), and is a specific function in
Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.bw
function. Most of the options take their default values
from xpose.data object but may be overridden by supplying them as arguments.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling bwplots are available. See
xpose.plot.bw
and xpose.panel.bw
for details.
Value
Returns a box-and-whisker plot of CWRES vs PRED.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.bw
, xpose.panel.bw
,
bwplot
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
cwres.vs.pred.bw(xpdb)
Weighted residuals (WRES) and conditional WRES (CWRES) plotted against the independent variable (IDV)
Description
A graphical comparison between the WRES and CWRES as plotted against the
independent variable. Conditional weighted residuals (CWRES) require
some extra steps to calculate. Either add CWRES
to your NONMEM
table files or compute them using the information proveded in
compute.cwres
. A wide array of extra options controlling
xyplots are available. See xpose.plot.default
and
xpose.panel.default
for details.
Usage
cwres.wres.vs.idv(
object,
ylb = "Residuals",
abline = c(0, 0),
smooth = TRUE,
scales = list(),
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
abline |
Vector of arguments to the |
smooth |
A |
scales |
scales is passed to |
... |
Other arguments passed to |
Value
A compound xyplot.
Author(s)
Niclas Jonsson & Andrew Hooker
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
,
compute.cwres
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
cwres.wres.vs.idv(simpraz.xpdb)
Weighted residuals (WRES) and conditional WRES (CWRES) plotted against the population predictions (PRED)
Description
Graphically compares WRES and CWRES as plotted against the
population predictions.Conditional weighted residuals (CWRES) require
some extra steps to calculate. Either add CWRES
to your NONMEM
table files or compute them using the information proveded in
compute.cwres
. A wide array of extra options controlling
xyplots are available. See xpose.plot.default
and
xpose.panel.default
for details.
Usage
cwres.wres.vs.pred(
object,
ylb = "Residuals",
abline = c(0, 0),
smooth = TRUE,
scales = list(),
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
abline |
Vector of arguments to the |
smooth |
A |
scales |
scales is passed to |
... |
Other arguments passed to |
Value
A compound xyplot.
Author(s)
Niclas Jonsson & Andrew Hooker
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
,
compute.cwres
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
cwres.wres.vs.pred(simpraz.xpdb)
Change in individual objective function value vs. covariate value.
Description
Change in individual objective function value vs. covariate value.
Usage
dOFV.vs.cov(
xpdb1,
xpdb2,
covariates = xvardef("covariates", xpdb1),
ylb = expression(paste(Delta, OFV[i])),
main = "Default",
smooth = TRUE,
abline = c(0, 0),
ablcol = "grey",
abllwd = 2,
abllty = "dashed",
max.plots.per.page = 1,
...
)
Arguments
xpdb1 |
Xpose data object for first NONMEM run |
xpdb2 |
Xpose data object for second NONMEM run |
covariates |
Covariates to plot against |
ylb |
Label for Y axis. |
main |
Title of plot. |
smooth |
Should we have a smooth? |
abline |
abline description. |
ablcol |
color of abline |
abllwd |
line width of abline |
abllty |
type of abline |
max.plots.per.page |
Plots per page. |
... |
additional arguments to function |
Author(s)
Andrew C. Hooker
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## read in table files
xpdb8 <- xpose.data(8)
xpdb11 <- xpose.data(11)
## Make some plots
dOFV.vs.cov(xpdb8,xpdb11,"AGE")
dOFV.vs.cov(xpdb8,xpdb11,c("AGE","SECR"))
## End(Not run)
Change in Objective function value vs. removal of individuals.
Description
A plot showing the most and least influential individuals in determining a drop in OFV between two models.
Usage
dOFV.vs.id(
xpdb1,
xpdb2,
sig.drop = -3.84,
decrease.label.number = 3,
increase.label.number = 3,
id.lab.cex = 0.6,
id.lab.pos = 2,
type = "o",
xlb = "Number of subjects removed",
ylb = expression(paste(Delta, "OFV")),
main = "Default",
sig.line.col = "red",
sig.line.lty = "dotted",
tot.line.col = "grey",
tot.line.lty = "dashed",
key = list(columns = 1, lines = list(pch = c(super.sym$pch[1:2], NA, NA), type =
list("o", "o", "l", "l"), col = c(super.sym$col[1:2], sig.line.col, tot.line.col),
lty = c(super.sym$lty[1:2], sig.line.lty, tot.line.lty)), text =
list(c(expression(paste(Delta, OFV[i] < 0)), expression(paste(Delta, OFV[i] > 0)),
expression(paste("Significant ", Delta, OFV)), expression(paste("Total ", Delta,
OFV)))), corner = c(0.95, 0.5), border = T),
...
)
Arguments
xpdb1 |
Xpose data object for first NONMEM run ("new" run) |
xpdb2 |
Xpose data object for Second NONMEM run ("reference" run) |
sig.drop |
What is a significant drop of OFV? |
decrease.label.number |
How many points should bw labeled with ID values for those IDs with a drop in iOFV? |
increase.label.number |
How many points should bw labeled with ID values for those IDs with an increase in iOFV? |
id.lab.cex |
Size of ID labels. |
id.lab.pos |
ID label position. |
type |
Type of lines. |
xlb |
X-axis label. |
ylb |
Y-axis label. |
main |
Title of plot. |
sig.line.col |
Significant OFV drop line color. |
sig.line.lty |
Significant OFV drop line type. |
tot.line.col |
Total OFV drop line color. |
tot.line.lty |
Total OFV drop line type. |
key |
Legend for plot. |
... |
Additional arguments to function. |
Author(s)
Andrew C. Hooker
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
library(xpose4)
## first make sure that the iofv values are read into xpose
cur.dir <- getwd()
setwd(paste(cur.dir,"/LAG_TIME",sep=""))
xpdb1 <- xpose.data(1)
setwd(paste(cur.dir,"/TRANSIT_MODEL",sep=""))
xpdb2 <- xpose.data(1)
setwd(cur.dir)
## then make the plot
dOFV.vs.id(xpdb1,xpdb2)
## End(Not run)
Change in individual objective function value 1 vs. individual objective function value 2.
Description
Change in individual objective function value 1 vs. individual objective
Usage
dOFV1.vs.dOFV2(
xpdb1,
xpdb2,
xpdb3,
ylb = expression(paste(Delta, OFV1[i])),
xlb = expression(paste(Delta, OFV2[i])),
main = "Default",
smooth = NULL,
abline = c(0, 1),
ablcol = "grey",
abllwd = 2,
abllty = "dashed",
lmline = TRUE,
...
)
Arguments
xpdb1 |
Xpose data object for first NONMEM run |
xpdb2 |
Xpose data object for second NONMEM run |
xpdb3 |
Xpose data object for third NONMEM run |
ylb |
Label for Y axis. |
xlb |
Label for X axis. |
main |
Title of plot. |
smooth |
Should we have a smooth? |
abline |
abline description. |
ablcol |
color of abline |
abllwd |
line width of abline |
abllty |
type of abline |
lmline |
Linear regression line? |
... |
Additional arguments to function. |
Author(s)
Andrew C. Hooker
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## read in table files
xpdb8 <- xpose.data(8)
xpdb8 <- xpose.data(9)
xpdb11 <- xpose.data(11)
## Make the plot
dOFV.vs.cov(xpdb8,xpdb9,xpdb11)
## End(Not run)
Check through the source dataset to detect problems
Description
This function graphically "checks out" the dataset to identify errors or inconsistencies.
Usage
data.checkout(
obj = NULL,
datafile = ".ask.",
hlin = -99,
dotcol = "black",
dotpch = 16,
dotcex = 1,
idlab = "ID",
csv = NULL,
main = "Default",
...
)
Arguments
obj |
NULL or an xpose.data object. |
datafile |
A data file, suitable for import by
|
hlin |
An integer, specifying the line number on which the column headers appear. |
dotcol |
Colour for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots. |
dotpch |
Plotting character for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots. |
dotcex |
Relative scaling for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots. |
idlab |
The ID column label in the dataset. Input as a text string. |
csv |
Is the data file in CSV format (comma separated values)? If the
value is |
main |
The title to the plot. "default" means that Xpose creates a title. |
... |
Other arguments passed to |
Details
This function creates a series of dotplots
, one for each variable in
the dataset, against individual ID. Outliers and clusters may easily be
detected in this manner.
Value
A stack of dotplots.
Author(s)
Niclas Jonsson, Andrew Hooker & Justin Wilkins
See Also
dotplot
, xpose.prefs-class
,
read.table
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run, table and data files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
data.checkout(xpdb5, datafile = "mydata.dta")
data.checkout(datafile = "mydata.dta")
## End(Not run)
Extract or assign data from an xpose.data object.
Description
Extracts or assigns the data from the Data or SData slots in an "xpose.data" object.
Usage
Data(object, inclZeroWRES = FALSE, onlyfirst = FALSE, subset = NULL)
Data(object, quiet = TRUE, keep.structure = F) <- value
SData(
object,
inclZeroWRES = FALSE,
onlyfirst = FALSE,
subset = NULL,
samp = NULL
)
SData(object) <- value
Arguments
object |
An "xpose.data" object |
inclZeroWRES |
Logical value indicating whether rows with WRES==0 should be included in the extracted data. |
onlyfirst |
Logical value indicating whether only the first line per individual should be included in the extracted data. |
subset |
Expression with which the extracted data should be subset (see
|
quiet |
|
keep.structure |
|
value |
An R data.frame. |
samp |
An integer between 1 and object@Nsim
(see |
Details
When using Data to assign a data.frame to the Data slot in the "xpose.data" object a number of things happen:
Each column in the data.frame is checked and set to factor if the number of
unique values are less than the value of Cat.levels (see
xpose.prefs-class
).
It is checked which of the predefined xpose data variables that exists in the data.frame. The variable definitions that does not exist are set to NULL.
The column identified by the dv
xpose variable definition, is checked
and set to factor if the number of unique values are less than or equal to
the DV.Cat.levels (see xpose.prefs-class
).
Finally, each column name in the data.frame is checked for a label (see
xpose.prefs-class
). If it is non-existent, the label is set to
the column name.
When SData is used to assign a data.frame to the SData slot it is first
checked that the number of rows in the SData data.frame is an even multiple
of the number of rown in Data. Next, each column in the SData data.frame is
assigned the same class as the corresponding column in the Data data.frame
(it is required that the columns are the same in Data and SData). Finally,
an extra column, "iter", is added to SData, which indicates the iteration
number that each row belongs to. At the same time, the Nsim slot of the
"xpose.data" object is set to the number of iterations (see
nsim
).
Value
Returns a data.frame from the Data or SData slots, excluding rows as indicated by the arguments.
Functions
-
Data()
: Extract data -
Data(object, quiet = TRUE, keep.structure = F) <- value
: assign data -
SData()
: extract simulated data -
SData(object) <- value
: assign simulated data
Author(s)
Niclas Jonsson
See Also
xpose.data-class
,xpose.prefs-class
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
xpdb <- simpraz.xpdb
## Extract data
my.dataframe <- Data(xpdb)
## Assign data
Data(xpdb) <- my.dataframe
## Extract simulated data
my.simulated.dataframe <- SData(xpdb)
## Assign simulated data
SData(xpdb) <- my.simulated.dataframe
Prints the contents of an Xpose data object
Description
These functions print a summary of the specified Xpose object to the R console.
Usage
db.names(object)
Arguments
object |
An |
Details
These functions return a detailed summary of the contents of a specified
xpose.data
object.
Value
A detailed summary of the contents of a specified
xpose.data
object.
Author(s)
Niclas Jonsson & Justin Wilkins
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
db.names(simpraz.xpdb)
Observations (DV), individual predictions (IPRED) and population predictions (IPRED) plotted against the independent variable (IDV), for Xpose 4
Description
This is a compound plot consisting of plots of observations (DV), individual
predictions (IPRED), and population predictions (PRED) against the
independent variable (IDV), a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function.
Usage
dv.preds.vs.idv(
object,
ylb = "Observations/Predictions",
layout = c(3, 1),
smooth = TRUE,
scales = list(),
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
layout |
A list controlling the number of columns and rows in a compound plot. The default is 2 columns and 1 row. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
scales |
A list to be used for the |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns a compound plot comprising plots of observations (DV), individual predictions (IPRED), and population predictions (PRED) against the independent variable (IDV).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
dv.vs.idv
, ipred.vs.idv
,
pred.vs.idv
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
dv.preds.vs.idv(xpdb)
Observations (DV) plotted against the independent variable (IDV) for Xpose 4
Description
This is a plot of observations (DV) vs the independent variable (IDV), a
specific function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
Usage
dv.vs.idv(object, smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplot
are
available. See xpose.plot.default
and
xpose.panel.default
for details.
Value
Returns an xyplot of DV vs IDV.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
dv.vs.idv(xpdb)
## A conditioning plot
dv.vs.idv(xpdb, by="HCTZ")
## Logarithmic Y-axis
dv.vs.idv(xpdb, logy=TRUE)
Observations (DV) plotted against individual predictions (IPRED) for Xpose 4
Description
This is a plot of observations (DV) vs individual predictions (IPRED), a
specific function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
Usage
dv.vs.ipred(object, abline = c(0, 1), smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplot
are
available. See xpose.plot.default
and
xpose.panel.default
for details.
Value
Returns an xyplot of DV vs IPRED.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
dv.vs.ipred(xpdb)
## A conditioning plot
dv.vs.ipred(xpdb, by="HCTZ")
Dependent variable vs individual predictions, conditioned on covariates, for Xpose 4
Description
This is a plot of dependent variable (DV) vs individual predictions (IPRED)
conditioned by covariates, a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
Usage
dv.vs.ipred.by.cov(
object,
covs = "Default",
abline = c(0, 1),
smooth = TRUE,
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
covs |
A vector of covariates to use in the plot. If "Default" the
the covariates defined in |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling xyplot
are
available. See xpose.plot.default
and
xpose.panel.default
for details.
Value
Returns a stack of xyplot
s of DV vs IPRED, conditioned on
covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
dv.vs.ipred
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
dv.vs.ipred.by.cov(simpraz.xpdb, covs=c("HCTZ","WT"), max.plots.per.page=2)
Dependent variable vs individual predictions, conditioned on independent variable, for Xpose 4
Description
This is a plot of the dependent variable (DV) vs individual predictions
(IPRED) conditioned by the independent variable, a specific function in
Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
Usage
dv.vs.ipred.by.idv(object, abline = c(0, 1), smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplot
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns a stack of xyplots of DV vs IPRED, conditioned on the independent variable.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
dv.vs.ipred
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
dv.vs.ipred.by.idv(simpraz.xpdb)
Observations (DV) plotted against population predictions (PRED) for Xpose 4
Description
This is a plot of observations (DV) vs population predictions (PRED), a
specific function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
Usage
dv.vs.pred(object, abline = c(0, 1), smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplot
s are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns an xyplot of DV vs PRED.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## A vanilla plot
dv.vs.pred(xpdb)
## A conditioning plot
dv.vs.pred(xpdb, by="HCTZ")
Dependent variable vs population predictions, conditioned on covariates, for Xpose 4
Description
This is a plot of the dependent variable (DV) vs population predictions
(PRED) conditioned by covariates, a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
function.
Most of the options take their default values from xpose.data object but may
be overridden by supplying them as arguments.
Usage
dv.vs.pred.by.cov(
object,
covs = "Default",
abline = c(0, 1),
smooth = TRUE,
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
covs |
A vector of covariates to use in the plot. If "Default" the
the covariates defined in |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling xyplot
s are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns a stack of xyplots of DV vs PRED, conditioned on covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
dv.vs.pred
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
dv.vs.pred.by.cov(simpraz.xpdb, covs=c("HCTZ","WT"), max.plots.per.page=2)
Dependent variable vs population predictions, conditioned on independent variable, for Xpose 4
Description
This is a plot of the dependent variable (DV) vs population predictions
(PRED) conditioned by the independent variable, a specific function in Xpose
4. It is a wrapper encapsulating arguments to the xpose.plot.default
function. Most of the options take their default values from xpose.data
object but may be overridden by supplying them as arguments.
Usage
dv.vs.pred.by.idv(object, abline = c(0, 1), smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplot
s are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns a stack of xyplots of DV vs PRED, conditioned on the independent variable.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
dv.vs.pred
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
dv.vs.pred.by.idv(simpraz.xpdb)
Observations (DV) are plotted against individual predictions (IPRED) and population predictions (PRED), for Xpose 4
Description
This is a compound plot consisting of plots of observations (DV) against
individual predictions (IPRED) and population predictions (PRED), a specific
function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function.
Usage
dv.vs.pred.ipred(
object,
xlb = "Predictions",
layout = c(2, 1),
abline = c(0, 1),
lmline = TRUE,
smooth = NULL,
scales = list(),
...
)
Arguments
object |
An xpose.data object. |
xlb |
A string giving the label for the x-axis. |
layout |
A list giving the layout of the graphs on the plot, in columns and rows. |
abline |
Vector of arguments to the |
lmline |
logical variable specifying whether a linear regression line
should be superimposed over an |
smooth |
|
scales |
A list to be used for the |
... |
Other arguments passed to |
Details
Plots of DV vs PRED and IPRED are presented side by side for comparison.
A wide array of extra options controlling xyplot
s are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns a compound plot comprising plots of observations (DV) against individual predictions (IPRED) and population predictions (PRED).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
dv.vs.pred
, dv.vs.ipred
,
xpose.plot.default
, xpose.panel.default
,
xyplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
dv.vs.pred.ipred(simpraz.xpdb)
Exports Xpose graphics settings to a file.
Description
This function exports graphics settings for a specified Xpose data object to a file.
Usage
export.graph.par(object)
xpose.write(object, file = "xpose.ini")
Arguments
object |
An |
file |
The file to contain exported Xpose settings. |
Details
This function exports the graphics settings (contents of
object@Prefs@Graph.prefs) for a given xpose.data
object to a file,
typically 'xpose.ini'. It is a wrapper for xpose.write
. Note that the
file format is not the same as is used in
import.variable.definitions
and
export.variable.definitions
.
Value
Null.
Functions
-
xpose.write()
: export graphics settings for a specified Xpose data object to a file.
Author(s)
Niclas Jonsson & Justin Wilkins
See Also
import.graph.par
, xpose.prefs-class
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## For a filename prompt
export.graph.par(xpdb5)
## Command-line driven
xpose.write(xpdb5, "c:/XposeSettings/mytheme.ini")
## End(Not run)
Exports Xpose variable definitions to a file from an Xpose data object.
Description
This function exports variable definitions for a specified Xpose data object to a file.
Usage
export.variable.definitions(object, file = "")
Arguments
object |
An |
file |
A file name as a string. |
Details
This function exports variable definitions (contents of object@Prefs@Xvardef)
for a given xpose.data
object to a file, typically
'xpose.vardefs.ini'. Note that file format is not the same as used for
graphics settings. It is a wrapper for the R function dput
.
Value
Null.
Author(s)
Niclas Jonsson & Justin Wilkins
See Also
import.variable.definitions
,
xpose.prefs-class
dput
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
od = setwd(tempdir()) # move to a temp directory
(cur.files <- dir()) # current files in temp directory
export.variable.definitions(simpraz.xpdb,file="xpose.vardefs.ini")
(new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here?
file.remove(new.files) # remove this file
setwd(od) # restore working directory
Internal functions for the VPC
Description
Internal functions for the VPC
Usage
find.right.table(
object,
inclZeroWRES,
onlyfirst,
samp,
PI.subset,
subscripts,
PI.bin.table,
panel.number,
...
)
setup.PPI(PIlimits, PI.mirror, tmp.table, ...)
get.polygon.regions(PPI, PI.mirror, ...)
Arguments
object |
Xpose object |
inclZeroWRES |
Include row sof data with WRES=0 |
onlyfirst |
Use only first data for each individual |
samp |
sample number |
PI.subset |
Prediction interval subset |
subscripts |
subscripts |
PI.bin.table |
prediction interval binning table |
panel.number |
panel number |
... |
Extra options passed to arguments |
PIlimits |
Prediction interval limits |
PI.mirror |
Prediction interval mirror |
tmp.table |
temporary table |
PPI |
Plot prediction intervals |
Value
Returned to xpose.VPC
Structured goodness of fit diagnostics.
Description
This is a template function for creating structured goodness of fit diagnostics using the functions in the Xpose specific library.
Usage
gof(
runno = NULL,
save = FALSE,
onefile = FALSE,
saveType = "pdf",
pageWidth = 7.6,
pageHeight = 4.9,
structural = TRUE,
residual = TRUE,
covariate = FALSE,
iiv = FALSE,
iov = FALSE,
all = FALSE,
myTrace = xpPage
)
Arguments
runno |
The run number fo Xpose to identify the appropriate files to
read. In addition |
save |
Logical. |
onefile |
Logical. |
saveType |
The type of graphics file to produce if |
pageWidth |
The width of the graphics device in inches. |
pageHeight |
The height of the graphics device in inches. |
structural |
Logical. |
residual |
Logical. |
covariate |
Logical. |
iiv |
Logical. |
iov |
Logical. |
all |
Logical. |
myTrace |
|
Details
The gof
function is provided as a template to facilitate the
(structured) use of the functions in the Xpose specific library. Xpose
specific is extensively described in the 'Xpose Bestiary'.
The function can be renamed so that multiple scripts can be used in parallel.
The function is set up to make it easy to display plots on screen as well as to save them in files. In the latter case, plots are save in a sub-directory called 'Plots'.
The arguments structural
, residual
, covariate
,
iiv
, iov
and all
are just "switches" to different parts
of the code (if-blocks). These blocks can be removed or the default values
of the arguments changed to better suit the needs of the user.
It is also possible to add tracing information to the produced plots. This
is done via the myTrace
argument. A non-NULL value should be a
function that returns a panel.text
object. The default is the
xpPage
function that will put a string concatenated from the device
name, function name, working directory and date, in small, faint grey, font
at the bottom of each graph page. Note that the user need to add
page=myTrace
as an argument to the Xpose functions for this to have
an effect.
The function calls a support function called gofSetup
, which is
responsible for setting up the graphics device and determining the file
names for saved graphs.
Value
Does not return anything unless the user specify a return value.
Author(s)
E. Niclas Jonsson, Mats Karlsson and Andrew Hooker
See Also
Other generic functions:
xpose.multiple.plot
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## This is an example of how the function may be setup by a user.
library(xpose4)
mygof <- gof
fix(mygof)
myggof <- function (runno = NULL, save = FALSE, onefile = FALSE, saveType = "pdf",
pageWidth = 7.6, pageHeight = 4.9, structural = TRUE, residual = TRUE,
covariate = FALSE, iiv = FALSE, iov = FALSE, all = FALSE, myTrace=xpPage) {
gofSetup(runno, save, onefile, saveType, pageWidth, pageHeight)
xpdb <- xpose.data(runno)
if (structural || all) {
xplot <- dv.vs.pred.ipred(xpdb, page = myPage)
print(xplot)
}
if (residual || all) {
xplot <- absval.wres.vs.pred(xpdb, page = myPage)
print(xplot)
}
if (covariate || all) {
}
if (iiv || all) {
}
if (iov || all) {
}
if (save) dev.off()
invisible()
}
## The function can then be execute, e.g.:
mygof(1)
## End(Not run)
Imports Xpose graphics settings from a file to an Xpose data object.
Description
This function imports graphics settings for a specified Xpose data object from a file.
Usage
import.graph.par(object, classic = FALSE)
Arguments
object |
An |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
Details
This function imports graphics settings (contents of
object@Prefs@Graph.prefs) for a given xpose.data
object from a file,
typically 'xpose.ini'. It is a wrapper for xpose.read
. It returns an
xpose.data
object. Note that the file format is not the same as is
used in import.variable.definitions
and
export.variable.definitions
.
Value
An xpose.data
object (classic = FALSE) or null
(classic = TRUE).
Author(s)
Niclas Jonsson & Justin Wilkins
See Also
export.graph.par
, xpose.prefs-class
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Import graphics preferences you saved earlier using export.graph.par
xpdb5 <- import.graph.par(xpdb5)
## Command-line driven
xpdb5 <- xpose.read(xpdb5, "c:/XposeSettings/mytheme.ini")
## End(Not run)
Imports Xpose variable definitions from a file to an Xpose data object.
Description
This function imports variable definitions for a specified Xpose data object from a file.
Usage
import.variable.definitions(object, classic = FALSE)
Arguments
object |
An |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
Details
This function imports variable definitions (contents of object@Prefs@Xvardef)
for a given xpose.data
object from a file, typically
'xpose.vardefs.ini'. It returns an xpose.data
object. Note that file
format is not the same as used for graphics settings. It is a wrapper for
the R function dget
.
Value
An xpose.data
object (classic == FALSE) or null
(classic == TRUE).
Author(s)
Niclas Jonsson & Justin Wilkins
See Also
export.variable.definitions
,
xpose.prefs-class
dget
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
xpdb5 <- import.variable.definitions(xpdb5)
## End(Not run)
Observations (DV), individual predictions (IPRED) and population predictions (PRED) are plotted against the independent variable for every individual in the dataset, for Xpose 4
Description
This is a compound plot consisting of plots of observations (DV), individual
predictions (IPRED) and population predictions (PRED) against the
independent variable for every individual in the dataset, a specific
function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function.
Usage
ind.plots(
object,
y.vals = c(xvardef("dv", new.obj), xvardef("ipred", new.obj), xvardef("pred", new.obj)),
x.vals = xvardef("idv", new.obj),
id.vals = xvardef("id", new.obj),
key.text = y.vals,
main = "Default",
key = "Default",
xlb = xlabel(xvardef("idv", object), object),
ylb = NULL,
layout = c(4, 4),
inclZeroWRES = FALSE,
subset = xsubset(object),
type = "o",
grid = FALSE,
col = c(1, 2, 4),
lty = c(0, 1, 3),
lwd = c(1, 1, 1),
pch = c(21, 32, 32),
cex = c(0.7, 0.7, 0.7),
fill = c("lightgrey", 0, 0),
prompt = FALSE,
mirror = NULL,
main.cex = 0.9,
max.plots.per.page = 1,
pch.ip.sp = c(21, 19, 18),
cex.ip.sp = c(0.7, 0.4, 0.4),
y.vals.subset = NULL,
...
)
Arguments
object |
An xpose.data object. |
y.vals |
The Y values to use. |
x.vals |
The X values to use. |
id.vals |
The ID values to use. |
key.text |
The text in the legend to use. |
main |
The title of the plot. If |
key |
Create a legend. |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
layout |
A list giving the layout of the graphs on the plot, in columns and rows. The default is 4x4. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. The default is TRUE. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
type |
1-character string giving the type of plot desired. The default
is "o", for over-plotted points and lines. See
|
grid |
Should the plots have a grid in each plot? |
col |
A list of three elements, giving plotting characters for observations, individual predictions, and population predictions, in that order. The default is black for DV, red for individual predictions, and blue for population predictions. |
lty |
A list of three elements, giving line types for observations, individual predictions, and population predictions, in that order. |
lwd |
A list of three elements, giving line widths for observations, individual predictions, and population predictions, in that order. |
pch |
A list of three elements, giving plotting characters for observations, individual predictions, and population predictions, in that order. |
cex |
A list of three elements, giving relative point size for observations, individual predictions, and population predictions, in that order. The default is c(0.7,0.7,0.7). |
fill |
Fill the circles in the points? |
prompt |
Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is TRUE. |
mirror |
Mirror plots are not yet implemented in this function and this
argument must contain a value of |
main.cex |
The size of the title. |
max.plots.per.page |
Maximum number of plots per page. |
pch.ip.sp |
If there is a panel with just one observation then this specifies the type of points for the DV, IPRED and PRED respectively. |
cex.ip.sp |
If there is a panel with just one observation then this specifies the size of the points for the DV, IPRED and PRED respectively. |
y.vals.subset |
Used to subset on the DV, IPRED and PRED variables
separately. Either |
... |
Other arguments passed to |
Details
Matrices of individual plots are presented for comparison and closer inspection.
Value
Returns a stack of plots observations (DV) against individual predictions (IPRED) and population predictions (PRED).
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
strip.default
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## Monochrome, suitable for manuscript or report
ind.plots(xpdb,
subset="ID>40 & ID<57",
col=c(1,1,1),
lty=c(0,2,3),
strip=function(..., bg)
strip.default(..., bg="grey"))
## Not run:
## IF we simulate in NONMEM using a dense grid of time points
## and all non-observed DV items are equal to zero.
ind.plots(xpdb,inclZeroWRES=TRUE,y.vals.subset=c("DV!=0","NULL","NULL"))
# to plot individual plots of multiple variables
ind.plots(xpdb,subset="FLAG==1")
ind.plots(xpdb,subset="FLAG==2")
## End(Not run)
Histograms of weighted residuals for each individual in an Xpose data object, for Xpose 4
Description
This is a compound plot consisting of histograms of the distribution of
weighted residuals (any weighted residual available from NONMEM) for every
individual in the dataset. It is a wrapper encapsulating arguments to the
xpose.plot.histogram
function.
Usage
ind.plots.cwres.hist(object, wres = "cwres", ...)
ind.plots.wres.hist(
object,
main = "Default",
wres = "wres",
ylb = NULL,
layout = c(4, 4),
inclZeroWRES = FALSE,
subset = xsubset(object),
scales = list(cex = 0.7, tck = 0.5),
aspect = "fill",
force.by.factor = TRUE,
ids = F,
as.table = TRUE,
hicol = object@Prefs@Graph.prefs$hicol,
hilty = object@Prefs@Graph.prefs$hilty,
hilwd = object@Prefs@Graph.prefs$hilwd,
hidcol = object@Prefs@Graph.prefs$hidcol,
hidlty = object@Prefs@Graph.prefs$hidlty,
hidlwd = object@Prefs@Graph.prefs$hidlwd,
hiborder = object@Prefs@Graph.prefs$hiborder,
prompt = FALSE,
mirror = NULL,
main.cex = 0.9,
max.plots.per.page = 1,
...
)
Arguments
object |
An xpose.data object. |
wres |
Which weighted residual should we plot? Defaults to the WRES. |
... |
Other arguments passed to |
main |
The title of the plot. If |
ylb |
A string giving the label for the y-axis. |
layout |
A list giving the layout of the graphs on the plot, in columns and rows. The default is 4x4. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. The default is FALSE. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
scales |
|
aspect |
|
force.by.factor |
|
ids |
|
as.table |
|
hicol |
the fill colour of the histogram - an integer or string. The
default is blue (see |
hilty |
the border line type of the histogram - an integer. The
default is 1 (see |
hilwd |
the border line width of the histogram - an integer. The
default is 1 (see |
hidcol |
the fill colour of the density line - an integer or string.
The default is black (see |
hidlty |
the border line type of the density line - an integer. The
default is 1 (see |
hidlwd |
the border line width of the density line - an integer. The
default is 1 (see |
hiborder |
the border colour of the histogram - an integer or string.
The default is black (see |
prompt |
Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is FALSE. |
mirror |
Mirror plots are not yet implemented in this function and this
argument must contain a value of |
main.cex |
The size of the title. |
max.plots.per.page |
Maximum number of plots per page |
Details
Matrices of histograms of weighted residuals in each included individual are
displayed. ind.plots.cwres.hist
is just a wrapper for
ind.plots.wres.hist(object,wres="cwres").
Value
Returns a compound plot comprising histograms of weighted residual conditioned on individual.
Functions
-
ind.plots.cwres.hist()
: Histograms of conditional weighted residuals for each individual
Author(s)
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins & Andrew Hooker
See Also
xpose.plot.histogram
,
xpose.panel.histogram
, histogram
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## A plot of the first 16 individuals
ind.plots.cwres.hist(xpdb, subset="ID<18")
Quantile-quantile plots of weighted residuals for each individual in an Xpose data object, for Xpose 4
Description
This is a compound plot consisting of QQ plots of the distribution of
weighted residuals (any weighted residual produced by NONMEM) for every
individual in the dataset. The function is a wrapper encapsulating
arguments to the xpose.plot.qq
function.
Usage
ind.plots.cwres.qq(object, wres = "cwres", ...)
ind.plots.wres.qq(
object,
main = "Default",
wres = "wres",
layout = c(4, 4),
inclZeroWRES = FALSE,
subset = xsubset(object),
scales = list(cex = 0.7, tck = 0.5),
aspect = "fill",
force.by.factor = TRUE,
ids = F,
as.table = TRUE,
type = "o",
pch = object@Prefs@Graph.prefs$pch,
col = object@Prefs@Graph.prefs$col,
cex = object@Prefs@Graph.prefs$cex,
abllty = object@Prefs@Graph.prefs$abllty,
abllwd = object@Prefs@Graph.prefs$abllwd,
ablcol = object@Prefs@Graph.prefs$ablcol,
prompt = FALSE,
main.cex = 0.9,
mirror = NULL,
max.plots.per.page = 1,
...
)
Arguments
object |
An xpose.data object. |
wres |
Which weighted residual should we plot? Defaults to the WRES. |
... |
Other arguments passed to |
main |
The title of the plot. If |
layout |
A list giving the layout of the graphs on the plot, in columns and rows. The default is 4x4. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. The default is FALSE. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
scales |
See |
aspect |
See |
force.by.factor |
See |
ids |
See |
as.table |
See |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
pch |
The plotting character, or symbol, to use. Specified as an
integer. See R help on |
col |
The color for lines and points. Specified as an integer or a text
string. A full list is obtained by the R command |
cex |
The amount by which plotting text and symbols should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. |
abllty |
Line type of the line of identity. |
abllwd |
Line width of the line of identity. |
ablcol |
Line colour of the line of identity. |
prompt |
Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is FALSE. |
main.cex |
The size of the title. |
mirror |
Mirror plots are not yet implemented in this function and this
argument must contain a value of |
max.plots.per.page |
Maximum number of plots per page |
Details
Matrices of Q-Q plots of weighted residuals in each included individual are displayed.
A wide array of extra options controlling Q-Q plots are available. See
xpose.plot.qq
for details.
Value
Returns a compound plot comprising QQ plots of weighted residuals conditioned on individual.
Functions
-
ind.plots.cwres.qq()
: Q-Q plots of conditional weighted residuals for each individual
Author(s)
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins & Andrew Hooker
See Also
xpose.plot.qq
, xpose.panel.qq
,
qqplot
, qqmath
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
ind.plots.cwres.qq(simpraz.xpdb,subset="ID<18")
Individual predictions (IPRED) plotted against the independent variable (IDV) for Xpose 4
Description
This is a plot of Individual predictions (IPRED) vs the independent variable
(IDV), a specific function in Xpose 4. It is a wrapper encapsulating
arguments to the xpose.plot.default
function. Most of the options
take their default values from xpose.data object but may be overridden by
supplying them as arguments.
Usage
ipred.vs.idv(object, smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplot
s are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns an xyplot of IPRED vs IDV.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
ipred.vs.idv(xpdb)
## A conditioning plot
ipred.vs.idv(xpdb, by="HCTZ")
## Logarithmic Y-axis
ipred.vs.idv(xpdb, logy=TRUE)
## Custom colours and symbols, IDs
ipred.vs.idv(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
Histogram of individual weighted residuals (IWRES), for Xpose 4
Description
This is a histogram of the distribution of individual weighted residuals
(IWRES) in the dataset, a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.histogram
function.
Usage
iwres.dist.hist(object, ...)
Arguments
object |
An xpose.data object. |
... |
Other arguments passed to |
Details
Displays a histogram of the individual weighted residuals (IWRES).
Value
Returns a histogram of individual weighted residuals (IWRES).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.histogram
,
xpose.panel.histogram
, histogram
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
iwres.dist.hist(simpraz.xpdb)
Quantile-quantile plot of individual weighted residuals (IWRES), for Xpose 4
Description
This is a QQ plot of the distribution of individual weighted residuals
(IWRES) in the dataset, a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.qq
function.
Usage
iwres.dist.qq(object, ...)
Arguments
object |
An xpose.data object. |
... |
Other arguments passed to |
Details
Displays a QQ plot of the individual weighted residuals (IWRES).
Value
Returns a QQ plot of individual weighted residuals (IWRES).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.qq
, xpose.panel.qq
,
qqmath
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
iwres.dist.qq(simpraz.xpdb)
Individual weighted residuals (IWRES) plotted against the independent variable (IDV) for Xpose 4
Description
This is a plot of individual weighted residuals (IWRES) vs the independent
variable (IDV), a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
Usage
iwres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns an xyplot of IWRES vs IDV.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
iwres.vs.idv(xpdb)
## A conditioning plot
iwres.vs.idv(xpdb, by="HCTZ")
Kaplan-Meier plots of (repeated) time-to-event data
Description
Kaplan-Meier plots of (repeated) time-to-event data. Includes VPCs.
Usage
kaplan.plot(
x = "TIME",
y = "DV",
id = "ID",
data = NULL,
evid = "EVID",
by = NULL,
xlab = "Time",
ylab = "Default",
object = NULL,
events.to.plot = "All",
sim.data = NULL,
sim.zip.file = NULL,
VPC = FALSE,
nsim.lab = "simNumber",
sim.evct.lab = "counter",
probs = c(0.025, 0.975),
add.baseline = T,
add.last.area = T,
subset = NULL,
main = "Default",
main.sub = "Default",
main.sub.cex = 0.8,
nbins = NULL,
real.type = "l",
real.lty = 1,
real.lwd = 1,
real.col = "blue",
real.se = if (!is.null(sim.data)) F else T,
real.se.type = "l",
real.se.lty = 2,
real.se.lwd = 0.5,
real.se.col = "red",
cens.type = "l",
cens.lty = 1,
cens.col = "black",
cens.lwd = 1,
cens.rll = 0.02,
inclZeroWRES = TRUE,
onlyfirst = FALSE,
samp = NULL,
poly.alpha = 1,
poly.fill = "lightgreen",
poly.line.col = "darkgreen",
poly.lty = 2,
censor.lines = TRUE,
ylim = c(-5, 105),
cov = NULL,
cov.fun = "mean",
...
)
Arguments
x |
The independent variable. |
y |
The dependent variable. event (>0) or no event (0). |
id |
The ID variable in the dataset. |
data |
A dataset can be used instead of the data in an Xpose object.
Must have the same form as an xpose data object |
evid |
The EVID data item. If not present then all rows are considered events (can be censored or an event). Otherwise, EVID!=0 are dropped from the data set. |
by |
A vector of conditioning variables. |
xlab |
X-axis label |
ylab |
Y-axis label |
object |
An Xpose object. Needed if no |
events.to.plot |
Vector of events to be plotted. "All" means that all events are plotted. |
sim.data |
The simulated data file. Should be a table file with one
header row and have, at least, columns with headers corresponding to
|
sim.zip.file |
The |
VPC |
|
nsim.lab |
The column header for |
sim.evct.lab |
The column header for |
probs |
The probabilities (non-parametric percentiles) to use in computation of the prediction intervals for the simulated data. |
add.baseline |
Should a (x=0,y=1) baseline measurement be added to each individual in the dataset. Otherwise each plot will begin at the first event in the dataset. |
add.last.area |
Should an area be added to the VPC extending the last PI? |
subset |
The subset of the data and sim.data to use. |
main |
The title of the plot. Can also be |
main.sub |
The title of the subplots. Must be a list, the same length
as the number of subplots (actual graphs), or |
main.sub.cex |
The size of the title of the subplots. |
nbins |
The number of bins to use in the VPC. If |
real.type |
Type for the real data. |
real.lty |
Line type (lty) for the curve of the original (or real) data. |
real.lwd |
Line width (lwd) for the real data. |
real.col |
Color for the curve of the original (or real) data. |
real.se |
Should the standard errors of the real (non simulated) data
be plotted? Calculated using |
real.se.type |
Type for the standard errors. |
real.se.lty |
Line type (lty) for the standard error lines. |
real.se.lwd |
Line width (lwd) for the standard error lines. |
real.se.col |
Color for the standard error lines. |
cens.type |
Type for the censored lines. |
cens.lty |
Line type (lty) for the censored lines. |
cens.col |
Color for the censored lines. |
cens.lwd |
Line width for the censored lines. |
cens.rll |
The relative line length of the censored line compared to the limits of the y-axis. |
inclZeroWRES |
Include WRES=0 rows from the real data set in the plots? |
onlyfirst |
Include only the first measurement for the real data in the plots? |
samp |
Simulated data in the xpose data object can be used as the
"real" data. |
poly.alpha |
The transparency of the VPC shaded region. |
poly.fill |
The fill color of the VPC shaded region. |
poly.line.col |
The line colors for the VPC region. |
poly.lty |
The line type for the VPC region. |
censor.lines |
Should censored observations be marked on the plot? |
ylim |
Limits for the y-axes |
cov |
The covariate in the dataset to plot instead of the survival curve. |
cov.fun |
The summary function for the covariate in the dataset to plot instead of the survival curve. |
... |
Additional arguments passed to the function. |
Value
returns an object of class "xpose.multiple.plot".
Author(s)
Andrew C. Hooker
See Also
survfit
, Surv
,
xpose.multiple.plot
.
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
library(xpose4)
## Read in the data
runno <- "57"
xpdb <- xpose.data(runno)
####################################
# here are the real data plots
####################################
kaplan.plot(x="TIME",y="DV",object=xpdb)
kaplan.plot(x="TIME",y="DV",object=xpdb,
events.to.plot=c(1,2),
by=c("DOSE==0","DOSE!=0"))
kaplan.plot(x="TIME",y="DV",object=xpdb,
events.to.plot=c(1,2),
by=c("DOSE==0","DOSE==10",
"DOSE==50","DOSE==200"))
## make a PDF of the plots
pdf(file=paste("run",runno,"_kaplan.pdf",sep=""))
kaplan.plot(x="TIME",y="DV",object=xpdb,
by=c("DOSE==0","DOSE==10",
"DOSE==50","DOSE==200"))
dev.off()
####################################
## VPC plots
####################################
kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T,events.to.plot=c(1))
kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T,
events.to.plot=c(1,2,3),
by=c("DOSE==0","DOSE!=0"))
kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T,
events.to.plot=c(1),
by=c("DOSE==0","DOSE==10","DOSE==50","DOSE==200"))
## make a PDF of all plots
pdf(file=paste("run",runno,"_kaplan.pdf",sep=""))
kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T,
by=c("DOSE==0","DOSE==10","DOSE==50","DOSE==200"))
dev.off()
## End(Not run)
Make stacked bar data set.
Description
Function to make stacked bar data set for categorical data plots.
Usage
make.sb.data(data, idv, dv, nbins = 6, by = NULL, by.nbins = 6, ...)
Arguments
data |
Data set to transform. |
idv |
the independent variable. |
dv |
the dependent variable. |
nbins |
the number of bins. |
by |
Conditioning variable. |
by.nbins |
by.nbins. |
... |
additional arguments. |
Author(s)
The Xpose team.
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Function to plot the coverage of the Numerical Predictive Check
Description
This function takes the output from the npc
command in Perl Speaks
NONMEM (PsN) and makes a coverage plot. A coverage plot for the NPC looks
at different prediction intervals (PIs) for each data point and calculates
the total number of data points in the data set lying outside of these PIs.
The plot shows the relative amount of data points outside of their PI
compared to the expected amount at that PI. In addition a confidence
interval around these values are computed based on the simulated data.
Usage
npc.coverage(
npc.info = "npc_results.csv",
main = "Default",
main.sub = NULL,
main.sub.cex = 0.85,
...
)
Arguments
npc.info |
The results file from the |
main |
A string giving the plot title or |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector |
main.sub.cex |
The size of the |
... |
Other arguments passed to
|
Value
A list of plots
Additional arguments for the NPC coverage plots
Additional plot features
CI
Specifies whether confidence intervals (as lines, a shaded area or both) should be added to the plot. Allowed values are:
"area"
,"lines"
,"both"
, orNULL
.mark.outside.data
Should the points outside the CI be marked in a different color to identify them. Allowed values are
TRUE
orFALSE
.abline
Should there be a line to mark the value of y=1? Possible values are
TRUE
,FALSE
andNULL
.
Line and area control. See plot
,
grid.polygon
and xyplot
for more
details.
CI.area.col
Color of the area for the CI. Defaults to
"blue"
CI.area.alpha
Transparency of the
CI.area.col
. Defaults to 0.3.ab.lwd
The width of the abline. Default is 1.
ab.lty
Line type of the abline. Default is
"dashed"
CI.upper.lty
Line type of the line at the upper edge of the CI.
CI.upper.col
Color of the line at the upper edge of the CI.
CI.upper.lwd
The line width of the line at the upper edge of the CI.
CI.lower.lty
The line type at the lower edge of the CI.
CI.lower.col
The color of the line at the lower edge of the CI.
CI.lower.lwd
The line width of the line at the lower edge of the CI.
obs.col
The color of the observed values.
obs.pch
The type of point to use for the observed values.
obs.lty
The type of line to use for the observed values.
obs.type
The combination of lines and points to use for the observed values. Default is
"b"
for both.obs.cex
The size of the points to use for the observed values.
obs.lwd
The line width to use for the observed values.
out.col
The color of the observed values that lie outside of the CI. Only used if
mark.outside.data=TRUE
.out.pch
The type of point to use for the observed values that lie outside of the CI. Only used if
mark.outside.data = TRUE
.out.cex
The size of the points of the observed values that lie outside of the CI. Only used if
mark.outside.data = TRUE
.out.lwd
The line width of the observed values that lie outside of the CI. Only used if
mark.outside.data = TRUE
.
Author(s)
Andrew Hooker
See Also
read.npc.vpc.results
xpose.multiple.plot.default
xyplot
Other PsN functions:
boot.hist()
,
bootscm.import()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
library(xpose4)
npc.coverage()
## to read files in a directory different than the current working directory
npc.file <- "./another_directory/npc_results.csv"
npc.coverage(npc.info=npc.file)
## End(Not run)
Extract or set the value of the Nsim slot.
Description
Extract or set the value of the Nsim slot of an "xpose.data" object.
Usage
nsim(object)
Arguments
object |
An "xpose.data" object. |
Author(s)
Niclas Jonsson
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Report number of simulations
nsim(xpdb5)
## End(Not run)
Plot the parameter or covariate distributions using a histogram
Description
These functions plot the parameter or covariate values stored in an Xpose data object using histograms.
Usage
cov.hist(object, onlyfirst = TRUE, main = "Default", ...)
parm.hist(object, onlyfirst = TRUE, main = "Default", ...)
ranpar.hist(object, onlyfirst = TRUE, main = "Default", ...)
Arguments
object |
An xpose.data object. |
onlyfirst |
Logical value indicating if only the first row per individual is included in the plot. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the parameters or covariates in the Xpose data object, as specified
in object@Prefs@Xvardef$parms
, object@Prefs@Xvardef$covariates
or object@Prefs@Xvardef$ranpar
is evaluated in turn, creating a stack
of histograms.
A wide array of extra options controlling histograms are available. See
xpose.plot.histogram
for details.
Value
Delivers a stack of histograms.
Functions
-
cov.hist()
: Covariate distributions -
parm.hist()
: parameter distributions -
ranpar.hist()
: random parameter distributions
Author(s)
Andrew Hooker & Justin Wilkins
See Also
xpose.plot.histogram
,
xpose.panel.histogram
, histogram
,
xpose.data-class
, xpose.prefs-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## Parameter histograms
parm.hist(xpdb)
## Covariate distribution, in green
cov.hist(xpdb, hicol=11, hidcol="DarkGreen", hiborder="White")
## Random parameter histograms
ranpar.hist(xpdb)
Plot the parameter or covariate distributions using quantile-quantile (Q-Q) plots
Description
These functions plot the parameter or covariate values stored in an Xpose data object using Q-Q plots.
Usage
cov.qq(object, onlyfirst = TRUE, main = "Default", ...)
parm.qq(object, onlyfirst = TRUE, main = "Default", ...)
ranpar.qq(object, onlyfirst = TRUE, main = "Default", ...)
Arguments
object |
An xpose.data object. |
onlyfirst |
Logical value indicating if only the first row per individual is included in the plot. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the parameters or covariates in the Xpose data object, as specified
in object@Prefs@Xvardef$parms
, object@Prefs@Xvardef$ranpar
or
object@Prefs@Xvardef$covariates
, is evaluated in turn, creating a
stack of Q-Q plots.
A wide array of extra options controlling Q-Q plots are available. See
xpose.plot.qq
for details.
Value
Delivers a stack of Q-Q plots.
Functions
-
cov.qq()
: Covariate distributions -
parm.qq()
: parameter distributions -
ranpar.qq()
: random parameter distributions
Author(s)
Andrew Hooker & Justin Wilkins
See Also
xpose.plot.qq
, xpose.panel.qq
,
qqmath
, xpose.data-class
,
xpose.prefs-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
## parameter histograms
parm.qq(xpdb)
## A stack of random parameter histograms
ranpar.qq(xpdb)
## Covariate distribution, in green with red line of identity
cov.qq(xpdb, col=11, ablcol=2)
Summarize individual parameter values and covariates
Description
These functions produce tables, printed to the screen, summarizing the individual parameter values or covariates from a dataset in Xpose 4.
Usage
cov.summary(
object,
onlyfirst = TRUE,
subset = xsubset(object),
inclZeroWRES = FALSE,
out.file = ".screen",
main = "Default",
fill = "gray",
values.to.use = xvardef("covariates", object),
value.name = "Covariate",
...
)
parm.summary(
object,
onlyfirst = TRUE,
subset = xsubset(object),
inclZeroWRES = FALSE,
out.file = ".screen",
main = "Default",
fill = "gray",
values.to.use = xvardef("parms", object),
value.name = "Parameter",
max.plots.per.page = 1,
...
)
Arguments
object |
An xpose.data object. |
onlyfirst |
Logical value indicating if only the first row per individual is included in the plot. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 are included in the plot. The default is FALSE. |
out.file |
Where the results should be output to. Can be ".screen", ".ask", ".graph" or a filename in quotes. |
main |
The title of the plot. If |
fill |
The color to fill the boxes in the table if the table is printed to ".graph" |
values.to.use |
Which values should be summarized |
value.name |
The name of the values |
... |
Other arguments passed to |
max.plots.per.page |
Maximum plots per page. |
Value
Returned is the matrix of values from the table. parm.summary
and cov.summary
produce summaries of parameters and covariates,
respectively. parm.summary
produces less attractive output but
supports mirror functionality.
parm.summary
and cov.summary
utilize
print.char.matrix
to print the information to the
screen.
Functions
-
cov.summary()
: Covariate summary -
parm.summary()
: Parameter summary
Author(s)
Andrew Hooker & Justin Wilkins
See Also
Data
, SData
,
xpose.data-class
, print.char.matrix
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
parm.summary(simpraz.xpdb)
Parameters plotted against covariates, for Xpose 4
Description
This creates a stack of plots of Bayesian parameter estimates plotted
against covariates, and is a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
Usage
parm.vs.cov(
object,
onlyfirst = TRUE,
smooth = TRUE,
type = "p",
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
type |
The plot type - defaults to points only. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the parameters in the Xpose data object, as specified in
object@Prefs@Xvardef$parms
, is plotted against each covariate
present, as specified in object@Prefs@Xvardef$covariates
, creating a
stack of plots.
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns a stack of xyplots and histograms of parameters against covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.plot.histogram
, xyplot
,
histogram
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb <- xpose.data(5)
## A vanilla plot
parm.vs.cov(xpdb)
## Custom colours and symbols, IDs
parm.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
## End(Not run)
Plot parameters vs other parameters
Description
This function plots the parameter values stored in an Xpose data object versus each other in a series of graphs. The mirror functionality is available for this function.
Usage
parm.vs.parm(
object,
onlyfirst = TRUE,
abline = FALSE,
smooth = TRUE,
type = "p",
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
abline |
Allows for a line of identity. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
type |
The plot type - defaults to points only. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the parameters in the Xpose data object, as specified in
object@Prefs@Xvardef$parms
, is plotted against the rest, creating a
stack of plots.
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns a stack of xyplots and histograms of parameters against parameters.
Author(s)
Andrew Hooker
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb <- xpose.data(5)
parm.vs.parm(xpdb)
parm.vs.parm(xpdb,mirror=3)
## End(Not run)
Population predictions (PRED) plotted against the independent variable (IDV) for Xpose 4
Description
This is a plot of population predictions (PRED) vs the independent variable
(IDV), a specific function in Xpose 4. It is a wrapper encapsulating
arguments to the xpose.plot.default
function. Most of the options
take their default values from xpose.data object but may be overridden by
supplying them as arguments.
Usage
pred.vs.idv(object, smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns an xyplot of PRED vs IDV.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
pred.vs.idv(xpdb)
## A conditioning plot
pred.vs.idv(xpdb, by="HCTZ")
## Logarithmic Y-axis
pred.vs.idv(xpdb, logy=TRUE)
## Custom colours and symbols, IDs
pred.vs.idv(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
Print an Xpose multiple plot object.
Description
Print an Xpose multiple plot object, which is the output from the function
xpose.multiple.plot
.
Usage
## S3 method for class 'xpose.multiple.plot'
print(x, ...)
Arguments
x |
Output object from the function |
... |
Additional options passed to function. |
Details
Print method for a plot class.
Author(s)
Niclas Jonsson and Andrew C. Hooker
See Also
Function to create a histogram of results from the randomization test tool
(randtest
) in PsN
Description
Reads results from the randtest
tool in PsN
and then creates a histogram.
Usage
randtest.hist(
results.file = "raw_results_run1.csv",
df = 1,
p.val = 0.05,
main = "Default",
xlim = NULL,
PCTSlcol = "black",
vlcol = c("red", "orange"),
...
)
Arguments
results.file |
The location of the results file from the
|
df |
The degrees of freedom between the full and reduced model used in the randomization test. |
p.val |
The p-value you would like to use. |
main |
The title of the plot. |
xlim |
The limits of the x-axis |
PCTSlcol |
Color of the empirical line |
vlcol |
Colors of the original and nominal line |
... |
Additional arguments that can be passed to xpose.plot.histogram, xpose.panel.histogram, histogram and other lattice-package functions. |
Value
A lattice object
Author(s)
Andrew Hooker
References
See Also
xpose.plot.histogram, xpose.panel.histogram, histogram and other lattice-package functions.
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
randtest.hist(results.file="randtest_dir1/raw_results_run1.csv",df=2)
## End(Not run)
Random parameters plotted against covariates, for Xpose 4
Description
This creates a stack of plots of Bayesian random parameter estimates plotted
against covariates, and is a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
Usage
ranpar.vs.cov(
object,
onlyfirst = TRUE,
smooth = TRUE,
type = "p",
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
type |
The plot type - defaults to points only. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Each of the random parameters (ETAs) in the Xpose data object, as specified
in object@Prefs@Xvardef$ranpar
, is plotted against each covariate
present, as specified in object@Prefs@Xvardef$covariates
, creating a
stack of plots.
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns a stack of xyplots and histograms of random parameters against covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.plot.histogram
, xyplot
,
histogram
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb <- xpose.data(5)
## A vanilla plot
ranpar.vs.cov(xpdb)
## Custom colours and symbols, IDs
ranpar.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
## End(Not run)
Read (repeated) time-to-event simulation data files.
Description
Read (repeated) time-to-event simulation data files.
Usage
read.TTE.sim.data(
sim.file,
subset = NULL,
headers = c("REP", "ID", "DV", "TIME", "FLAG2", "DOSE"),
xpose.table.file = FALSE,
...
)
Arguments
sim.file |
Name of the simulated file. |
subset |
subset to extract. |
headers |
headers in file. |
xpose.table.file |
xpose table files. |
... |
Extra arguments passed to function. |
Author(s)
Andrew C. Hooker
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Reading NONMEM table files
Description
Reads one or more NONMEM table files, removes duplicated columns and merges the data into a data.frame.
Usage
read.nm.tables(
table.files = NULL,
runno = NULL,
tab.suffix = "",
table.names = c("sdtab", "mutab", "patab", "catab", "cotab", "mytab", "extra", "xptab"),
cwres.name = c("cwtab"),
cwres.suffix = "",
quiet = FALSE,
new_methods = TRUE,
...
)
Arguments
table.files |
Exact names of table files to read. If not provided then the exact names are created using the other arguments to the function. |
runno |
Run-number to identify sets of table files. |
tab.suffix |
Table file name suffix. |
table.names |
Vector of template table file names to read. |
cwres.name |
Vector of CWRES table file names to read. |
cwres.suffix |
CWRES table file name suffix. |
quiet |
Logical value to indicate whether some warnings should be quiet or not. |
new_methods |
Should faster methods of reading tables be used (uses readr package)? |
... |
Additional arguments passed to this function |
Details
Reads one or more table files, removes duplicate columns and merges the data. The function also checks to see if the table files are of the same length (required).
If there are header lines in the table files (for example if your data are simulated with NSUB>1), these are removed.
The table file names to read are constructed from the file name templates of
table.names
. The runno
and tab.suffix
are appended to
the file name template before checking if the file is readable.
Xpose expects, by default, to find the following NONMEM tables in the working directory to be able to create an Xpose data object (using a run number of 5 as an example):
sdtab5: The 'standard' parameters, including IWRE, IPRE, TIME, and the
NONMEM default items (DV, PRED, RES and WRES) that are added when NOAPPEND
is not present in the $TABLE
record.
$TABLE ID TIME IPRE IWRE NOPRINT ONEHEADER FILE=sdtab5
patab5: The empirical Bayes estimates of individual model parameter values, or posthoc estimates. These are model parameters, such as CL, V2, ETA1, etc.
$TABLE ID CL V2 KA K F1 ETA1 ETA2 ETA3 NOPRINT NOAPPEND ONEHEADER
FILE=patab5
catab5: Categorical covariates, e.g. SEX, RACE.
$TABLE ID SEX HIV GRP NOPRINT NOAPPEND ONEHEADER FILE=catab5
cotab5: Continuous covariates, e.g. WT, AGE.
$TABLE ID WT AGE BSA HT GGT HB NOPRINT NOAPPEND ONEHEADER FILE=cotab5
mutab5, mytab5, extra5, xptab5: Additional variables of any kind. These might be useful if there are more covariates than can be accommodated in the covariates tables, for example, or if you have other variables that should be added, e.g. CMAX, AUC.
Value
A dataframe.
Author(s)
Niclas Jonsson, Andrew Hooker
See Also
xpose.data-class
, compute.cwres
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory, and that the table files have
## a suffix of '.dat', e.g. sdtab5.dat
my.dataframe <- read.nm.tables(5, tab.suffix = ".dat")
## End(Not run)
Read the results file from a Numerical or Visual Predictive Check run in PsN
Description
This function reads in a results file from running either the PsN command
vpc
or npc
. The function then parses the file and passes the
result to plotting functions.
Usage
read.npc.vpc.results(
vpc.results = NULL,
npc.results = NULL,
verbose = FALSE,
...
)
Arguments
vpc.results |
The name of the results file from running the PsN command
|
npc.results |
The name of the results file from running the PsN command
|
verbose |
Text messages passed to screen or not. |
... |
arguments passed to other functions. |
Details
One of vpc.results
or npc.results
are necessary. If both or
none are defined then the function does nothing and a NULL
is
returned from the function.
Value
A list of values is returned.
model.file |
The model file
that PsN ran either the |
dv.var |
The dependent variable used in the calculations. |
idv.var |
The
independent variable used in the calculations. |
num.tables |
The number of separate tables in the results file. |
by.interval |
The conditioning interval
for the stratification variable, only returned if |
result.tables |
The results tables from the results file. this is a list. |
Author(s)
Andrew Hooker
See Also
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Read the vpctab file from PsN into Xpose
Description
This function read in the vpctab file created from PsN and gathers the information needed to make a vpc plot.
Usage
read.vpctab(
vpctab = NULL,
object = NULL,
vpc.name = "vpctab",
vpc.suffix = "",
tab.suffix = "",
inclZeroWRES = FALSE,
verbose = FALSE,
...
)
Arguments
vpctab |
The vpctab file from a ' |
object |
An xpose data object. Created from |
vpc.name |
The default name of the vpctab file. Used if only
|
vpc.suffix |
The suffix of the vpctab file. Used if only |
tab.suffix |
The table suffix of the vpctab file. Used if only
|
inclZeroWRES |
If there are no zero valued weighted residuals in the
|
verbose |
Text messages passed to screen or not. |
... |
Other arguments passed to other functions. |
Value
Returned is an xpose data object with vpctab information included.
Author(s)
Andrew Hooker
See Also
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Read NONMEM output files into Xpose 4
Description
These are functions that read in a NONMEM output file (a '*.lst' file) and then format the input.
Usage
calc.npar(object)
create.parameter.list(listfile)
read.lst(filename)
Arguments
object |
The return value of |
listfile |
A NONMEM output file. |
filename |
A NONMEM output file. |
Value
lists of read values.
Functions
-
calc.npar()
: calculates the number and type of parameters included in a NONMEM output file -
create.parameter.list()
: Reads parameters, uncertainty and termination messages included in a NONMEM output file -
read.lst()
: parses information out of NONMEM output.
Author(s)
Niclas Jonsson, Andrew Hooker & Justin Wilkins
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Read NONMEM table files produced from simulation.
Description
The function reads in NONMEM table files produced from the $SIM
line
in a NONMEM model file.
Usage
read_nm_table(
nm_table,
only_obs = FALSE,
method = "default",
quiet = TRUE,
sim_num = FALSE,
sim_name = "NSIM"
)
Arguments
nm_table |
The NONMEM table file to read. A text string. |
only_obs |
Should the non-observation lines in the data set be removed?
Currently filtered using the expected |
method |
The methods to use for reading the tables, Can be "readr_1", "readr_2", readr_3" or "slow". |
quiet |
Should the error message be verbose or not? |
sim_num |
Should a simulation number be added to simulation tables? |
sim_name |
What name should one use to name the column of the simulation number? |
Details
Currently the function expects the $TABLE
to have a header for each
new simulation. This means that the NOHEADER
option or
ONEHEADER
option in the table file is not allowed.
Value
Returns a data frame of the simulated table with an added column for
the simulation number. The data frame is given class c("tbl_df",
"tbl", "data.frame")
for easy use with dplyr
.
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Resets Xpose variable definitions to factory settings
Description
Function to reset Xpose's graphics parameters definitions to the default.
Usage
reset.graph.par(object, classic = FALSE)
Arguments
object |
An |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
Details
This functions is used to reset Xpose's graphic settings definitions to their default values. Graphical settings are read from the file 'xpose.ini' in the root of the 'xpose4' package.
Value
An xpose.data
object (classic == FALSE) or null
(classic == TRUE).
Author(s)
Niclas Jonsson & Justin Wilkins
See Also
xpose.prefs-class
, import.graph.par
,
change.xvardef
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Import graphics preferences you saved earlier using export.graph.par
xpdb5 <- import.graph.par(xpdb5)
## Reset to default values
xpdb5 <- reset.graph.par(xpdb5)
## Change WRES definition
xpdb5 <- change.wres(xpdb5)
## End(Not run)
Print run summary in Xpose 4
Description
Function to build Xpose run summaries.
Usage
runsum(
object,
dir = "",
modfile = paste(dir, "run", object@Runno, ".mod", sep = ""),
listfile = paste(dir, "run", object@Runno, ".lst", sep = ""),
main = NULL,
subset = xsubset(object),
show.plots = TRUE,
txt.cex = 0.7,
txt.font = 1,
show.ids = FALSE,
param.table = TRUE,
txt.columns = 2,
force.wres = FALSE,
...
)
Arguments
object |
An xpose.data object. |
dir |
The directory to look for the model and output file of a NONMEM run. |
modfile |
The name of the NONMEM control stream associated with the current run. |
listfile |
The name of the NONMEM output file associated with the current run. |
main |
A string giving the main heading. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
show.plots |
Logical indicating if GOF plots should be shown in the run summary. |
txt.cex |
Number indicating the size of the txt in the run summary. |
txt.font |
Font of the text in the run summary. |
show.ids |
Logical indicating if IDs should be plotted in the plots for the run summary. |
param.table |
Logical indicating if the parameter table should be shown in the run summary. |
txt.columns |
The number of text columns in the run summary. |
force.wres |
Plot the WRES even if other residuals are available. |
... |
Other arguments passed to the various functions. |
Value
A compound plot containing an Xpose run summary is created.
Author(s)
Niclas Jonsson and Andrew Hooker
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
od = setwd(tempdir()) # move to a temp directory
(cur.files <- dir()) # current files in temp directory
simprazExample(overwrite=TRUE) # write files
(new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here?
xpdb <- xpose.data(1)
runsum(xpdb)
file.remove(new.files) # remove these files
setwd(od) # restore working directory
Simulated prazosin Xpose database.
Description
Xpose database from the NONMEM output of a model for prazosin using simulated data (and NONMEM 7.3).
Usage
simpraz.xpdb
Format
an xpose.data object
Details
The database can be used to test functions in Xpose 4. This database is
slightly different than the database that is created when reading in the
files created by simprazExample
using
xpose.data
.
See Also
Examples
xpose.print(simpraz.xpdb)
Data(simpraz.xpdb)
str(simpraz.xpdb)
Function to create files for the simulated prazosin example in Xpose
Description
Creates NONMEM data, model and output files for a model of prazosin using simulated data.
Usage
simprazExample(overwrite = FALSE)
Arguments
overwrite |
Logical. Should the function overwrite files with the same names already in the current working directory? |
Details
Creates files in the current working directory named: run1.ext run1.lst run1.mod simpraz.dta xptab1
Author(s)
Niclas Jonsson and Andrew Hooker
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
od = setwd(tempdir()) # move to a temp directory
(cur.files <- dir()) # current files in temp directory
simprazExample(overwrite=TRUE) # write files
(new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here?
file.remove(new.files) # remove these files
setwd(od) # restore working directory
Tabulate the population parameter estimates
Description
This function provides a summary of the model's parameter estimates and precision.
Usage
tabulate.parameters(object, prompt = FALSE, outfile = NULL, dir = "")
Arguments
object |
An xpose.data object. |
prompt |
Ask before printing. |
outfile |
file to output to (NULL means screen). |
dir |
Which directory is the NONMEM output file located. |
Value
A table summarizing the parameters and their precision.
Author(s)
Niclas Jonsson, Andrew Hooker & Justin Wilkins
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
od = setwd(tempdir()) # move to a temp directory
(cur.files <- dir()) # current files in temp directory
simprazExample(overwrite=TRUE) # write files
(new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here?
xpdb <- xpose.data(1) # read in files to xpose database
tabulate.parameters(xpdb)
file.remove(new.files) # remove these files
setwd(od) # restore working directory
Histogram of weighted residuals (WRES), for Xpose 4
Description
This is a histogram of the distribution of weighted residuals (WRES) in the
dataset, a specific function in Xpose 4. It is a wrapper encapsulating
arguments to the xpose.plot.histogram
function.
Usage
wres.dist.hist(object, ...)
Arguments
object |
An xpose.data object. |
... |
Other arguments passed to |
Details
Displays a histogram of the weighted residuals (WRES).
Value
Returns a histogram of weighted residuals (WRES).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.histogram
,
xpose.panel.histogram
, histogram
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
wres.dist.hist(xpdb)
Quantile-quantile plot of weighted residuals (WRES), for Xpose 4
Description
This is a QQ plot of the distribution of weighted residuals (WRES) in the
dataset, a specific function in Xpose 4. It is a wrapper encapsulating
arguments to the xpose.plot.qq
function.
Usage
wres.dist.qq(object, ...)
Arguments
object |
An xpose.data object. |
... |
Other arguments passed to |
Details
Displays a QQ plot of the weighted residuals (WRES).
Value
Returns a QQ plot of weighted residuals (WRES).
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.qq
, xpose.panel.qq
,
qqmath
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
wres.dist.qq(xpdb)
Weighted residuals (WRES) plotted against covariates, for Xpose 4
Description
This creates a stack of plots of weighted residuals (WRES) plotted against
covariates, and is a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
and
xpose.plot.histogram
functions. Most of the options take their
default values from xpose.data object but may be overridden by supplying
them as arguments.
Usage
wres.vs.cov(
object,
ylb = "WRES",
smooth = TRUE,
type = "p",
main = "Default",
...
)
Arguments
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
smooth |
A |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Details
Weighted residuals (WRES) are plotted against each covariate present, as
specified in object@Prefs@Xvardef$covariates
, creating a stack of
plots.
A wide array of extra options controlling xyplots and histograms are
available. See xpose.plot.default
and
xpose.plot.histogram
for details.
Value
Returns a stack of xyplots and histograms of CWRES versus covariates.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.plot.histogram
, xyplot
,
histogram
, xpose.prefs-class
,
xpose.data-class
Examples
## Not run:
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Here we load the example xpose database
data(simpraz.xpdb)
xpdb <- simpraz.xpdb
## A vanilla plot
wres.vs.cov(xpdb)
## Custom colours and symbols, IDs
wres.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
## End(Not run)
Population weighted residuals (WRES) plotted against the independent variable (IDV) for Xpose 4
Description
This is a plot of population weighted residuals (WRES) vs the independent
variable (IDV), a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
Usage
wres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)
Arguments
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
A |
... |
Other arguments passed to |
Details
Weighted residuals (WRES) are plotted against the independent variable, as
specified in object@Prefs@Xvardef$idv
.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns an xyplot of WRES vs IDV.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
wres.vs.idv(xpdb)
## A conditioning plot
wres.vs.idv(xpdb, by="HCTZ")
Box-and-whisker plot of weighted residuals vs the independent variable for Xpose 4
Description
This creates a box and whisker plot of weighted residuals (WRES) vs the
independent variable (IDV), and is a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.bw
function. Most
of the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
Usage
wres.vs.idv.bw(object, ...)
Arguments
object |
An xpose.data object. |
... |
Other arguments passed to |
Details
This creates a box and whisker plot of weighted residuals (WRES) vs the
independent variable (IDV), and is a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.bw
function. Most
of the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
A wide array of extra options controlling bwplots are available. See
xpose.plot.bw
and xpose.panel.bw
for details.
Value
Returns a stack of box-and-whisker plots of WRES vs IDV.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.bw
, xpose.panel.bw
,
bwplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
wres.vs.idv.bw(xpdb)
Population weighted residuals (WRES) plotted against population predictions (PRED) for Xpose 4
Description
This is a plot of population weighted residuals (WRES) vs population
predictions (PRED), a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
Usage
wres.vs.pred(object, smooth = TRUE, abline = c(0, 0), ...)
Arguments
object |
An xpose.data object. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
abline |
Vector of arguments to the |
... |
Other arguments passed to |
Details
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Value
Returns an xyplot of WRES vs PRED.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
wres.vs.pred(xpdb)
## A conditioning plot
wres.vs.pred(xpdb, by="HCTZ")
Box-and-whisker plot of weighted residuals vs population predictions for Xpose 4
Description
This creates a box and whisker plot of weighted residuals (WRES) vs
population predictions (PRED), and is a specific function in Xpose 4. It is
a wrapper encapsulating arguments to the xpose.plot.bw
function. Most
of the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
Usage
wres.vs.pred.bw(object, ...)
Arguments
object |
An xpose.data object. |
... |
Other arguments passed to |
Details
This creates a box and whisker plot of weighted residuals (WRES) vs
population predictions (PRED), and is a specific function in Xpose 4. It is
a wrapper encapsulating arguments to the xpose.plot.bw
function. Most
of the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
A wide array of extra options controlling bwplots are available. See
xpose.plot.bw
and xpose.panel.bw
for details.
Value
Returns a box-and-whisker plot of WRES vs PRED.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.bw
, xpose.panel.bw
,
bwplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Here we load the example xpose database
xpdb <- simpraz.xpdb
wres.vs.pred.bw(xpdb)
Extract and set labels for Xpose data items.
Description
This function extracts and sets label definitions in Xpose data objects.
Usage
xlabel(x, object)
xlabel(object) <- value
Arguments
x |
Name of the variable to assign a label to. |
object |
An |
value |
A two element vector of which the first element is the name of the variable and the second the label |
Details
x
should be a string exactly matching the name of a column in the
data.frame in the Data slot of an xpose.data object. The name of columns
defined through xpose variable definitions (see xpose.data
)
can be extracted using the xvardef
function and to be used in the
xlabel
function, e.g. xlabel(xvardef("dv",object),object)
,
which would give the label for the dv
variable.
Value
The label of the specified column.
Functions
-
xlabel(object) <- value
: sets label definitions in Xpose data objects. assigned value should be a two-element vector of which the first element is the name of the variable and the second the label
Author(s)
Niclas Jonsson
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
xpdb <- simpraz.xpdb
## Display label for dependent variable in the Xpose data object
xlabel("DV", xpdb)
## Set label for dependent variable
xlabel(xpdb) <- c("DV", "Concentration (mg/L)")
xlabel("DV", xpdb) # how has this chnaged?
Compare parameter estimates for covariate coefficients
Description
This function creates a plot of the estimates for covariate coefficients, obtained from the first step (univariate testing) in each scm performed in the bootscm. When normalized for their standard deviation, these plots can be used to compare the strength of the covariate relationship. Coloring is based on the covariate being included in the final model (blue) not being included (red).
Usage
xp.boot.par.est(
bootgam.obj = NULL,
sd.norm = TRUE,
by.cov.type = FALSE,
abs.values = FALSE,
show.data = TRUE,
show.means = TRUE,
show.bias = TRUE,
dotpch = c(1, 19),
labels = NULL,
pch.mean = "|",
xlab = NULL,
ylab = NULL,
col = c(rgb(0.8, 0.5, 0.5), rgb(0.2, 0.2, 0.7), rgb(0.2, 0.2, 0.7), rgb(0.6, 0.6, 0.6)),
...
)
Arguments
bootgam.obj |
The object created using bootscm.import(), which hold the data for plotting. |
sd.norm |
Perform normalization of the covariate coefficients (default is TRUE). When TRUE, the estimated covariate coefficients will be multiplied by the standard deviation of the specific covariate (both for continuous and categorical covariates). |
by.cov.type |
Split the plot for continuous and dichotomous covariates. Default is FALSE. |
abs.values |
Show the covariate coefficient in absolute values. Default is FALSE. |
show.data |
Show the actual covariate coefficients in the plot. Default is TRUE. |
show.means |
Show the means of included covariates (blue) and all covariates (grey) in the plot. Default is TRUE. |
show.bias |
Show estimated bias as text in the plot. Default is TRUE. |
dotpch |
The character used for plotting. |
labels |
Custom labels for the parameter-covariate relationships, (character vector) |
pch.mean |
The character used for plotting the mean. |
xlab |
Custom x-axis label |
ylab |
Custom y-axis label |
col |
The color scheme. |
... |
Additional plotting arguments may be passed to this function. |
Details
Optionally, estimated bias is plotted in the graph (as text). Bias is also shown by the difference in mean of parameter estimates when the covariate is included (blue diamond), as opposed to the mean of all parameter estimates (grey diamond)
Note: For dichotomous covariates, the default PsN implementation is to use the most common covariate value as base, while the effect of the other value, is estimated by a theta. Xpose (bootscm.import) however recalculates the estimated parameters, to the parametrization in which the lowest value of the dichotomous covariate is the base (e.g. 0), and the estimated THETA denotes the proportional change, when the covariate has the other value (e.g. 1).
Value
No value returned.
Author(s)
Ron Keizer
Examples
xp.boot.par.est()
Correlations between covariate coefficients
Description
This function creates a plot showing the correlations in estimates for covariate coefficients, obtained from the first step (univariate testing) in each scm performed in the bootscm.
Usage
xp.boot.par.est.corr(
bootgam.obj = NULL,
sd.norm = TRUE,
by.cov.type = FALSE,
cov.plot = NULL,
ask.covs = FALSE,
dotpch = 19,
col = rgb(0.2, 0.2, 0.9, 0.75),
...
)
Arguments
bootgam.obj |
The object created using bootscm.import(), which hold the data for plotting. |
sd.norm |
Perform normalization of the covariate coefficients (default is TRUE). When TRUE, the estimated covariate coefficients will be multiplied by the standard deviation of the specific covariate (both for continuous and categorical covariates). |
by.cov.type |
Split the plot for continuous and dichotomous covariates. Default is FALSE. |
cov.plot |
A character vector which lists the covariates to include in the plot. If none are specified (NULL), all covariate coefficients will be included in the plot. |
ask.covs |
Ask the user which covariates to include in the plot. Default is FALSE. |
dotpch |
The character used for plotting. |
col |
The colors used for plotting. |
... |
Additional plotting arguments may be passed to this function. |
Value
No value returned.
Author(s)
Ron Keizer
Examples
## Not run:
xp.boot.par.est.corr(current.bootscm, sd.norm = TRUE,
cov.plot = c("CLSEX", "VSEX", "CLWT"))
## End(Not run)
Distribution of difference in AIC
Description
Distribution of difference in AIC
Usage
xp.daic.npar.plot(
bootscm.obj = NULL,
main = NULL,
xlb = "Difference in AIC",
ylb = "Density",
...
)
Arguments
bootscm.obj |
a bootscm object. |
main |
The title of the plot |
xlb |
The x-label of the plot |
ylb |
The y-label of the plot |
... |
Additional parameters passed to |
Value
A lattice plot object.
See Also
Other bootgam:
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Plot of model size distribution for a bootgam or bootscm
Description
This function creates a kernel smoothed plot of the number of covariates included in the final model in each gam/scm in the bootgam/bootscm procedure.
Usage
xp.distr.mod.size(
bootgam.obj = NULL,
boot.type = NULL,
main = NULL,
bw = 0.5,
xlb = NULL,
...
)
Arguments
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
Plot title. |
bw |
The smoothing bandwidth to be used for the kernel. |
xlb |
The x-axis label. |
... |
Additional plotting parameter may be passed to this function. |
Value
A lattice plot object will be returned.
Author(s)
Ron Keizer
Distribution of difference in OFV
Description
Distribution of difference in OFV
Usage
xp.dofv.npar.plot(
bootscm.obj = NULL,
main = NULL,
xlb = "Difference in OFV",
ylb = "Density",
...
)
Arguments
bootscm.obj |
a bootscm object. |
main |
The title of the plot |
xlb |
The x-label of the plot |
ylb |
The y-label of the plot |
... |
Additional parameters passed to |
Value
A lattice plot object.
See Also
Other bootgam:
xp.daic.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
OFV difference (optimism) plot.
Description
A plot of the difference in OFV between final bootscm models and the reference final scm model.
Usage
xp.dofv.plot(
bootscm.obj = NULL,
main = NULL,
xlb = "Difference in OFV",
ylb = "Density",
...
)
Arguments
bootscm.obj |
The bootgam or bootscm object. |
main |
Plot title. |
xlb |
Label for x-axis. |
ylb |
Label for y-axis. |
... |
Additional plotting parameters. |
Value
A lattice plot object is returned.
Author(s)
Ron Keizer
Default function for calculating dispersion in xpose.gam
.
Description
Default function for calculating dispersion in xpose.gam
.
Usage
xp.get.disp(gamdata, parnam, covnams, family = "gaussian", ...)
Arguments
gamdata |
the data used for a GAM |
parnam |
ONE (and only one) model parameter name. |
covnams |
Covariate names to test on parameter. |
family |
Assumption for the parameter distribution. |
... |
Used to pass arguments to more basic functions. |
Value
a list including the dispersion
See Also
Other GAM functions:
GAM_summary_and_plot
,
xp.scope3()
,
xpose.bootgam()
,
xpose.gam()
,
xpose4-package
Trace plots for conditional indices
Description
Trace plots for conditional indices
Usage
xp.inc.cond.stab.cov(
bootgam.obj = NULL,
boot.type = NULL,
main = NULL,
xlb = "Bootstrap replicate number",
ylb = "Conditional inclusion frequency",
normalize = TRUE,
split.plots = FALSE,
...
)
Arguments
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
The title of the plot |
xlb |
The x-label of the plot |
ylb |
The y-label of the plot |
normalize |
Should one normalize? |
split.plots |
Should the plots be split? |
... |
Additional parameters passed to |
Value
A lattice plot object.
See Also
Other bootgam:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Trace plots for conditional indices rper replicate number
Description
Trace plots for conditional indices rper replicate number
Usage
xp.inc.ind.cond.stab.cov(
bootgam.obj = NULL,
boot.type = NULL,
main = NULL,
xlb = "Bootstrap replicate number",
ylb = "Conditional inclusion frequency",
limits = c(0.2, 0.8),
normalize = TRUE,
split.plots = FALSE,
start = 25,
...
)
Arguments
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
The title of the plot |
xlb |
The x-label of the plot |
ylb |
The y-label of the plot |
limits |
Limits for the inclusion index. |
normalize |
Should one normalize? |
split.plots |
Should the plots be split? |
start |
When to start. |
... |
Arguments passed to other functions. |
Value
A lattice plot object.
See Also
Other bootgam:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Inclusion frequency plot
Description
Plot the inclusion frequencies of covariates in the final models obtained in a bootgam or bootscm. Covariates are ordered by inclusion frequency.
Usage
xp.inc.prob(
bootgam.obj = NULL,
boot.type = NULL,
main = NULL,
col = "#6495ED",
xlb = NULL,
ylb = "Covariate",
...
)
Arguments
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
Plot title |
col |
Color used for the plot. |
xlb |
Label for x-axis. |
ylb |
Label for y-axis. |
... |
Additional plotting parameters. |
Value
A lattice plot object will be returned.
Author(s)
Ron Keizer
Inclusion frequency plot for combination of covariates.
Description
Plot the inclusion frequency of the most common 2-covariate combinations.
Usage
xp.inc.prob.comb.2(
bootgam.obj = NULL,
boot.type = NULL,
main = NULL,
col = "#6495ED",
xlb = NULL,
ylb = "Covariate combination",
...
)
Arguments
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
Plot title |
col |
Color used for plot. |
xlb |
Label for x-axis. |
ylb |
Label for y-axis. |
... |
Additional plotting parameters. |
Value
A lattice plot object will be returned.
Author(s)
Ron Keizer
Inclusion stability plot A plot of the inclusion frequency of covariates vs bootgam/bootscm iteration number. This plot can be used to evaluate whether sufficient iterations have been performed.
Description
Inclusion stability plot
A plot of the inclusion frequency of covariates vs bootgam/bootscm iteration number. This plot can be used to evaluate whether sufficient iterations have been performed.
Usage
xp.inc.stab.cov(
bootgam.obj = NULL,
boot.type = NULL,
main = NULL,
normalize = TRUE,
split.plots = FALSE,
xlb = "Bootstrap replicate number",
ylb = "Difference of estimate with final",
...
)
Arguments
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
Plot title |
normalize |
Should the plot be normalized? |
split.plots |
Should the plots be split? |
xlb |
The label for the x-axis. |
ylb |
The label for the y-axis. |
... |
Additional plotting parameters |
Value
A lattice plot object is returned.
Author(s)
Ron Keizer
See Also
Other bootgam:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Plot of inclusion index of covariates.
Description
Covariate inclusion indices show the correlation in inclusion of a covariate in the final model in a bootgam or bootscm.
Usage
xp.incl.index.cov(
bootgam.obj = NULL,
boot.type = NULL,
main = NULL,
xlb = "Index",
ylb = "Covariate",
add.ci = FALSE,
incl.range = NULL,
return_plot = TRUE,
results.tab = NULL,
...
)
Arguments
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
Plot title. |
xlb |
Label for the x-axis. |
ylb |
Label for the y-axis. |
add.ci |
Add a confidence interval to the plotted data. |
incl.range |
Included range |
return_plot |
Should the function return a plot? |
results.tab |
Specify your own results table. |
... |
Additional plotting information. |
Value
A lattice plot object is returned.
Author(s)
Ron Keizer
See Also
Other bootgam:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov.ind()
Inclusion index individuals, compare between covariates.
Description
A plot showing the range of inclusion indices for individuals for all covariates. This plot can be used to evaluate whether there were covariates which were more influenced by the constituency of the bootstrapped dataset than others.
Usage
xp.incl.index.cov.comp(
bootgam.obj = NULL,
boot.type = NULL,
main = NULL,
xlb = "Individual inclusion index",
ylb = "ID",
...
)
Arguments
bootgam.obj |
A bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
The title of the plot. |
xlb |
The label for the x-axis. |
ylb |
The label for the y-axis. |
... |
Additional plotting parameters. |
Value
A lattice plot object is returned.
Author(s)
Ron Keizer
Individual inclusion index
Description
This function will generate a plot of individual inclusion indexes for a specific covariate, which can be used to identify influential individuals for inclusion of that covariate. The index for an individual is calculated as the observed number of inclusions of that individual when the specific covariate was included minus the expected number of inclusions (based on the total bootstrap inclusions), divided by expected.
Usage
xp.incl.index.cov.ind(
bootgam.obj = NULL,
boot.type = NULL,
cov.name = NULL,
main = NULL,
ylb = "ID",
xlb = "Individual inclusion index",
return_plot = TRUE,
results.tab = NULL,
...
)
Arguments
bootgam.obj |
A bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
cov.name |
The name of the covariate for which to create the plot. |
main |
The title of the plot. |
ylb |
The label for the x-axis. |
xlb |
The label for the y-axis. |
return_plot |
Should a plot object be returned? |
results.tab |
Supply your own results table. |
... |
Additional plotting parameters. |
Value
A lattice plot object is returned.
Author(s)
Ron Keizer
See Also
Other bootgam:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
Define a scope for the gam. Used as default input to the scope
argument in
xpose.gam
Description
Define a scope for the gam. Used as default input to the scope
argument in
xpose.gam
Usage
xp.scope3(
object,
covnam = xvardef("covariates", object),
nmods = 3,
smoother1 = 0,
arg1 = NULL,
smoother2 = 1,
arg2 = NULL,
smoother3 = "ns",
arg3 = "df=2",
smoother4 = "ns",
arg4 = "df=3",
excl1 = NULL,
excl2 = NULL,
excl3 = NULL,
excl4 = NULL,
extra = NULL,
subset = xsubset(object),
...
)
Arguments
object |
An xpose.data object. |
covnam |
Covariate names to test. |
nmods |
Number of models to examine. |
smoother1 |
Smoother for each model. |
arg1 |
Argument for model 1. |
smoother2 |
Smoother for each model. |
arg2 |
Argument for model 2. |
smoother3 |
Smoother for each model. |
arg3 |
Argument for model 3. |
smoother4 |
Smoother for each model. |
arg4 |
Argument for model 4. |
excl1 |
Covariate exclusion from model 1. |
excl2 |
Covariate exclusion from model 2. |
excl3 |
Covariate exclusion from model 3. |
excl4 |
Covariate exclusion from model 4. |
extra |
Extra exclusion criteria. |
subset |
Subset on data. |
... |
Used to pass arguments to more basic functions. |
See Also
Other GAM functions:
GAM_summary_and_plot
,
xp.get.disp()
,
xpose.bootgam()
,
xpose.gam()
,
xpose4-package
Examples
xp.scope3(simpraz.xpdb)
Visual Predictive Check (VPC) using XPOSE
Description
This Function is used to create a VPC in xpose using the output from the
vpc
command in Pearl Speaks NONMEM (PsN). The function reads in the
output files created by PsN and creates a plot from the data. The dependent
variable, independent variable and conditioning variable are automatically
determined from the PsN files.
Usage
xpose.VPC(
vpc.info = "vpc_results.csv",
vpctab = dir(pattern = "^vpctab")[1],
object = NULL,
ids = FALSE,
type = "p",
by = NULL,
PI = NULL,
PI.ci = "area",
PI.ci.area.smooth = FALSE,
PI.real = TRUE,
subset = NULL,
main = "Default",
main.sub = NULL,
main.sub.cex = 0.85,
inclZeroWRES = FALSE,
force.x.continuous = FALSE,
funy = NULL,
logy = FALSE,
ylb = "Default",
verbose = FALSE,
PI.x.median = TRUE,
PI.rug = "Default",
PI.identify.outliers = TRUE,
...
)
Arguments
vpc.info |
The results file from the |
vpctab |
The ‘vpctab’ from the |
object |
An xpose data object. Created from |
ids |
A logical value indicating whether text ID labels should be used
as plotting symbols (the variable used for these symbols indicated by the
|
type |
Character string describing the way the points in the plot will
be displayed. For more details, see |
by |
A string or a vector of strings with the name(s) of the
conditioning variables. For example |
PI |
Either "lines", "area" or "both" specifying whether prediction
intervals (as lines, a shaded area or both) should be added to the plot.
|
PI.ci |
Plot the confidence interval for the simulated data's
percentiles for each bin (for each simulated data set compute the
percentiles for each bin, then, from all of the percentiles from all of the
simulated datasets compute the 95% CI of these percentiles). Values can be
|
PI.ci.area.smooth |
Should the "area" for |
PI.real |
Plot the percentiles of the real data in the various bins. values can be NULL or TRUE. Note that for a bin with few actual observations the percentiles will be approximate. For example, the 95th percentile of 4 data points will always be the largest of the 4 data points. |
subset |
A string giving the subset expression to be applied to the data
before plotting. See |
main |
A string giving the plot title or |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector |
main.sub.cex |
The size of the |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. |
force.x.continuous |
Logical value indicating whether x-values should be converted to continuous variables, even if they are defined as factors. |
funy |
String of function to apply to Y data. For example "abs" |
logy |
Logical value indicating whether the y-axis should be logarithmic, base 10. |
ylb |
Label for the y-axis |
verbose |
Should warning messages and other diagnostic information be passed to screen? (TRUE or FALSE) |
PI.x.median |
Should the x-location of percentile lines in a bin be
marked at the median of the x-values? ( |
PI.rug |
Should there be markings on the plot showing where the binning intervals for the VPC are (or the locations of the independent variable used for each VPC calculation if binning is not used)? |
PI.identify.outliers |
Should outlying percentiles of the real data be highlighted? (TRUE of FALSE) |
... |
Other arguments passed to |
Value
A plot or a list of plots.
Additional arguments
Below are some of the additional arguments that can control the look and
feel of the VPC. See
xpose.panel.default
for all potential options.
Additional graphical elements available in the VPC plots.
- PI.mirror = NULL, TRUE or AN.INTEGER.VALUE
Plot the percentiles of one simulated data set in each bin.
TRUE
takes the first mirror from ‘vpc_results.csv’ andAN.INTEGER.VALUE
can be1, 2, ...{} n
wheren
is the number of mirror's output in the ‘vpc_results.csv’ file.- PI.limits = c(0.025, 0.975)
A vector of two values that describe the limits of the prediction interval that should be displayed. These limits should be found in the ‘vpc_results.csv’ file. These limits are also used as the percentages for the
PI.real, PI.mirror
andPI.ci
. However, the confidence interval inPI.ci
is always the one defined in the ‘vpc_results.csv’ file.
Additional options to control the look and feel of the PI
.
See See grid.polygon
and plot
for more details.
- PI.arcol
The color of the
PI
area- PI.up.lty
The upper line type. can be "dotted" or "dashed", etc.
- PI.up.type
The upper type used for plotting. Defaults to a line.
- PI.up.col
The upper line color
- PI.up.lwd
The upper line width
- PI.down.lty
The lower line type. can be "dotted" or "dashed", etc.
- PI.down.type
The lower type used for plotting. Defaults to a line.
- PI.down.col
The lower line color
- PI.down.lwd
The lower line width
- PI.med.lty
The median line type. can be "dotted" or "dashed", etc.
- PI.med.type
The median type used for plotting. Defaults to a line.
- PI.med.col
The median line color
- PI.med.lwd
The median line width
Additional options to control the look and feel of the
PI.ci
. See See grid.polygon
and
plot
for more details.
- PI.ci.up.arcol
The color of the upper
PI.ci
.- PI.ci.med.arcol
The color of the median
PI.ci
.- PI.ci.down.arcol
The color of the lower
PI.ci
.- PI.ci.up.lty
The upper line type. can be "dotted" or "dashed", etc.
- PI.ci.up.type
The upper type used for plotting. Defaults to a line.
- PI.ci.up.col
The upper line color
- PI.ci.up.lwd
The upper line width
- PI.ci.down.lty
The lower line type. can be "dotted" or "dashed", etc.
- PI.ci.down.type
The lower type used for plotting. Defaults to a line.
- PI.ci.down.col
The lower line color
- PI.ci.down.lwd
The lower line width
- PI.ci.med.lty
The median line type. can be "dotted" or "dashed", etc.
- PI.ci.med.type
The median type used for plotting. Defaults to a line.
- PI.ci.med.col
The median line color
- PI.ci.med.lwd
The median line width
- PI.ci.area.smooth
Should the "area" for
PI.ci
be smoothed to match the "lines" argument? Allowed values areTRUE/FALSE
. The "area" is set by default to show the bins used in thePI.ci
computation. By smoothing, information is lost and, in general, the confidence intervals will be smaller than they are in reality.
Additional options to control the look and feel of the
PI.real
. See See grid.polygon
and
plot
for more details.
- PI.real.up.lty
The upper line type. can be "dotted" or "dashed", etc.
- PI.real.up.type
The upper type used for plotting. Defaults to a line.
- PI.real.up.col
The upper line color
- PI.real.up.lwd
The upper line width
- PI.real.down.lty
The lower line type. can be "dotted" or "dashed", etc.
- PI.real.down.type
The lower type used for plotting. Defaults to a line.
- PI.real.down.col
The lower line color
- PI.real.down.lwd
The lower line width
- PI.real.med.lty
The median line type. can be "dotted" or "dashed", etc.
- PI.real.med.type
The median type used for plotting. Defaults to a line.
- PI.real.med.col
The median line color
- PI.real.med.lwd
The median line width
Additional options to control the look and feel of the
PI.mirror
. See See plot
for more
details.
- PI.mirror.up.lty
The upper line type. can be "dotted" or "dashed", etc.
- PI.mirror.up.type
The upper type used for plotting. Defaults to a line.
- PI.mirror.up.col
The upper line color
- PI.mirror.up.lwd
The upper line width
- PI.mirror.down.lty
The lower line type. can be "dotted" or "dashed", etc.
- PI.mirror.down.type
The lower type used for plotting. Defaults to a line.
- PI.mirror.down.col
The lower line color
- PI.mirror.down.lwd
The lower line width
- PI.mirror.med.lty
The median line type. can be "dotted" or "dashed", etc.
- PI.mirror.med.type
The median type used for plotting. Defaults to a line.
- PI.mirror.med.col
The median line color
- PI.mirror.med.lwd
The median line width
Author(s)
Andrew Hooker
See Also
read.vpctab
read.npc.vpc.results
xpose.panel.default
xpose.plot.default
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
library(xpose4)
xpose.VPC()
## to be more clear about which files should be read in
vpc.file <- "vpc_results.csv"
vpctab <- "vpctab5"
xpose.VPC(vpc.info=vpc.file,vpctab=vpctab)
## with lines and a shaded area for the prediction intervals
xpose.VPC(vpc.file,vpctab=vpctab,PI="both")
## with the percentages of the real data
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T)
## with mirrors (if supplied in 'vpc.file')
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.mirror=5)
## with CIs
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.ci="area")
xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.ci="area",PI=NULL)
## stratification (if 'vpc.file' is stratified)
cond.var <- "WT"
xpose.VPC(vpc.file,vpctab=vpctab)
xpose.VPC(vpc.file,vpctab=vpctab,by=cond.var)
xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both",by=cond.var,type="n")
## with no data points in the plot
xpose.VPC(vpc.file,vpctab=vpctab,by=cond.var,PI.real=T,PI.ci="area",PI=NULL,type="n")
## with different DV and IDV, just read in new files and plot
vpc.file <- "vpc_results.csv"
vpctab <- "vpctab5"
cond.var <- "WT"
xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both",by=cond.var)
xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both")
## to use an xpose data object instead of vpctab
##
## In this example
## we expect to find the required NONMEM run and table files for run
## 5 in the current working directory
runnumber <- 5
xpdb <- xpose.data(runnumber)
xpose.VPC(vpc.file,object=xpdb)
## to read files in a directory different than the current working directory
vpc.file <- "./vpc_strat_WT_4_mirror_5/vpc_results.csv"
vpctab <- "./vpc_strat_WT_4_mirror_5/vpctab5"
xpose.VPC(vpc.info=vpc.file,vpctab=vpctab)
## to rearrange order of factors in VPC plot
xpdb@Data$SEX <- factor(xpdb@Data$SEX,levels=c("2","1"))
xpose.VPC(by="SEX",object=xpdb)
## End(Not run)
Xpose Visual Predictive Check (VPC) for both continuous and Limit of Quantification data.
Description
Xpose Visual Predictive Check (VPC) for both continuous and Below or Above Limit of Quantification (BLQ or ALQ) data.
Usage
xpose.VPC.both(
vpc.info = "vpc_results.csv",
vpctab = dir(pattern = "^vpctab")[1],
object = NULL,
subset = NULL,
main = "Default",
main.sub = NULL,
inclZeroWRES = FALSE,
cont.logy = F,
hline = "default",
add.args.cont = list(),
add.args.cat = list(),
...
)
Arguments
vpc.info |
Name of PSN file to use. File will come from |
vpctab |
Name of vpctab file produced from PsN. |
object |
Xpose data object. |
subset |
Subset of data to look at. |
main |
Title for plot. |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector, e.g. |
inclZeroWRES |
Include WRES=0 rows in the computations for these plots? |
cont.logy |
Should the continuous plot y-axis be on the log scale? |
hline |
Horizontal line marking the limits of quantification. If they are defined, they must be a vector of values. |
add.args.cont |
Additional arguments to the continuous plot.
|
add.args.cat |
Additional arguments to the categorical plot.
|
... |
Additional arguments to both plots. |
Author(s)
Andrew C. Hooker
See Also
xpose.VPC
, xpose.VPC.categorical
.
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.categorical()
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.categorical()
,
xpose4-package
Examples
## Not run:
library(xpose4)
## move to the directory where results from PsN
## are found
cur.dir <- getwd()
setwd(paste(cur.dir,"/vpc_cont_LLOQ/",sep=""))
xpose.VPC()
xpose.VPC.categorical(censored=T)
xpose.VPC.both()
xpose.VPC.both(subset="DV>1.75")
xpose.VPC.both(add.args.cont=list(ylim=c(0,80)))
xpose.VPC.both(add.args.cont = list(ylim = c(0.01, 80)), xlim = c(0,
40), add.args.cat = list(ylim = c(0, 0.4)), cont.logy = T)
xpose.VPC.both(cont.logy=T)
## End(Not run)
Xpose visual predictive check for categorical data.
Description
Xpose visual predictive check for categorical data (binary, ordered categorical and count data).
Usage
xpose.VPC.categorical(
vpc.info = "vpc_results.csv",
vpctab = dir(pattern = "^vpctab")[1],
object = NULL,
subset = NULL,
main = "Default",
main.sub = "Default",
main.sub.cex = 0.85,
real.col = 4,
real.lty = "b",
real.cex = 1,
real.lwd = 1,
median.line = FALSE,
median.col = "darkgrey",
median.lty = 1,
ci.lines = FALSE,
ci.col = "blue",
ci.lines.col = "darkblue",
ci.lines.lty = 3,
xlb = "Default",
ylb = "Proportion of Total",
force.x.continuous = FALSE,
level.to.plot = NULL,
max.plots.per.page = 1,
rug = TRUE,
rug.col = "orange",
censored = FALSE,
...
)
Arguments
vpc.info |
Name of PSN file to use. File will come from |
vpctab |
Name of vpctab file produced from PsN. |
object |
Xpose data object. |
subset |
Subset of data to look at. |
main |
Title for plot. |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector, e.g. |
main.sub.cex |
Size of |
real.col |
Color of real line. |
real.lty |
Real line type. |
real.cex |
Size of real line. |
real.lwd |
Width of real line. |
median.line |
Dray a median line? |
median.col |
Color of median line. |
median.lty |
median line type. |
ci.lines |
Lines marking confidence interval? |
ci.col |
Color of CI area. |
ci.lines.col |
Color of CI lines. |
ci.lines.lty |
Type of CI lines. |
xlb |
X-axis label. If other than "default"" passed directly to
|
ylb |
Y-axis label. Passed directly to |
force.x.continuous |
For the x variable to be continuous. |
level.to.plot |
Which levels of the variable to plot. Smallest level is 1, largest is number_of_levels. For example, with 4 levels, the largest level would be 4, the smallest would be 1. |
max.plots.per.page |
The number of plots per page. |
rug |
Should there be markings on the plot showing where the intervals for the VPC are? |
rug.col |
Color of the rug. |
censored |
Is this censored data? Censored data can be both below and above the limit of quantification. |
... |
Additional information passed to function. |
Author(s)
Andrew C. Hooker
See Also
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose4-package
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose4-package
Examples
## Not run:
library(xpose4)
## move to the directory where results from PsN
## are found
cur.dir <- getwd()
setwd(paste(cur.dir,"/binary/vpc_36",sep=""))
xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4)
xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4,by="DOSE")
## ordered categorical plots
setwd(paste(cur.dir,"/ordered_cat/vpc_45",sep=""))
xpose.VPC.categorical()
## count
setwd(paste(cur.dir,"/count/vpc65b",sep=""))
xpose.VPC.categorical()
setwd(paste(cur.dir,"/count/vpc65a",sep=""))
xpose.VPC.categorical()
## End(Not run)
Function to ask the user for the name of a file
Description
Asks the user for the name of a file.
Usage
xpose.ask.for.filename(
object,
listfile = paste("run", object@Runno, ".lst", sep = ""),
modfile = paste("run", object@Runno, ".mod", sep = ""),
...
)
Arguments
object |
An |
listfile |
A NONMEM output file |
modfile |
A NONMEM model file |
... |
Additional arguments passed to the function |
Details
Function checks if the file exists, if it does then the filename is returned from the function.
Value
The name of the file if it exists, otherwise nothing is returned.
Author(s)
Niclas Jonsson, Justin Wilkins, Mats Karlsson and Andrew Hooker
Title
Description
Title
Usage
xpose.bootgam(
object,
n = n,
id = object@Prefs@Xvardef$id,
oid = "OID",
seed = NULL,
parnam = xvardef("parms", object)[1],
covnams = xvardef("covariates", object),
conv.value = object@Prefs@Bootgam.prefs$conv.value,
check.interval = as.numeric(object@Prefs@Bootgam.prefs$check.interval),
start.check = as.numeric(object@Prefs@Bootgam.prefs$start.check),
algo = object@Prefs@Bootgam.prefs$algo,
start.mod = object@Prefs@Bootgam.prefs$start.mod,
liif = as.numeric(object@Prefs@Bootgam.prefs$liif),
ljif.conv = as.numeric(object@Prefs@Bootgam.prefs$ljif.conv),
excluded.ids = as.numeric(object@Prefs@Bootgam.prefs$excluded.ids),
...
)
Arguments
object |
An xpose.data object. |
n |
number of bootstrap iterations |
id |
column name of id |
oid |
create a new column with the original ID data |
seed |
random seed |
parnam |
ONE (and only one) model parameter name. |
covnams |
Covariate names to test on parameter. |
conv.value |
Convergence value |
check.interval |
How often to check the convergence |
start.check |
When to start checking |
algo |
Which algorithm to use |
start.mod |
which start model |
liif |
The liif value |
ljif.conv |
The convergence value for the liif |
excluded.ids |
ID values to exclude. |
... |
Used to pass arguments to more basic functions. |
Value
a list of results from the bootstrap of the GAM.
See Also
Other GAM functions:
GAM_summary_and_plot
,
xp.get.disp()
,
xp.scope3()
,
xpose.gam()
,
xpose4-package
Examples
## Not run:
## filter out occasion as a covariate as only one value
all_covs <- xvardef("covariates",simpraz.xpdb)
some_covs <- all_covs[!(all_covs %in% "OCC") ]
## here only running n=5 replicates to see that things work
## use something like n=100 for resonable results
boot_gam_obj <- xpose.bootgam(simpraz.xpdb,5,parnam="KA",covnams=some_covs,seed=1234)
## End(Not run)
Functions to create labels for plots
Description
Functions to create labels for plots
Usage
xpose.create.title(
x,
y,
object,
subset = NULL,
funx = NULL,
funy = NULL,
no.runno = FALSE,
...
)
xpose.create.label(
x,
object,
fun,
logx,
autocorr.x = FALSE,
autocorr.y = FALSE,
...
)
Arguments
x |
Column name for x-variable |
y |
Column name for y variable |
object |
Xpose data object |
subset |
Subset used for plot |
funx |
Function applied to x data |
funy |
Function applied to y data |
no.runno |
should we include a run number in the label |
... |
additional arguments passed to the function. |
fun |
Function applied to data |
Value
Plot titles and labels.
Functions
-
xpose.create.label()
: Create label values
Author(s)
Andrew Hooker
Create Xpose title text for plots.
Description
Create Xpose title text for plots.
Usage
xpose.create.title.text(x, y, text, object, subset, text2 = NULL, ...)
Arguments
x |
The x-axis variable name. |
y |
The y-axis variable name. |
text |
Initial text in title. |
object |
Xpose data object |
subset |
Subset definition. |
text2 |
Text at the end of the title. |
... |
Additional options passed to function. |
Author(s)
Andrew C. Hooker
Create an Xpose data object
Description
Creates an xpose.data
object.
Usage
xpose.data(
runno,
tab.suffix = "",
sim.suffix = "sim",
cwres.suffix = "",
directory = ".",
quiet = TRUE,
table.names = c("sdtab", "mutab", "patab", "catab", "cotab", "mytab", "extra", "xptab",
"cwtab"),
cwres.name = c("cwtab"),
mod.prefix = "run",
mod.suffix = ".mod",
phi.suffix = ".phi",
phi.file = NULL,
nm7 = NULL,
...
)
Arguments
runno |
Run number of the table files to read. |
tab.suffix |
Suffix to be appended to the table file names for the "real" data. |
sim.suffix |
Suffix to be appended to the table file names for any simulated data. |
cwres.suffix |
Suffix to be appended to the table file names for any CWRES data. |
directory |
Where the files are located. |
quiet |
A logical value indicating if more diagnostic messages should be printed when running this function. |
table.names |
Default text that Xpose looks for when searching for table files. |
cwres.name |
default text that xpose looks for when searching for CWRES table files. |
mod.prefix |
Start of model file name. |
mod.suffix |
End of model file name. |
phi.suffix |
End of .phi file name. |
phi.file |
The name of the .phi file. If not |
nm7 |
|
... |
Extra arguments passed to function. |
Details
Xpose expects, by default, to find at least one the the following NONMEM tables in the working directory to be able to create an Xpose data object (using a run number of '5' as an example):
sdtab5: The 'standard' parameters, including IWRE, IPRE, TIME, and the NONMEM
default items (DV, PRED, RES and WRES) that are added when NOAPPEND is not
present in the $TABLE
record.
$TABLE ID TIME IPRE IWRE NOPRINT ONEHEADER FILE=sdtab5
patab5: The empirical Bayes estimates of individual model parameter values, or posthoc estimates. These are model parameters, such as CL, V2, ETA1, etc.
$TABLE ID CL V2 KA K F1 ETA1 ETA2 ETA3 NOPRINT NOAPPEND ONEHEADER
FILE=patab5
catab5: Categorical covariates, e.g. SEX, RACE.
$TABLE ID SEX HIV GRP NOPRINT NOAPPEND ONEHEADER FILE=catab5
cotab5: Continuous covariates, e.g. WT, AGE.
$TABLE ID WT AGE BSA HT GGT HB NOPRINT NOAPPEND ONEHEADER FILE=cotab5
mutab5, mytab5, extra5, xptab5: Additional variables of any kind. These might be useful if there are more covariates than can be accommodated in the covariates tables, for example, or if you have other variables that should be added, e.g. CMAX, AUC.
The default names for table files can be changed by changing the default values to the function. The files that Xpose looks for by default are:
paste(table.names, runno, tab.suffix, sep="")
The default CWRES table file name is called:
paste(cwres.name,runno,cwres.suffix,tab.suffix,sep="")
If there are simulation files present then Xpose looks for the files to be named:
paste(table.names, runno, sim.suffix, tab.suffix, sep="")
paste(cwres.name,runno,sim.suffix,cwres.suffix,tab.suffix,sep="")
This is basically a wrapper function for the read.nm.tables
,
Data
and SData
functions. See them for further information.
Also reads in the .phi file associated with the run (Individual OFVs, parameters, and variances of those parameters.)
Value
An xpose.data
object. Default values for this object are
created from a file called 'xpose.ini'. This file can be found in the root
directory of the 'xpose4' package:
system.file("xpose.ini",package="xpose4")
.
It can be modified to fit the users wants and placed in the home folder of the user or the working directory, to override default settings.
Author(s)
Niclas Jonsson, Andrew Hooker
See Also
xpose.data-class
, Data
,
SData
, read.nm.tables
,
compute.cwres
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.print()
,
xpose4-package
,
xsubset()
Examples
# Here we create files from an example NONMEM run
od = setwd(tempdir()) # move to a temp directory
(cur.files <- dir()) # current files in temp directory
simprazExample(overwrite=TRUE) # write files
(new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here?
xpdb <- xpose.data(1)
file.remove(new.files) # remove these files
setwd(od) # restore working directory
## Not run:
# We expect to find the required NONMEM run and table files for run
# 5 in the current working directory, and that the table files have
# a suffix of '.dat', e.g. sdtab5.dat
xpdb5 <- xpose.data(5, tab.suffix = ".dat")
## End(Not run)
Class xpose.data
Description
The xpose.data class is the fundamental data object in Xpose 4. It contains the data and preferences used in the creation of the Xpose plots and analyses.
Objects from the Class
Objects are most easily created by the
xpose.data
function, which reads the appropriate NONMEM table files
and populates the slots of the object.
Author(s)
Niclas Jonsson and Andrew Hooker
See Also
xpose.data
, Data
, SData
read.nm.tables
, xpose.prefs-class
Create a new graphical device for an Xpose plot.
Description
The function uses the code from dev.new(). This is a function to make dev.new() back compatible with older versions of R (before 2.8.0).
Usage
xpose.dev.new(...)
Arguments
... |
Additional arguments to a new graphical device. see
|
Author(s)
Andrew Hooker
See Also
Stepwise GAM search for covariates on a parameter (Xpose 4)
Description
Function takes an Xpose object and performs a generalized additive model (GAM) stepwise search for influential covariates on a single model parameter.
Usage
xpose.gam(
object,
parnam = xvardef("parms", object)[1],
covnams = xvardef("covariates", object),
trace = TRUE,
scope = NULL,
disp = object@Prefs@Gam.prefs$disp,
start.mod = object@Prefs@Gam.prefs$start.mod,
family = "gaussian",
wts.data = object@Data.firstonly,
wts.col = NULL,
steppit = object@Prefs@Gam.prefs$steppit,
subset = xsubset(object),
onlyfirst = object@Prefs@Gam.prefs$onlyfirst,
medianNorm = object@Prefs@Gam.prefs$medianNorm,
nmods = object@Prefs@Gam.prefs$nmods,
smoother1 = object@Prefs@Gam.prefs$smoother1,
smoother2 = object@Prefs@Gam.prefs$smoother2,
smoother3 = object@Prefs@Gam.prefs$smoother3,
smoother4 = object@Prefs@Gam.prefs$smoother4,
arg1 = object@Prefs@Gam.prefs$arg1,
arg2 = object@Prefs@Gam.prefs$arg2,
arg3 = object@Prefs@Gam.prefs$arg3,
arg4 = object@Prefs@Gam.prefs$arg4,
excl1 = object@Prefs@Gam.prefs$excl1,
excl2 = object@Prefs@Gam.prefs$excl2,
excl3 = object@Prefs@Gam.prefs$excl3,
excl4 = object@Prefs@Gam.prefs$excl4,
extra = object@Prefs@Gam.prefs$extra,
...
)
Arguments
object |
An xpose.data object. |
parnam |
ONE (and only one) model parameter name. |
covnams |
Covariate names to test on parameter. |
trace |
TRUE if you want GAM output to screen. |
scope |
Scope of the GAM search. |
disp |
If dispersion should be used in the GAM object. |
start.mod |
Starting model. |
family |
Assumption for the parameter distribution. |
wts.data |
Weights on the least squares fitting of parameter vs.
covariate. Often one can use the variances of the individual parameter
values as weights. This data frame must have column with name ID and any
subset variable as well as the variable defined by the |
wts.col |
Which column in the |
steppit |
TRUE for stepwise search, false for no search. |
subset |
Subset on data. |
onlyfirst |
TRUE if only the first row of each individual's data is to be used. |
medianNorm |
Normalize to the median of parameter and covariates. |
nmods |
Number of models to examine. |
smoother1 |
Smoother for each model. |
smoother2 |
Smoother for each model. |
smoother3 |
Smoother for each model. |
smoother4 |
Smoother for each model. |
arg1 |
Argument for model 1. |
arg2 |
Argument for model 2. |
arg3 |
Argument for model 3. |
arg4 |
Argument for model 4. |
excl1 |
Covariate exclusion from model 1. |
excl2 |
Covariate exclusion from model 2. |
excl3 |
Covariate exclusion from model 3. |
excl4 |
Covariate exclusion from model 4. |
extra |
Extra exclusion criteria. |
... |
Used to pass arguments to more basic functions. |
Value
Returned is a step.Gam
object. In this object
the step-wise-selected model is returned, with up to two additional
components. There is an "anova" component
corresponding to the steps taken in the search, as well as a
"keep" component if the "keep=" argument was supplied in the call.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
Other GAM functions:
GAM_summary_and_plot
,
xp.get.disp()
,
xp.scope3()
,
xpose.bootgam()
,
xpose4-package
Examples
## Run a GAM using the example xpose database
gam_ka <- xpose.gam(simpraz.xpdb, parnam="KA")
## Summarize GAM
xp.summary(gam_ka)
## GAM residuals of base model vs. covariates
xp.plot(gam_ka)
## An Akaike plot of the results
xp.akaike.plot(gam_ka)
## Studentized residuals
xp.ind.stud.res(gam_ka)
## Individual influence on GAM fit
xp.ind.inf.fit(gam_ka)
## Individual influence on GAM terms
xp.ind.inf.terms(gam_ka)
## Individual parameters to GAM fit
xp.cook(gam_ka)
Displays the Xpose license and citation information
Description
This function displays a copy of Xpose's end user license agreement (EULA).
Usage
xpose.license.citation()
Value
The EULA.
Author(s)
Andrew Hooker
Examples
xpose.license.citation()
Functions to create nice looking axes when using Log scales.
Description
The functions are used to create standard tic marks and axis labels when the axes are on the log scale.
Usage
xpose.logTicks(lim, loc = c(1, 5))
xpose.yscale.components.log10(lim, ...)
xpose.xscale.components.log10(lim, ...)
Arguments
lim |
Limits |
loc |
Locations |
... |
Additional arguments passed to the function. |
Details
These functions create log scales that look like they should (not the
default R scales). These functions are used as input to the
xscale.components
argument in a lattice
plot.
Functions
-
xpose.logTicks()
: Make log tic marks -
xpose.xscale.components.log10()
: Make log scale on x-axis
Author(s)
Andrew Hooker
See Also
xpose.plot.default
xscale.components
Examples
## Not run:
xpdb5 <- xpose.data(5)
xpose.plot.default("PRED","DV",xpdb,logy=T,logx=T)
xpose.plot.default("PRED","DV",xpdb,logy=T,logx=T,
yscale.components = xpose.yscale.components.log10,
xscale.components = xpose.xscale.components.log10)
## both give the same result
## End(Not run)
Create and object with class "xpose.multiple.plot".
Description
Create and object with class "xpose.multiple.plot".
Usage
xpose.multiple.plot(
plotList,
plotTitle = NULL,
nm7 = TRUE,
prompt = FALSE,
new.first.window = FALSE,
max.plots.per.page = 4,
title = list(title.x = unit(0.5, "npc"), title.y = unit(0.5, "npc"), title.gp =
gpar(cex = 1.2, fontface = "bold"), title.just = c("center", "center")),
mirror = FALSE,
bql.layout = FALSE,
...
)
Arguments
plotList |
A list of lattice plots. |
plotTitle |
Main title for plots. |
nm7 |
|
prompt |
When printing should we prompt for each new page in plot? |
new.first.window |
|
max.plots.per.page |
A number. Max value is 9. |
title |
Title properties. |
mirror |
Are there mirror plots in plot list? |
bql.layout |
Should we use layout optimized for plots with BQL (below limit of quantification) measurements? |
... |
Additional options passed to function. |
Value
An object of class "xpose.multiple.plot".
Author(s)
Niclas Jonsson and Andrew C. Hooker
See Also
print.xpose.multiple.plot
,
xpose.multiple.plot.default
Other generic functions:
gof()
,
xpose4-package
Class for creating multiple plots in xpose
Description
Class for creating multiple plots in xpose
Slots
plotList
A list of lattice plots
plotTitle
The plot title
prompt
Should prompts be used
new.first.window
Create a new first window?
max.plots.per.page
How many plots per page?
title
The title
mirror
Are there mirror plots to create
bql.layout
Should we use bql.layout
Xpose 4 generic function for plotting multiple lattice objects on one page
Description
Function takes a list of lattice plot objects and prints them in a multiple plot layout with a title.
Usage
xpose.multiple.plot.default(
plotList,
plotTitle = NULL,
prompt = FALSE,
new.first.window = FALSE,
max.plots.per.page = 4,
title = list(title.x = unit(0.5, "npc"), title.y = unit(0.5, "npc"), title.gp =
gpar(cex = 1.2, fontface = "bold"), title.just = c("center", "center")),
mirror = FALSE,
bql.layout = FALSE,
page.numbers = TRUE,
...
)
Arguments
plotList |
A list of lattice plot objects such that plot object i can
be called with |
plotTitle |
The title used for the multiple plot layout |
prompt |
If more than one page is needed do you want a prompt at the command line before the next page is printed |
new.first.window |
Should the first page of this plot be in the already opened window or should a new window be created |
max.plots.per.page |
Maximum number of plots per page in the multiple layout |
title |
Look of title using grid. |
mirror |
if the list contains mirror plots |
bql.layout |
should we use layout optimized for BQL measurements? |
page.numbers |
Should we add page numbers to multiple page plots? |
... |
Other arguments passed to the code in this function |
Details
Additional arguments:
- title.x
Where the title should be placed in the title grid region
- title.y
Where the title should be placed in the title grid region
- title.just
how the title should be justified
- title.gp
The par parameters for the title (see grid)
Value
returns nothing
Author(s)
Andrew Hooker
See Also
grid, basic.gof
, parm.vs.parm
,
parm.vs.cov
,
Default box-and-whisker panel function for Xpose 4
Description
This is the box-and-whisker panel function for Xpose 4. This is not intended
to be used outside the xpose.plot.bw
function. Most of the arguments
take their default values from xpose.data object but this can be overridden
by supplying them as arguments to xpose.plot.bw
.
Usage
xpose.panel.bw(
x,
y,
object,
subscripts,
groups = NULL,
inclZeroWRES = FALSE,
onlyfirst = FALSE,
samp = NULL,
xvarnam = NULL,
yvarnam = NULL,
type = object@Prefs@Graph.prefs$type,
col = object@Prefs@Graph.prefs$col,
pch = object@Prefs@Graph.prefs$pch,
cex = object@Prefs@Graph.prefs$cex,
lty = object@Prefs@Graph.prefs$lty,
fill = object@Prefs@Graph.prefs$col,
ids = NULL,
idsmode = object@Prefs@Graph.prefs$idsmode,
idsext = object@Prefs@Graph.prefs$idsext,
idscex = object@Prefs@Graph.prefs$idscex,
idsdir = object@Prefs@Graph.prefs$idsdir,
bwhoriz = object@Prefs@Graph.prefs$bwhoriz,
bwratio = object@Prefs@Graph.prefs$bwratio,
bwvarwid = object@Prefs@Graph.prefs$bwvarwid,
bwdotpch = object@Prefs@Graph.prefs$bwdotpch,
bwdotcol = object@Prefs@Graph.prefs$bwdotcol,
bwdotcex = object@Prefs@Graph.prefs$bwdotcex,
bwreccol = object@Prefs@Graph.prefs$bwreccol,
bwrecfill = object@Prefs@Graph.prefs$bwrecfill,
bwreclty = object@Prefs@Graph.prefs$bwreclty,
bwreclwd = object@Prefs@Graph.prefs$bwreclwd,
bwumbcol = object@Prefs@Graph.prefs$bwumbcol,
bwumblty = object@Prefs@Graph.prefs$bwumblty,
bwumblwd = object@Prefs@Graph.prefs$bwumblwd,
bwoutcol = object@Prefs@Graph.prefs$bwoutcol,
bwoutcex = object@Prefs@Graph.prefs$bwoutcex,
bwoutpch = object@Prefs@Graph.prefs$bwoutpch,
grid = object@Prefs@Graph.prefs$grid,
logy = FALSE,
logx = FALSE,
force.x.continuous = TRUE,
binvar = NULL,
bins = 10,
...
)
Arguments
x |
Name(s) of the x-variable. |
y |
Name(s) of the y-variable. |
object |
An xpose.data object. |
subscripts |
The standard Trellis subscripts argument (see
|
groups |
Name of the variable used for superpose plots. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
xvarnam |
Character string with the name of the x-variable. |
yvarnam |
Character string with the name of the y-variable. |
type |
Character value indicating the type of display to use: "l"=lines, "p"=points, "b"=both points and lines. |
col |
Colour of lines and plot symbols. |
pch |
Plot character to use. |
cex |
Size of the plot characters. |
lty |
Line type. |
fill |
Fill colour. |
ids |
Character value with the name of the variable to label data points with. |
idsmode |
Determines the way text labels are added to plots.
|
idsext |
See |
idscex |
Size of text labels. |
idsdir |
A value of "both" (the default) means that both high and low
extreme points are labelled while "up" and "down" labels the high and low
extreme points respectively. See |
bwhoriz |
logical value indicating whether box and whiskers should be horizontal or not. The default is FALSE. |
bwratio |
Ratio of box height to inter-box space. The default is 1.5.
An argument for |
bwvarwid |
Logical. If TRUE, widths of boxplots are proportional to the
number of points used in creating it. The default is FALSE. An argument for
|
bwdotpch |
Graphical parameter controlling the dot plotting character
'bwdotpch="|"' is treated specially, by replacing the dot with a line. The
default is 16. An argument for |
bwdotcol |
Graphical parameter controlling the dot colour - an integer
or string. See 'col'. The default is black. An argument for
|
bwdotcex |
The amount by which plotting text and symbols should be
scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. An
argument for |
bwreccol |
The colour to use for the box rectangle - an integer or
string. The default is blue. See |
bwrecfill |
The colour to use for filling the box rectangle - an
integer or string. The default is transparent (none). See
|
bwreclty |
The line type for the box rectangle - an integer or string.
The default is solid. See |
bwreclwd |
The width of the lines for the box rectangle - an integer.
The default is 1. See |
bwumbcol |
The colour to use for the umbrellas - an integer or string.
The default is blue. See |
bwumblty |
The line type for the umbrellas - an integer or string. The
default is solid.See |
bwumblwd |
the width of the lines for the umbrellas - an integer. The
default is 1. See |
bwoutcol |
The colour to use for the outliers - an integer or string.
The default is blue. See |
bwoutcex |
The amount by which outlier points should be scaled relative
to the default. 'NULL' and 'NA' are equivalent to '1.0'. The default is 0.8.
See |
bwoutpch |
The plotting character, or symbol, to use for outlier
points. Specified as an integer. See R help on 'points'. The default is an
open circle. See |
grid |
logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc). |
logy |
Logical value indicating whether the y-axis should be logarithmic. |
logx |
Logical value indicating whether the x-axis should be logarithmic. |
force.x.continuous |
Logical value indicating whether x-values should be taken as continuous, even if categorical. |
binvar |
Variable to be used for binning. |
bins |
The number of bins to be used. The default is 10. |
... |
Other arguments that may be needed in the function. |
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.data-class
, Cross-references above.
Default panel function for Xpose 4
Description
This is the panel function for Xpose 4. This is not intended to be ised
outside the xpose.plot.default
function. Most of the arguments take
their default values from xpose.data object but this can be overridden by
supplying them as argument to xpose.plot.default
.
Usage
xpose.panel.default(
x,
y,
object,
subscripts,
groups = object@Prefs@Xvardef$id,
grp.col = NULL,
iplot = NULL,
inclZeroWRES = FALSE,
onlyfirst = FALSE,
samp = NULL,
xvarnam = NULL,
yvarnam = NULL,
PI = NULL,
PI.subset = NULL,
PI.bin.table = NULL,
PI.real = NULL,
PI.mirror = NULL,
PI.ci = NULL,
PPI = NULL,
PI.mean = FALSE,
PI.delta.mean = FALSE,
PI.x.median = TRUE,
PI.rug = "Default",
PI.rug.col = "orange",
PI.rug.lwd = 3,
PI.identify.outliers = TRUE,
PI.outliers.col = "red",
PI.outliers.pch = 8,
PI.outliers.cex = 1,
PI.limits = c(0.025, 0.975),
PI.arcol = "lightgreen",
PI.up.lty = 2,
PI.up.type = "l",
PI.up.col = "black",
PI.up.lwd = 2,
PI.down.lty = 2,
PI.down.type = "l",
PI.down.col = "black",
PI.down.lwd = 2,
PI.med.lty = 1,
PI.med.type = "l",
PI.med.col = "black",
PI.med.lwd = 2,
PI.mean.lty = 3,
PI.mean.type = "l",
PI.mean.col = "black",
PI.mean.lwd = 2,
PI.delta.mean.lty = 3,
PI.delta.mean.type = "l",
PI.delta.mean.col = "black",
PI.delta.mean.lwd = 2,
PI.real.up.lty = 2,
PI.real.up.type = "l",
PI.real.up.col = "red",
PI.real.up.lwd = 2,
PI.real.down.lty = 2,
PI.real.down.type = "l",
PI.real.down.col = "red",
PI.real.down.lwd = 2,
PI.real.med.lty = 1,
PI.real.med.type = "l",
PI.real.med.col = "red",
PI.real.med.lwd = 2,
PI.real.mean.lty = 3,
PI.real.mean.type = "l",
PI.real.mean.col = "red",
PI.real.mean.lwd = 2,
PI.real.delta.mean.lty = 3,
PI.real.delta.mean.type = "l",
PI.real.delta.mean.col = "red",
PI.real.delta.mean.lwd = 2,
PI.mirror.up.lty = 2,
PI.mirror.up.type = "l",
PI.mirror.up.col = "darkgreen",
PI.mirror.up.lwd = 1,
PI.mirror.down.lty = 2,
PI.mirror.down.type = "l",
PI.mirror.down.col = "darkgreen",
PI.mirror.down.lwd = 1,
PI.mirror.med.lty = 1,
PI.mirror.med.type = "l",
PI.mirror.med.col = "darkgreen",
PI.mirror.med.lwd = 1,
PI.mirror.mean.lty = 3,
PI.mirror.mean.type = "l",
PI.mirror.mean.col = "darkgreen",
PI.mirror.mean.lwd = 1,
PI.mirror.delta.mean.lty = 3,
PI.mirror.delta.mean.type = "l",
PI.mirror.delta.mean.col = "darkgreen",
PI.mirror.delta.mean.lwd = 1,
PI.ci.up.arcol = "blue",
PI.ci.up.lty = 3,
PI.ci.up.type = "l",
PI.ci.up.col = "darkorange",
PI.ci.up.lwd = 2,
PI.ci.down.arcol = "blue",
PI.ci.down.lty = 3,
PI.ci.down.type = "l",
PI.ci.down.col = "darkorange",
PI.ci.down.lwd = 2,
PI.ci.med.arcol = "red",
PI.ci.med.lty = 4,
PI.ci.med.type = "l",
PI.ci.med.col = "darkorange",
PI.ci.med.lwd = 2,
PI.ci.mean.arcol = "purple",
PI.ci.mean.lty = 4,
PI.ci.mean.type = "l",
PI.ci.mean.col = "darkorange",
PI.ci.mean.lwd = 2,
PI.ci.delta.mean.arcol = "purple",
PI.ci.delta.mean.lty = 4,
PI.ci.delta.mean.type = "l",
PI.ci.delta.mean.col = "darkorange",
PI.ci.delta.mean.lwd = 2,
PI.ci.area.smooth = FALSE,
type = object@Prefs@Graph.prefs$type,
col = object@Prefs@Graph.prefs$col,
pch = object@Prefs@Graph.prefs$pch,
cex = object@Prefs@Graph.prefs$cex,
lty = object@Prefs@Graph.prefs$lty,
lwd = object@Prefs@Graph.prefs$lwd,
fill = object@Prefs@Graph.prefs$fill,
ids = NULL,
idsmode = object@Prefs@Graph.prefs$idsmode,
idsext = object@Prefs@Graph.prefs$idsext,
idscex = object@Prefs@Graph.prefs$idscex,
idsdir = object@Prefs@Graph.prefs$idsdir,
abline = object@Prefs@Graph.prefs$abline,
abllwd = object@Prefs@Graph.prefs$abllwd,
abllty = object@Prefs@Graph.prefs$abllty,
ablcol = object@Prefs@Graph.prefs$ablcol,
smooth = object@Prefs@Graph.prefs$smooth,
smlwd = object@Prefs@Graph.prefs$smlwd,
smlty = object@Prefs@Graph.prefs$smlty,
smcol = object@Prefs@Graph.prefs$smcol,
smspan = object@Prefs@Graph.prefs$smspan,
smdegr = object@Prefs@Graph.prefs$smdegr,
smooth.for.groups = NULL,
lmline = object@Prefs@Graph.prefs$lmline,
lmlwd = object@Prefs@Graph.prefs$lmlwd,
lmlty = object@Prefs@Graph.prefs$lmlty,
lmcol = object@Prefs@Graph.prefs$lmcol,
suline = object@Prefs@Graph.prefs$suline,
sulwd = object@Prefs@Graph.prefs$sulwd,
sulty = object@Prefs@Graph.prefs$sulty,
sucol = object@Prefs@Graph.prefs$sucol,
suspan = object@Prefs@Graph.prefs$suspan,
sudegr = object@Prefs@Graph.prefs$sudegr,
grid = object@Prefs@Graph.prefs$grid,
logy = FALSE,
logx = FALSE,
force.x.continuous = FALSE,
bwhoriz = object@Prefs@Graph.prefs$bwhoriz,
bwratio = object@Prefs@Graph.prefs$bwratio,
bwvarwid = object@Prefs@Graph.prefs$bwvarwid,
bwdotpch = object@Prefs@Graph.prefs$bwdotpch,
bwdotcol = object@Prefs@Graph.prefs$bwdotcol,
bwdotcex = object@Prefs@Graph.prefs$bwdotcex,
bwreccol = object@Prefs@Graph.prefs$bwreccol,
bwrecfill = object@Prefs@Graph.prefs$bwrecfill,
bwreclty = object@Prefs@Graph.prefs$bwreclty,
bwreclwd = object@Prefs@Graph.prefs$bwreclwd,
bwumbcol = object@Prefs@Graph.prefs$bwumbcol,
bwumblty = object@Prefs@Graph.prefs$bwumblty,
bwumblwd = object@Prefs@Graph.prefs$bwumblwd,
bwoutcol = object@Prefs@Graph.prefs$bwoutcol,
bwoutcex = object@Prefs@Graph.prefs$bwoutcex,
bwoutpch = object@Prefs@Graph.prefs$bwoutpch,
autocorr = FALSE,
vline = NULL,
vllwd = 3,
vllty = 2,
vlcol = "grey",
hline = NULL,
hllwd = 3,
hllty = 1,
hlcol = "grey",
pch.ip.sp = pch,
cex.ip.sp = cex,
...
)
Arguments
x |
Name(s) of the x-variable. |
y |
Name(s) of the y-variable. |
object |
An xpose.data object. |
subscripts |
The standard Trellis subscripts argument (see
|
groups |
Name of the variable used for superpose plots. |
grp.col |
Logical value indicating whether or not to use colour highlighting when groups are specified. NULL means no highlighting, while TRUE will identify group members by colour. |
iplot |
Is this an individual plots matrix? Internal use only. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
xvarnam |
Character string with the name of the x-variable. |
yvarnam |
Character string with the name of the y-variable. |
PI |
Either "lines", "area" or "both" specifying whether prediction
intervals (as lines, as a shaded area or both) should be computed from the
data in |
PI.subset |
The subset to be used for the PI. |
PI.bin.table |
The table used to create VPC plots. Has a specific
format created by |
PI.real |
Plot the percentiles of the real data in the various bins. values can be NULL or TRUE. Note that for a bin with few actual observations the percentiles will be approximate. For example, the 95th percentile of 4 data points will always be the largest of the 4 data points. |
PI.mirror |
Plot the percentiles of one simulated data set in each bin.
values allowed are |
PI.ci |
Plot the prediction interval of the simulated data's
percentiles for each bin. Values can be |
PPI |
The plot prediction interval. Has a specific format that must be
followed. See |
PI.mean |
Should the mean be plotted in the VPCs? TRUE or FALSE. |
PI.delta.mean |
Should the delta mean be plotted in the VPCs? TRUE or FALSE. |
PI.x.median |
Should the x-location of percentile lines in a bin be
marked at the median of the x-values? ( |
PI.rug |
Should there be markings on the plot showing where the binning intervals for the VPC are (or the locations of the independent variable used for each VPC calculation if binning is not used)? |
PI.rug.col |
Color of the PI.rug. |
PI.rug.lwd |
Linw width of the PI.rug. |
PI.identify.outliers |
Should outlying percentiles of the real data be highlighted? (TRUE of FALSE) |
PI.outliers.col |
Color of PI.identify.outliers points |
PI.outliers.pch |
pch of PI.identify.outliers points |
PI.outliers.cex |
cex of PI.identify.outliers points |
PI.limits |
A vector of two values that describe the limits of the
prediction interval that should be displayed. For example |
PI.arcol |
The color of the |
PI.up.lty |
The upper line type. can be "dotted" or "dashed", etc. |
PI.up.type |
The upper type used for plotting. Defaults to a line. |
PI.up.col |
The upper line color |
PI.up.lwd |
The upper line width |
PI.down.lty |
The lower line type. can be "dotted" or "dashed", etc. |
PI.down.type |
The lower type used for plotting. Defaults to a line. |
PI.down.col |
The lower line color |
PI.down.lwd |
The lower line width |
PI.med.lty |
The median line type. can be "dotted" or "dashed", etc. |
PI.med.type |
The median type used for plotting. Defaults to a line. |
PI.med.col |
The median line color |
PI.med.lwd |
The median line width |
PI.mean.lty |
The mean line type. can be "dotted" or "dashed", etc. |
PI.mean.type |
The mean type used for plotting. Defaults to a line. |
PI.mean.col |
The mean line color |
PI.mean.lwd |
The mean line width |
PI.delta.mean.lty |
The delta.mean line type. can be "dotted" or "dashed", etc. |
PI.delta.mean.type |
The delta.mean type used for plotting. Defaults to a line. |
PI.delta.mean.col |
The delta.mean line color |
PI.delta.mean.lwd |
The delta.mean line width |
PI.real.up.lty |
The upper line type. can be "dotted" or "dashed", etc. |
PI.real.up.type |
The upper type used for plotting. Defaults to a line. |
PI.real.up.col |
The upper line color |
PI.real.up.lwd |
The upper line width |
PI.real.down.lty |
The lower line type. can be "dotted" or "dashed", etc. |
PI.real.down.type |
The lower type used for plotting. Defaults to a line. |
PI.real.down.col |
The lower line color |
PI.real.down.lwd |
The lower line width |
PI.real.med.lty |
The median line type. can be "dotted" or "dashed", etc. |
PI.real.med.type |
The median type used for plotting. Defaults to a line. |
PI.real.med.col |
The median line color |
PI.real.med.lwd |
The median line width |
PI.real.mean.lty |
The mean line type. can be "dotted" or "dashed", etc. |
PI.real.mean.type |
The mean type used for plotting. Defaults to a line. |
PI.real.mean.col |
The mean line color |
PI.real.mean.lwd |
The mean line width |
PI.real.delta.mean.lty |
The delta.mean line type. can be "dotted" or "dashed", etc. |
PI.real.delta.mean.type |
The delta.mean type used for plotting. Defaults to a line. |
PI.real.delta.mean.col |
The delta.mean line color |
PI.real.delta.mean.lwd |
The delta.mean line width |
PI.mirror.up.lty |
The upper line type. can be "dotted" or "dashed", etc. |
PI.mirror.up.type |
The upper type used for plotting. Defaults to a line. |
PI.mirror.up.col |
The upper line color |
PI.mirror.up.lwd |
The upper line width |
PI.mirror.down.lty |
The lower line type. can be "dotted" or "dashed", etc. |
PI.mirror.down.type |
The lower type used for plotting. Defaults to a line. |
PI.mirror.down.col |
The lower line color |
PI.mirror.down.lwd |
The lower line width |
PI.mirror.med.lty |
The median line type. can be "dotted" or "dashed", etc. |
PI.mirror.med.type |
The median type used for plotting. Defaults to a line. |
PI.mirror.med.col |
The median line color |
PI.mirror.med.lwd |
The median line width |
PI.mirror.mean.lty |
The mean line type. can be "dotted" or "dashed", etc. |
PI.mirror.mean.type |
The mean type used for plotting. Defaults to a line. |
PI.mirror.mean.col |
The mean line color |
PI.mirror.mean.lwd |
The mean line width |
PI.mirror.delta.mean.lty |
The delta.mean line type. can be "dotted" or "dashed", etc. |
PI.mirror.delta.mean.type |
The delta.mean type used for plotting. Defaults to a line. |
PI.mirror.delta.mean.col |
The delta.mean line color |
PI.mirror.delta.mean.lwd |
The delta.mean line width |
PI.ci.up.arcol |
The color of the upper |
PI.ci.up.lty |
The upper line type. can be "dotted" or "dashed", etc. |
PI.ci.up.type |
The upper type used for plotting. Defaults to a line. |
PI.ci.up.col |
The upper line color |
PI.ci.up.lwd |
The upper line width |
PI.ci.down.arcol |
The color of the lower |
PI.ci.down.lty |
The lower line type. can be "dotted" or "dashed", etc. |
PI.ci.down.type |
The lower type used for plotting. Defaults to a line. |
PI.ci.down.col |
The lower line color |
PI.ci.down.lwd |
The lower line width |
PI.ci.med.arcol |
The color of the median |
PI.ci.med.lty |
The median line type. can be "dotted" or "dashed", etc. |
PI.ci.med.type |
The median type used for plotting. Defaults to a line. |
PI.ci.med.col |
The median line color |
PI.ci.med.lwd |
The median line width |
PI.ci.mean.arcol |
The color of the mean |
PI.ci.mean.lty |
The mean line type. can be "dotted" or "dashed", etc. |
PI.ci.mean.type |
The mean type used for plotting. Defaults to a line. |
PI.ci.mean.col |
The mean line color |
PI.ci.mean.lwd |
The mean line width |
PI.ci.delta.mean.arcol |
The color of the delta.mean |
PI.ci.delta.mean.lty |
The delta.mean line type. can be "dotted" or "dashed", etc. |
PI.ci.delta.mean.type |
The delta.mean type used for plotting. Defaults to a line. |
PI.ci.delta.mean.col |
The delta.mean line color |
PI.ci.delta.mean.lwd |
The delta.mean line width |
PI.ci.area.smooth |
Should the "area" for |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
col |
The color for lines and points. Specified as an integer or a text
string. A full list is obtained by the R command |
pch |
The plotting character, or symbol, to use. Specified as an
integer. See R help on |
cex |
The amount by which plotting text and symbols should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. |
lty |
The line type. Line types can either be specified as an integer (0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings '"blank"', '"solid"', '"dashed"', '"dotted"', '"dotdash"', '"longdash"', or '"twodash"', where '"blank"' uses 'invisible lines' (i.e., doesn't draw them). |
lwd |
the width for lines. Specified as an integer. The default is 1. |
fill |
fill for areas in plot |
ids |
Logical value specifying whether to label data points. |
idsmode |
Determines the way text labels are added to plots.
|
idsext |
specifies the extent of the extremes to be used in labelling points. The default is 0.05 (only the most extreme 5% of points are labelled). |
idscex |
the amount by which labels should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. |
idsdir |
a string indicating the directions of the extremes to include in labelling. Possible values are "up", "down" and "both". |
abline |
Vector of arguments to the |
abllwd |
Line width of any abline. |
abllty |
Line type of any abline. |
ablcol |
Line colour of any abline. |
smooth |
A |
smlwd |
Line width of the x-y smooth. |
smlty |
Line type of the x-y smooth. |
smcol |
Line color of the x-y smooth. |
smspan |
The smoothness parameter for the x-y smooth. The default is
0.667. An argument to |
smdegr |
The degree of the polynomials to be used for the x-y smooth,
up to 2. The default is 1. An argument to
|
smooth.for.groups |
Should a smooth for each group be drawn? |
lmline |
logical variable specifying whether a linear regression line
should be superimposed over an |
lmlwd |
Line width of the lmline. |
lmlty |
Line type of the lmline. |
lmcol |
Line colour of the lmline. |
suline |
A |
sulwd |
Line width of the superposed smooth. |
sulty |
Line type of the superposed smooth. |
sucol |
Line color of the superposed smooth. |
suspan |
The smoothness parameter. The default is 0.667. An argument to
|
sudegr |
The degree of the polynomials to be used, up to 2. The default
is 1. An argument to |
grid |
logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc). |
logy |
Logical value indicating whether the y-axis should be logarithmic. |
logx |
Logical value indicating whether the y-axis should be logarithmic. |
force.x.continuous |
Logical value indicating whether x-values should be taken as continuous, even if categorical. |
bwhoriz |
logical value indicating whether box and whiskers should be horizontal or not. The default is FALSE. |
bwratio |
Ratio of box height to inter-box space. The default is 1.5.
An argument for |
bwvarwid |
Logical. If TRUE, widths of boxplots are proportional to the
number of points used in creating it. The default is FALSE. An argument for
|
bwdotpch |
Graphical parameter controlling the dot plotting character
in boxplots. 'bwdotpch="|"' is treated specially, by replacing the dot with
a line. The default is 16. An argument for
|
bwdotcol |
Graphical parameter controlling the dot colour in boxplots -
an integer or string. See 'col'. The default is black. An argument for
|
bwdotcex |
The amount by which plotting text and symbols should be
scaled relative to the default in boxplots. 'NULL' and 'NA' are equivalent
to '1.0'. An argument for |
bwreccol |
The colour to use for the box rectangle in boxplots - an
integer or string. The default is blue. See
|
bwrecfill |
The colour to use for filling the box rectangle in boxplots
- an integer or string. The default is transparent (none). See
|
bwreclty |
The line type for the box rectangle in boxplots - an integer
or string. The default is solid. See |
bwreclwd |
The width of the lines for the box rectangle in boxplots -
an integer. The default is 1. See |
bwumbcol |
The colour to use for the umbrellas in boxplots - an integer
or string. The default is blue. See |
bwumblty |
The line type for the umbrellas in boxplots - an integer or
string. The default is solid.See |
bwumblwd |
the width of the lines for the umbrellas in boxplots - an
integer. The default is 1. See |
bwoutcol |
The colour to use for the outliers in boxplots - an integer
or string. The default is blue. See |
bwoutcex |
The amount by which outlier points should be scaled relative
to the default in boxplots. 'NULL' and 'NA' are equivalent to '1.0'. The
default is 0.8. See |
bwoutpch |
The plotting character, or symbol, to use for outlier points
in boxplots. Specified as an integer. See R help on 'points'. The default
is an open circle. See |
autocorr |
Is this an autocorrelation plot? Values can be
|
vline |
Add a vertical line to the plot at the values specified. |
vllwd |
Width (lwd) of vertical line |
vllty |
Line type (lty) for vertical line |
vlcol |
Color (col) of vertical line |
hline |
Add a horizontal line to the plot at the values specified. |
hllwd |
Width (lwd) of horizontal line |
hllty |
Line type (lty) for horizontal line |
hlcol |
Color (col) of horizontal line |
pch.ip.sp |
If there is a panel with just one observation then this specifies the type of points for the DV, IPRED and PRED respectively. |
cex.ip.sp |
If there is a panel with just one observation then this specifies the size of the points for the DV, IPRED and PRED respectively. |
... |
Other arguments that may be needed in the function. |
Author(s)
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins and Andrew Hooker
See Also
xpose.data-class
, Cross-references above.
Default histogram panel function for Xpose 4
Description
This is the histogram panel function for Xpose 4. This is not intended to be
ised outside the xpose.plot.histogram
function. Most of the arguments
take their default values from xpose.data object but this can be overridden
by supplying them as argument to xpose.plot.histogram
.
Usage
xpose.panel.histogram(
x,
object,
breaks = NULL,
dens = TRUE,
hidlty = object@Prefs@Graph.prefs$hidlty,
hidcol = object@Prefs@Graph.prefs$hidcol,
hidlwd = object@Prefs@Graph.prefs$hidlwd,
hiborder = object@Prefs@Graph.prefs$hiborder,
hilty = object@Prefs@Graph.prefs$hilty,
hicol = object@Prefs@Graph.prefs$hicol,
hilwd = object@Prefs@Graph.prefs$hilwd,
math.dens = NULL,
vline = NULL,
vllwd = 3,
vllty = 1,
vlcol = "grey",
hline = NULL,
hllwd = 3,
hllty = 1,
hlcol = "grey",
bins.per.panel.equal = TRUE,
showMean = FALSE,
meanllwd = 3,
meanllty = 1,
meanlcol = "orange",
showMedian = FALSE,
medianllwd = 3,
medianllty = 1,
medianlcol = "black",
showPCTS = FALSE,
PCTS = c(0.025, 0.975),
PCTSllwd = 2,
PCTSllty = hidlty,
PCTSlcol = "black",
vdline = NULL,
vdllwd = 3,
vdllty = 1,
vdlcol = "red",
...,
groups
)
Arguments
x |
Name(s) of the x-variable. |
object |
An xpose.data object. |
breaks |
The breakpoints for the histogram. |
dens |
Density plot on top of histogram? |
hidlty |
Density line type. |
hidcol |
Color of density line. |
hidlwd |
Width of density line. |
hiborder |
Colour of the bar borders. |
hilty |
Line type for the bar borders. |
hicol |
Fill colour for the bars. |
hilwd |
Width for the bar borders. |
math.dens |
Should a density line be drawn. Values are |
vline |
|
vllwd |
Line width of the vertical lines defined with |
vllty |
Line type of the vertical lines defined with |
vlcol |
Line color of the vertical lines defined with |
hline |
|
hllwd |
Line width of the horizontal lines defined with |
hllty |
Line type of the horizontal lines defined with |
hlcol |
Line color of the horizontal lines defined with |
bins.per.panel.equal |
Allow for different bins in different panels for continuous data? TRUE or FALSE. |
showMean |
Should the mean of the data in the histogram be shown? |
meanllwd |
Line width of mean line. |
meanllty |
The line type for the mean |
meanlcol |
Color for the mean line |
showMedian |
Should the median of the data for the histogram be shown as a vertical line? |
medianllwd |
line width of median line. |
medianllty |
line type of median line. |
medianlcol |
color of median line. |
showPCTS |
Should percentiles of the data for the histogram be shown? |
PCTS |
A vector of percentiles to show. Can be any length. |
PCTSllwd |
line width of percentiles. Can be a vector of same length
as |
PCTSllty |
Line type of the percentiles. Can be a vector of same
length as |
PCTSlcol |
Color of the percentiles. Can be a vector of same length as
|
vdline |
vertical line different for each histogram. Must be a vector. |
vdllwd |
line widths |
vdllty |
line types |
vdlcol |
line colors |
... |
Other arguments that may be needed in the function. |
groups |
used to pass the conditioning variable into this function. |
Author(s)
Andrew Hooker, Mats Karlsson, Justin Wilkins & E. Niclas Jonsson
See Also
xpose.data-class
, Cross-references above.
Default QQ panel function for Xpose 4
Description
This is the QQ panel function for Xpose 4. This is not intended to be used
outside the xpose.plot.qq
function. Most of the arguments take their
default values from xpose.data object but this can be overridden by
supplying them as argument to xpose.plot.qq
.
Usage
xpose.panel.qq(
x,
object,
pch = object@Prefs@Graph.prefs$pch,
col = object@Prefs@Graph.prefs$col,
cex = object@Prefs@Graph.prefs$cex,
abllty = object@Prefs@Graph.prefs$abllty,
abllwd = object@Prefs@Graph.prefs$abllwd,
ablcol = object@Prefs@Graph.prefs$ablcol,
grid = object@Prefs@Graph.prefs$grid,
...
)
Arguments
x |
Name(s) of the x-variable. |
object |
An xpose.data object. |
pch |
Plot character to use. |
col |
Colour of lines and plot symbols. |
cex |
Amount to scale the plotting character by. |
abllty |
Line type. |
abllwd |
Line width. |
ablcol |
Line colour. |
grid |
logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc). |
... |
Other arguments that may be needed in the function. |
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.qq
, qqmath
,
panel.qqmathline
, xpose.data-class
Scatterplot matrix panel function for Xpose 4
Description
This is the scatterplot matrix panel function for Xpose 4. This is not
intended to be ised outside the xpose.plot.splom
function. Most of
the arguments take their default values from xpose.data object but this can
be overridden by supplying them as argument to xpose.plot.splom
.
Usage
xpose.panel.splom(
x,
y,
object,
subscripts,
onlyfirst = TRUE,
inclZeroWRES = FALSE,
type = "p",
col = object@Prefs@Graph.prefs$col,
pch = object@Prefs@Graph.prefs$pch,
cex = object@Prefs@Graph.prefs$cex,
lty = object@Prefs@Graph.prefs$lty,
lwd = object@Prefs@Graph.prefs$lwd,
smooth = TRUE,
smlwd = object@Prefs@Graph.prefs$smlwd,
smlty = object@Prefs@Graph.prefs$smlty,
smcol = object@Prefs@Graph.prefs$smcol,
smspan = object@Prefs@Graph.prefs$smspan,
smdegr = object@Prefs@Graph.prefs$smdegr,
lmline = NULL,
lmlwd = object@Prefs@Graph.prefs$lmlwd,
lmlty = object@Prefs@Graph.prefs$lmlty,
lmcol = object@Prefs@Graph.prefs$lmcol,
grid = object@Prefs@Graph.prefs$grid,
groups = NULL,
...
)
Arguments
x |
Name(s) of the x-variable. |
y |
Name(s) of the y-variable. |
object |
An xpose.data object. |
subscripts |
The standard Trellis subscripts argument (see
|
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
col |
The color for lines and points. Specified as an integer or a text
string. A full list is obtained by the R command |
pch |
The plotting character, or symbol, to use. Specified as an
integer. See R help on |
cex |
The amount by which plotting text and symbols should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. |
lty |
The line type. Line types can either be specified as an integer (0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings '"blank"', '"solid"', '"dashed"', '"dotted"', '"dotdash"', '"longdash"', or '"twodash"', where '"blank"' uses 'invisible lines' (i.e., doesn't draw them). |
lwd |
the width for lines. Specified as an integer. The default is 1. |
smooth |
A |
smlwd |
Line width of the x-y smooth. |
smlty |
Line type of the x-y smooth. |
smcol |
Line color of the x-y smooth. |
smspan |
The smoothness parameter for the x-y smooth. The default is
0.667. An argument to |
smdegr |
The degree of the polynomials to be used for the x-y smooth,
up to 2. The default is 1. An argument to
|
lmline |
logical variable specifying whether a linear regression line
should be superimposed over an |
lmlwd |
Line width of the lmline. |
lmlty |
Line type of the lmline. |
lmcol |
Line colour of the lmline. |
grid |
logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc). |
groups |
Name of the variable used for superpose plots. |
... |
Other arguments that may be needed in the function. |
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.plot.splom
, xpose.data-class
,
xyplot
splom
,
panel.splom
, panel.pairs
The generic Xpose functions for box-and-whisker plots
Description
This is a wrapper function for the lattice bwplot
function.
Usage
xpose.plot.bw(
x,
y,
object,
inclZeroWRES = FALSE,
onlyfirst = FALSE,
samp = NULL,
panel = xpose.panel.bw,
groups = NULL,
ids = FALSE,
logy = FALSE,
logx = FALSE,
aspect = object@Prefs@Graph.prefs$aspect,
funy = NULL,
funx = NULL,
PI = FALSE,
by = object@Prefs@Graph.prefs$condvar,
force.by.factor = FALSE,
ordby = object@Prefs@Graph.prefs$ordby,
byordfun = object@Prefs@Graph.prefs$byordfun,
shingnum = object@Prefs@Graph.prefs$shingnum,
shingol = object@Prefs@Graph.prefs$shingol,
strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)),
subset = xsubset(object),
main = xpose.create.title(x, y, object, subset, funx, funy, ...),
xlb = xpose.create.label(x, object, funx, logx, ...),
ylb = xpose.create.label(y, object, funy, logy, ...),
scales = list(),
suline = object@Prefs@Graph.prefs$suline,
binvar = NULL,
bins = 10,
mirror = FALSE,
max.plots.per.page = 4,
mirror.aspect = "fill",
pass.plot.list = FALSE,
x.cex = NULL,
y.cex = NULL,
main.cex = NULL,
mirror.internal = list(strip.missing = missing(strip)),
...
)
Arguments
x |
Name(s) of the x-variable. |
y |
Name(s) of the y-variable. |
object |
An xpose.data object. |
inclZeroWRES |
A logical value indicating whether rows with WRES=0 should be plotted. |
onlyfirst |
A logical value indicating whether only the first row per individual should be included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
panel |
The name of the panel function to use. This should in most
cases be left as |
groups |
A string with the name of any grouping variable (used as the
groups argument to |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
logy |
Logical value indicating whether the y-axis should be logarithmic. |
logx |
Logical value indicating whether the x-axis should be logarithmic. |
aspect |
The aspect ratio of the display (see
|
funy |
String with the name of a function to apply to the y-variable before plotting, e.g. "abs". |
funx |
String with the name of a function to apply to the x-variable before plotting, e.g. "abs". |
PI |
Either "lines", "area" or "both" specifying whether prediction
intervals (as lines, as a shaded area or both) should be computed from the
data in |
by |
A string or a vector of strings with the name(s) of the conditioning variables. |
force.by.factor |
Logical value. If TRUE, and |
ordby |
A string with the name of a variable to be used to reorder any
factor conditioning variables ( |
byordfun |
The name of the function to be used when reordering a factor
conditioning variable (see argument |
shingnum |
The number of shingles ("parts") a continuous conditioning variable should be divided into. |
shingol |
The amount of overlap between adjacent shingles (see argument
|
strip |
The name of the function to be used as the strip argument to
the |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
main |
A string giving the plot title or |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
scales |
A list to be used for the |
suline |
A string giving the variable to be used to construct a smooth
to superpose on the display. |
binvar |
Variable to be used for binning. |
bins |
The number of bins to be used. The default is 10. |
mirror |
Should we create mirror plots from simulation data? Value can
be |
max.plots.per.page |
The maximum number of plots per page that can be created with the mirror plots. |
mirror.aspect |
The aspect ratio of the plots used for mirror functionality. |
pass.plot.list |
Should we pass the list of plots created with mirror
or should we print them directly. Values can be |
x.cex |
The size of the x-axis label. |
y.cex |
The size of the y-axis label. |
main.cex |
The size of the title. |
mirror.internal |
an internal mirror argument used in
|
... |
Other arguments passed to |
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.data-class
, Cross-references above.
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## Box & whisker plot of WRES vs PRED
xpose.plot.bw("WRES", "PRED", xpdb5, binvar="PRED")
## End(Not run)
The Xpose 4 generic functions for continuous y-variables.
Description
This function is a wrapper for the lattice xyplot function.
Usage
xpose.plot.default(
x,
y,
object,
inclZeroWRES = FALSE,
onlyfirst = FALSE,
samp = NULL,
panel = xpose.panel.default,
groups = object@Prefs@Xvardef$id,
ids = object@Prefs@Graph.prefs$ids,
logy = FALSE,
logx = FALSE,
yscale.components = "default",
xscale.components = "default",
aspect = object@Prefs@Graph.prefs$aspect,
funx = NULL,
funy = NULL,
iplot = NULL,
PI = NULL,
by = object@Prefs@Graph.prefs$condvar,
force.by.factor = FALSE,
ordby = object@Prefs@Graph.prefs$ordby,
byordfun = object@Prefs@Graph.prefs$byordfun,
shingnum = object@Prefs@Graph.prefs$shingnum,
shingol = object@Prefs@Graph.prefs$shingol,
by.interval = NULL,
strip = function(...) {
strip.default(..., strip.names = c(TRUE, TRUE))
},
use.xpose.factor.strip.names = TRUE,
subset = xsubset(object),
autocorr = FALSE,
main = xpose.create.title(x, y, object, subset, funx, funy, ...),
xlb = xpose.create.label(x, object, funx, logx, autocorr.x = autocorr, ...),
ylb = xpose.create.label(y, object, funy, logy, autocorr.y = autocorr, ...),
scales = list(),
suline = object@Prefs@Graph.prefs$suline,
bwhoriz = object@Prefs@Graph.prefs$bwhoriz,
dilution = FALSE,
dilfrac = object@Prefs@Graph.prefs$dilfrac,
diltype = object@Prefs@Graph.prefs$diltype,
dilci = object@Prefs@Graph.prefs$dilci,
seed = NULL,
mirror = FALSE,
max.plots.per.page = 4,
mirror.aspect = "fill",
pass.plot.list = FALSE,
x.cex = NULL,
y.cex = NULL,
main.cex = NULL,
mirror.internal = list(strip.missing = missing(strip)),
...
)
Arguments
x |
A string or a vector of strings with the name(s) of the x-variable(s). |
y |
A string or a vector of strings with the name(s) of the y-variable(s). |
object |
An "xpose.data" object. |
inclZeroWRES |
A logical value indicating whether rows with WRES=0 should be plotted. |
onlyfirst |
A logical value indicating whether only the first row per individual should be included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
panel |
The name of the panel function to use. |
groups |
A string with the name of any grouping variable (used as the
groups argument to |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
logy |
Logical value indicating whether the y-axis should be logarithmic. |
logx |
Logical value indicating whether the x-axis should be logarithmic. |
yscale.components |
Used to change the way the axis look if |
xscale.components |
Used to change the way the axis look if |
aspect |
The aspect ratio of the display (see
|
funx |
String with the name of a function to apply to the x-variable before plotting, e.g. "abs". |
funy |
String with the name of a function to apply to the y-variable before plotting, e.g. "abs". |
iplot |
Is this an individual plots matrix? Internal use only. |
PI |
Either "lines", "area" or "both" specifying whether prediction
intervals (as lines, as a shaded area or both) should be computed from the
data in |
by |
A string or a vector of strings with the name(s) of the conditioning variables. |
force.by.factor |
Logical value. If TRUE, and |
ordby |
A string with the name of a variable to be used to reorder any
factor conditioning variables ( |
byordfun |
The name of the function to be used when reordering a factor
conditioning variable (see argument |
shingnum |
The number of shingles ("parts") a continuous conditioning variable should be divided into. |
shingol |
The amount of overlap between adjacent shingles (see argument
|
by.interval |
The intervals to use for conditioning on a continuous
variable with |
strip |
The name of the function to be used as the strip argument to
the |
use.xpose.factor.strip.names |
Use factor names in strips of conditioning plots.. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
autocorr |
Is this an autocorrelation plot? Values can be
|
main |
A string giving the plot title or |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
scales |
A list to be used for the |
suline |
A string giving the variable to be used to construct a smooth
to superpose on the display. |
bwhoriz |
A logical value indicating if box and whiskers bars should be plotted horizontally or not. Used when the x-variable(s) is categorical. |
dilution |
Logical value indicating whether data dilution should be used. |
dilfrac |
Dilution fraction indicating the expected fraction of individuals to display in the plots. The exact meaning depends on the type of dilution (see below). |
diltype |
Indicating what type of dilution to apply. |
dilci |
A number between 0 and 1 giving the range eligible for dilution in a stratified dilution (see below). |
seed |
Seed number used for random dilution. |
mirror |
Should we create mirror plots from simulation data? Value can
be |
max.plots.per.page |
The maximum number of plots per page that can be created with the mirror plots. |
mirror.aspect |
The aspect ratio of the plots used for mirror functionality. |
pass.plot.list |
Should we pass the list of plots created with mirror
or should we print them directly. Values can be |
x.cex |
The size of the x-axis label. |
y.cex |
The size of the y-axis label. |
main.cex |
The size of the title. |
mirror.internal |
an internal mirror argument used in
|
... |
Other arguments passed to |
Details
y
must be numeric (continuous) while x
can be either numeric
of factor. If x
is numeric then a regular xy-plot is drawn. If x is a
factor, on the other hand, a box and whiskers plot is constructed.
x
and y
can be either single valued strings or vector of
strings. x
and y
can not both be vectors in the same call to
the function.
If ids
is TRUE
, text labels are added to the plotting symbols.
The labels are taken from the idlab
xpose data variable. The way the
text labels are plotted is governed by the idsmode
argument (passed
down to the panel function). idsmode=NULL
(the default) means that
only extreme data points are labelled while a non-NULL
value adds
labels to all data points (the default in Xpose 3).
xpose.panel.default
identifies extreme data points by fitting a loess
smooth (y~x
) and looking at the residuals from that fit. Points that
are associated with the highest/lowest residuals are labelled. "High" and
"low" are judged by the panel function parameter idsext
, which gives
the fraction of the total number of data points that are to be judged
extreme in the "up" and "down" direction. The default value for
idsext
is 0.05 (see xpose.prefs-class
). There is also a
possibility to label only the high or low extreme points. This is done
through the idsdir
argument to xpose.panel.default
. A value of
"both" (the default) means that both high and low extreme points are
labelled while "up" and "down" labels the high and low extreme points
respectively.
Data dilution is useful is situations when there is an excessive amount of
data. xpose.plot.default
can dilute data in two different ways. The
first is a completely random dilution in which all individuals are eligible
for exclusion from the plot. In this case the argument dilfrac
determines the fraction of individuals that are excluded from the plot. The
second type of dilution uses stratification to make sure that none of the
extreme individuals are omitted from the plot. Extreme individuals are
identified in a similar manner as extreme data points are identified for
text labelling. A smooth is fitted to the data and the extreme residuals
from that fit is used to inform about extremeness. What is judged as extreme
is determined by the argument dilci
, which defaults to 0.95 (Note
that the meaning of this is the opposite to idsext
). dilci
give the confidence level of the interval around the fitted curve outside of
which points are deemed to be extreme. Extreme individuals are those that
have at least one point in the "extremeness" interval. Individuals that do
not have any extreme points are eligible for dilution and dilfrac
give the number of these that should be omitted from the graph. This means
that dilfrac
should usually be grater for stratified dilution than in
completely random dilution. Any smooths added to a diluted plot is based on
undiluted data.
More graphical parameters may be passed to
xpose.panel.default
.
Value
Returns a xyplot graph object.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.panel.default
, xyplot
,
panel.xyplot
, xpose.prefs-class
,
xpose.data-class
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## A spaghetti plot of DV vs TIME
xpose.plot.default("TIME", "DV", xpdb5)
## A conditioning plot
xpose.plot.default("TIME", "DV", xpdb5, by = "SEX")
## Multiple x-variables
xpose.plot.default(c("WT", "SEX"), "CL", xpdb5)
## Multiple y-variables
xpose.plot.default("WT", c("CL", "V"), xpdb5)
xpose.plot.default("WT", c("CL", "V"), xpdb5, by=c("SEX", "HCTZ"))
## determining the interval for the conditioning variable
wt.ints <- matrix(c(50,60,60,70,70,80,80,90,90,100,100,150),nrow=6,ncol=2,byrow=T)
xpose.plot.default("TIME","DV",xpdb5,by="WT", by.interval=wt.ints)
## End(Not run)
The Xpose 4 generic functions for continuous y-variables.
Description
This function is a wrapper for the lattice xyplot function.
Usage
xpose.plot.histogram(
x,
object,
inclZeroWRES = FALSE,
onlyfirst = FALSE,
samp = NULL,
type = "density",
aspect = object@Prefs@Graph.prefs$aspect,
scales = list(),
by = object@Prefs@Graph.prefs$condvar,
force.by.factor = FALSE,
ordby = object@Prefs@Graph.prefs$ordby,
byordfun = object@Prefs@Graph.prefs$byordfun,
shingnum = object@Prefs@Graph.prefs$shingnum,
shingol = object@Prefs@Graph.prefs$shingol,
strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)),
subset = xsubset(object),
main = xpose.create.title.hist(x, object, subset, ...),
xlb = NULL,
ylb = "Density",
hicol = object@Prefs@Graph.prefs$hicol,
hilty = object@Prefs@Graph.prefs$hilty,
hilwd = object@Prefs@Graph.prefs$hilwd,
hidcol = object@Prefs@Graph.prefs$hidcol,
hidlty = object@Prefs@Graph.prefs$hidlty,
hidlwd = object@Prefs@Graph.prefs$hidlwd,
hiborder = object@Prefs@Graph.prefs$hiborder,
mirror = FALSE,
max.plots.per.page = 4,
mirror.aspect = "fill",
pass.plot.list = FALSE,
x.cex = NULL,
y.cex = NULL,
main.cex = NULL,
mirror.internal = list(strip.missing = missing(strip)),
...
)
Arguments
x |
A string or a vector of strings with the name(s) of the x-variable(s). |
object |
An "xpose.data" object. |
inclZeroWRES |
A logical value indicating whether rows with WRES=0 should be plotted. |
onlyfirst |
A logical value indicating whether only the first row per individual should be included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
type |
The type of histogram to make. See
|
aspect |
The aspect ratio of the display (see
|
scales |
A list to be used for the |
by |
A string or a vector of strings with the name(s) of the conditioning variables. |
force.by.factor |
Logical value. If TRUE, and |
ordby |
A string with the name of a variable to be used to reorder any
factor conditioning variables ( |
byordfun |
The name of the function to be used when reordering a factor
conditioning variable (see argument |
shingnum |
The number of shingles ("parts") a continuous conditioning variable should be divided into. |
shingol |
The amount of overlap between adjacent shingles (see argument
|
strip |
The name of the function to be used as the strip argument to
the |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
main |
A string giving the plot title or |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
hicol |
the fill colour of the histogram - an integer or string. The
default is blue (see |
hilty |
the border line type of the histogram - an integer. The
default is 1 (see |
hilwd |
the border line width of the histogram - an integer. The
default is 1 (see |
hidcol |
the fill colour of the density line - an integer or string.
The default is black (see |
hidlty |
the border line type of the density line - an integer. The
default is 1 (see |
hidlwd |
the border line width of the density line - an integer. The
default is 1 (see |
hiborder |
the border colour of the histogram - an integer or string.
The default is black (see |
mirror |
Should we create mirror plots from simulation data? Value can
be |
max.plots.per.page |
The maximum number of plots per page that can be created with the mirror plots. |
mirror.aspect |
The aspect ratio of the plots used for mirror functionality. |
pass.plot.list |
Should we pass the list of plots created with mirror
or should we print them directly. Values can be |
x.cex |
The size of the x-axis label. |
y.cex |
The size of the y-axis label. |
main.cex |
The size of the title. |
mirror.internal |
an internal mirror argument used in
|
... |
Other arguments passed to |
Details
x
can be either numeric or factor, and can be either single valued
strings or vectors of strings.
Value
Returns a histogram.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.panel.histogram
,
histogram
, panel.histogram
,
xpose.prefs-class
, xpose.data-class
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
xpose.plot.histogram("AGE", xpdb5, onlyfirst = TRUE)
xpose.plot.histogram(c("SEX", "AGE"), xpdb5, onlyfirst = TRUE)
## End(Not run)
The generic Xpose functions for QQ plots
Description
This is a wrapper function for the lattice qqmath
function.
Usage
xpose.plot.qq(
x,
object,
inclZeroWRES = FALSE,
onlyfirst = FALSE,
samp = NULL,
aspect = object@Prefs@Graph.prefs$aspect,
scales = list(),
by = object@Prefs@Graph.prefs$condvar,
force.by.factor = FALSE,
ordby = object@Prefs@Graph.prefs$ordby,
byordfun = object@Prefs@Graph.prefs$byordfun,
shingnum = object@Prefs@Graph.prefs$shingnum,
shingol = object@Prefs@Graph.prefs$shingol,
strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)),
subset = xsubset(object),
main = xpose.create.title.hist(x, object, subset, ...),
xlb = "Quantiles of Normal",
ylb = paste("Quantiles of ", xlabel(x, object), sep = ""),
pch = object@Prefs@Graph.prefs$pch,
col = object@Prefs@Graph.prefs$col,
cex = object@Prefs@Graph.prefs$cex,
abllty = object@Prefs@Graph.prefs$abllty,
abllwd = object@Prefs@Graph.prefs$abllwd,
ablcol = object@Prefs@Graph.prefs$ablcol,
mirror = FALSE,
max.plots.per.page = 4,
mirror.aspect = "fill",
pass.plot.list = FALSE,
x.cex = NULL,
y.cex = NULL,
main.cex = NULL,
mirror.internal = list(strip.missing = missing(strip)),
...
)
Arguments
x |
A string or a vector of strings with the name(s) of the x-variable(s). |
object |
An "xpose.data" object. |
inclZeroWRES |
A logical value indicating whether rows with WRES=0 should be plotted. |
onlyfirst |
A logical value indicating whether only the first row per individual should be included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
aspect |
The aspect ratio of the display (see
|
scales |
A list to be used for the |
by |
A string or a vector of strings with the name(s) of the conditioning variables. |
force.by.factor |
Logical value. If TRUE, and |
ordby |
A string with the name of a variable to be used to reorder any
factor conditioning variables ( |
byordfun |
The name of the function to be used when reordering a factor
conditioning variable (see argument |
shingnum |
The number of shingles ("parts") a continuous conditioning variable should be divided into. |
shingol |
The amount of overlap between adjacent shingles (see argument
|
strip |
The name of the function to be used as the strip argument to
the |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
main |
A string giving the plot title or |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
pch |
Plotting symbol. |
col |
Color of plotting symbol. |
cex |
Amount to scale the plotting character by. |
abllty |
Line type for qqline. |
abllwd |
Line width for qqline. |
ablcol |
Color for qqline. |
mirror |
Should we create mirror plots from simulation data? Value can
be |
max.plots.per.page |
The maximum number of plots per page that can be created with the mirror plots. |
mirror.aspect |
The aspect ratio of the plots used for mirror functionality. |
pass.plot.list |
Should we pass the list of plots created with mirror
or should we print them directly. Values can be |
x.cex |
The size of the x-axis label. |
y.cex |
The size of the y-axis label. |
main.cex |
The size of the title. |
mirror.internal |
an internal mirror argument used in
|
... |
Other arguments passed to |
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.panel.qq
, qqmath
,
panel.qqmathline
, xpose.data-class
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## A QQ plot of WRES
xpose.plot.qq("WRES", xpdb5)
## End(Not run)
The Xpose 4 generic functions for scatterplot matrices.
Description
This function is a wrapper for the lattice splom function.
Usage
xpose.plot.splom(
plist,
object,
varnames = NULL,
main = "Scatterplot Matrix",
xlb = NULL,
ylb = NULL,
scales = list(),
onlyfirst = TRUE,
inclZeroWRES = FALSE,
subset = xsubset(object),
by = object@Prefs@Graph.prefs$condvar,
force.by.factor = FALSE,
include.cat.vars = FALSE,
ordby = NULL,
byordfun = object@Prefs@Graph.prefs$byordfun,
shingnum = object@Prefs@Graph.prefs$shingnum,
shingol = object@Prefs@Graph.prefs$shingol,
strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)),
groups = NULL,
ids = object@Prefs@Graph.prefs$ids,
smooth = TRUE,
lmline = NULL,
panel = xpose.panel.splom,
aspect = object@Prefs@Graph.prefs$aspect,
samp = NULL,
max.plots.per.page = 4,
mirror = FALSE,
mirror.aspect = "fill",
pass.plot.list = FALSE,
x.cex = NULL,
y.cex = NULL,
main.cex = NULL,
mirror.internal = list(strip.missing = missing(strip)),
...
)
Arguments
plist |
A vector of strings containing variable names for the scatterplot matrix. |
object |
An "xpose.data" object. |
varnames |
A vector of strings containing labels for the variables in the scatterplot matrix. |
main |
A string giving the plot title or |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
scales |
A list to be used for the |
onlyfirst |
A logical value indicating whether only the first row per individual should be included in the plot. |
inclZeroWRES |
A logical value indicating whether rows with WRES=0 should be plotted. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
by |
A string or a vector of strings with the name(s) of the conditioning variables. |
force.by.factor |
Logical value. If TRUE, and |
include.cat.vars |
Logical value. |
ordby |
A string with the name of a variable to be used to reorder any
factor conditioning variables ( |
byordfun |
The name of the function to be used when reordering a factor
conditioning variable (see argument |
shingnum |
The number of shingles ("parts") a continuous conditioning variable should be divided into. |
shingol |
The amount of overlap between adjacent shingles (see argument
|
strip |
The name of the function to be used as the strip argument to
the |
groups |
A string with the name of any grouping variable (used as the
groups argument to |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
smooth |
A |
lmline |
logical variable specifying whether a linear regression line
should be superimposed over an |
panel |
The name of the panel function to use. |
aspect |
The aspect ratio of the display (see
|
samp |
An integer between 1 and object@Nsim
(see |
max.plots.per.page |
The maximum number of plots per page that can be created with the mirror plots. |
mirror |
Should we create mirror plots from simulation data? Value can
be |
mirror.aspect |
The aspect ratio of the plots used for mirror functionality. |
pass.plot.list |
Should we pass the list of plots created with mirror
or should we print them directly. Values can be |
x.cex |
The size of the x-axis label. |
y.cex |
The size of the y-axis label. |
main.cex |
The size of the title. |
mirror.internal |
an internal mirror argument used in
|
... |
Other arguments passed to |
Details
If ids
is TRUE
, text labels are added to the plotting symbols.
The labels are taken from the idlab
xpose data variable. The way the
text labels are plotted is governed by the idsmode
argument (passed
down to the panel function). idsmode=NULL
(the default) means that
only extreme data points are labelled while a non-NULL
value adds
labels to all data points (the default in Xpose 3).
xpose.panel.default
identifies extreme data points by fitting a loess
smooth (y~x
) and looking at the residuals from that fit. Points that
are associated with the highest/lowest residuals are labelled. "High" and
"low" are judged by the panel function parameter idsext
, which gives
the fraction of the total number of data points that are to be judged
extreme in the "up" and "down" direction. The default value for
idsext
is 0.05 (see link{xpose.prefs-class}
). There is also a
possibility to label only the high or low extreme points. This is done
through the idsdir
argument to xpose.panel.default
. A value of
"both" (the default) means that both high and low extreme points are
labelled while "up" and "down" labels the high and low extreme points
respectively.
More graphical parameters may be passed to xpose.panel.splom
.
for example, if you want to adjust the size of the varnames
and
axis tick labels
you can use the parameters varname.cex=0.5
and axis.text.cex=0.5
.
Value
Returns a scatterplot matrix graph object.
Author(s)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
See Also
xpose.panel.splom
, splom
,
panel.splom
, xpose.prefs-class
,
xpose.data-class
Examples
## Not run:
## xpdb5 is an Xpose data object
## We expect to find the required NONMEM run and table files for run
## 5 in the current working directory
xpdb5 <- xpose.data(5)
## CL, WT, HT, SEX with a regression line
xpose.plot.splom(c("CL", "WT", "HT", "SEX"), xpdb5, lmline = TRUE)
## End(Not run)
Class "xpose.prefs"
Description
An object of the "xpose.prefs" class holds information about all the variable and graphical preferences for a particular "xpose.data" object.
Objects from the Class
Objects can be created by calls of the form
new("xpose.prefs",...)
but this is usually not necessary since the
"xpose.prefs" object is created at the same time as the "xpose.data" object.
Author(s)
Niclas Jonsson & Andrew Hooker
See Also
xvardef
, xlabel
, xsubset
,
Data
, SData
, xpose.data
,
read.nm.tables
, xpose.data-class
,
xpose.gam
Summarize an xpose database
Description
Summarize an xpose database
Usage
xpose.print(object, long = TRUE)
Arguments
object |
An xpose data object |
long |
long format or not. |
Value
""
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose4-package
,
xsubset()
Examples
xpose.print(simpraz.xpdb)
Print a pretty string.
Description
Print a string with a certain number of characters per row.
Usage
xpose.string.print(value, fill = 60, file = "")
Arguments
value |
The text to print. |
fill |
How wide should the text be per row. |
file |
Where to print. |
Author(s)
Niclas Jonsson and Andrew C. Hooker
Classic menu system for Xpose 4
Description
Classic menu system for Xpose 4
Usage
xpose4()
Author(s)
Andrew Hooker
See Also
Other classic functions:
xpose4-package
Examples
## Not run:
xpose4()
## End(Not run)
Extract or set the value of the Subset slot.
Description
Extract or set the value of the Subset slot of an "xpose.data" object.
Usage
xsubset(object)
xsubset(object) <- value
Arguments
object |
An "xpose.data" object. |
value |
A string with the subset expression. |
Details
The subset string has the same syntax as the subset argument to, e.g.
panel.xyplot
. Note, however, that the "xpose.data" subset is not used
as an argument to panel.xyplot
. It is intended as the subset argument
to the Data
and SData
functions.
Value
A string representing the subset expression.
Functions
-
xsubset(object) <- value
: assign value with a string representing the subset expression
Author(s)
Niclas Jonsson
See Also
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
Examples
xpdb <- simpraz.xpdb
xsubset(xpdb) <- "DV > 0"
xsubset(xpdb)
Extract and set Xpose variable definitions.
Description
This function extracts and set Xpose variable definitions in "xpose.data" objects.
Usage
xvardef(x, object)
xvardef(object) <- value
Arguments
x |
The name of an xpose variable (see below). |
object |
An |
value |
A two element vector of which the first element is the name of the variable and the second the column name in the Data slot of the object. |
Details
The Xpose variable definitions are used to map particular variable types to
column names in the data.frame in the Data slot of the "xpose.data" object.
The single-valued Xpose variable definitions are: id, idlab, idv, occ,
dv, pred, ipred, iwres, res
. The (potentially) vector-valued Xpose variable
definitions are: parms, covariates, ranpar, tvparms
(parameters,
covariates, random effects parameters=etas, typical value parameters). The
default values of these can be found in the createXposeClasses
function.
Value
Returns a string with the name of the data variable defined as the Xpose data variable.
Functions
-
xvardef(object) <- value
: reset the which column the label dv points to in the Data slot of the xpose database object
Author(s)
Niclas Jonsson
See Also
xpose.data-class
,xpose.prefs-class
Examples
xpdb <- simpraz.xpdb
## get the column name in the Data slot of object xpdb
## corresponding to the label dv
xvardef("dv", xpdb)
## reset the which column the label dv points to in the Data slot of
## object xpdb
xvardef(xpdb) <- c("dv", "DVA")