
Package ‘xgboost’
July 21, 2025

Type Package

Title Extreme Gradient Boosting

Version 1.7.11.1

Date 2025-05-01

Maintainer Jiaming Yuan <jm.yuan@outlook.com>

Description Extreme Gradient Boosting, which is an efficient implementation
of the gradient boosting frame-
work from Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>.
This package is its R interface. The package includes efficient linear
model solver and tree learning algorithms. The package can automatically
do parallel computation on a single machine which could be more than 10
times faster than existing gradient boosting packages. It supports
various objective functions, including regression, classification and ranking.
The package is made to be extensible, so that users are also allowed to define
their own objectives easily.

License Apache License (== 2.0) | file LICENSE

URL https://github.com/dmlc/xgboost

BugReports https://github.com/dmlc/xgboost/issues

NeedsCompilation yes

VignetteBuilder knitr

Suggests knitr, rmarkdown, ggplot2 (>= 1.0.1), DiagrammeR (>= 0.9.0),
Ckmeans.1d.dp (>= 3.3.1), vcd (>= 1.3), cplm, e1071, caret,
testthat, lintr, igraph (>= 1.0.1), float, crayon, titanic

Depends R (>= 3.3.0)

Imports Matrix (>= 1.1-0), methods, data.table (>= 1.9.6), jsonlite
(>= 1.0),

RoxygenNote 7.3.2

Encoding UTF-8

SystemRequirements GNU make, C++17

1

https://doi.org/10.1145/2939672.2939785
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost/issues


2 Contents

Author Tianqi Chen [aut],
Tong He [aut],
Michael Benesty [aut],
Vadim Khotilovich [aut],
Yuan Tang [aut] (ORCID: <https://orcid.org/0000-0001-5243-233X>),
Hyunsu Cho [aut],
Kailong Chen [aut],
Rory Mitchell [aut],
Ignacio Cano [aut],
Tianyi Zhou [aut],
Mu Li [aut],
Junyuan Xie [aut],
Min Lin [aut],
Yifeng Geng [aut],
Yutian Li [aut],
Jiaming Yuan [aut, cre],
XGBoost contributors [cph] (base XGBoost implementation)

Repository CRAN

Date/Publication 2025-05-15 07:10:02 UTC

Contents
a-compatibility-note-for-saveRDS-save . . . . . . . . . . . . . . . . . . . . . . . . . . 3
agaricus.test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
agaricus.train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
cb.cv.predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
cb.early.stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
cb.evaluation.log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
cb.gblinear.history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
cb.print.evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
cb.reset.parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
cb.save.model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
dim.xgb.DMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
dimnames.xgb.DMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
getinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
normalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
predict.xgb.Booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
prepare.ggplot.shap.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
print.xgb.Booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
print.xgb.cv.synchronous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
print.xgb.DMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
setinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
slice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
xgb.attr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
xgb.Booster.complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
xgb.config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

https://orcid.org/0000-0001-5243-233X


a-compatibility-note-for-saveRDS-save 3

xgb.create.features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
xgb.cv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
xgb.DMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
xgb.DMatrix.save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
xgb.dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
xgb.gblinear.history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
xgb.ggplot.deepness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
xgb.ggplot.importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
xgb.ggplot.shap.summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
xgb.importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
xgb.load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
xgb.load.raw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
xgb.model.dt.tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
xgb.parameters<- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
xgb.plot.multi.trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
xgb.plot.shap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
xgb.plot.tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
xgb.save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
xgb.save.raw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
xgb.serialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
xgb.set.config, xgb.get.config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
xgb.train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
xgb.unserialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
xgboost-deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Index 67

a-compatibility-note-for-saveRDS-save

Do not use saveRDS or save for long-term archival of models. Instead,
use xgb.save or xgb.save.raw.

Description

It is a common practice to use the built-in saveRDS function (or save) to persist R objects to the
disk. While it is possible to persist xgb.Booster objects using saveRDS, it is not advisable to
do so if the model is to be accessed in the future. If you train a model with the current version
of XGBoost and persist it with saveRDS, the model is not guaranteed to be accessible in later
releases of XGBoost. To ensure that your model can be accessed in future releases of XGBoost, use
xgb.save or xgb.save.raw instead.

Details

Use xgb.save to save the XGBoost model as a stand-alone file. You may opt into the JSON format
by specifying the JSON extension. To read the model back, use xgb.load.

Use xgb.save.raw to save the XGBoost model as a sequence (vector) of raw bytes in a future-
proof manner. Future releases of XGBoost will be able to read the raw bytes and re-construct the



4 agaricus.test

corresponding model. To read the model back, use xgb.load.raw. The xgb.save.raw function is
useful if you’d like to persist the XGBoost model as part of another R object.

Note: Do not use xgb.serialize to store models long-term. It persists not only the model but
also internal configurations and parameters, and its format is not stable across multiple XGBoost
versions. Use xgb.serialize only for checkpointing.

For more details and explanation about model persistence and archival, consult the page https:
//xgboost.readthedocs.io/en/latest/tutorials/saving_model.html.

Examples

data(agaricus.train, package='xgboost')
bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,

eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")

# Save as a stand-alone file; load it with xgb.load()
xgb.save(bst, 'xgb.model')
bst2 <- xgb.load('xgb.model')

# Save as a stand-alone file (JSON); load it with xgb.load()
xgb.save(bst, 'xgb.model.json')
bst2 <- xgb.load('xgb.model.json')
if (file.exists('xgb.model.json')) file.remove('xgb.model.json')

# Save as a raw byte vector; load it with xgb.load.raw()
xgb_bytes <- xgb.save.raw(bst)
bst2 <- xgb.load.raw(xgb_bytes)

# Persist XGBoost model as part of another R object
obj <- list(xgb_model_bytes = xgb.save.raw(bst), description = "My first XGBoost model")
# Persist the R object. Here, saveRDS() is okay, since it doesn't persist
# xgb.Booster directly. What's being persisted is the future-proof byte representation
# as given by xgb.save.raw().
saveRDS(obj, 'my_object.rds')
# Read back the R object
obj2 <- readRDS('my_object.rds')
# Re-construct xgb.Booster object from the bytes
bst2 <- xgb.load.raw(obj2$xgb_model_bytes)
if (file.exists('my_object.rds')) file.remove('my_object.rds')

agaricus.test Test part from Mushroom Data Set

Description

This data set is originally from the Mushroom data set, UCI Machine Learning Repository.

Usage

data(agaricus.test)

https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html
https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html


agaricus.train 5

Format

A list containing a label vector, and a dgCMatrix object with 1611 rows and 126 variables

Details

This data set includes the following fields:

• label the label for each record

• data a sparse Matrix of dgCMatrix class, with 126 columns.

References

https://archive.ics.uci.edu/ml/datasets/Mushroom

Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.

agaricus.train Training part from Mushroom Data Set

Description

This data set is originally from the Mushroom data set, UCI Machine Learning Repository.

Usage

data(agaricus.train)

Format

A list containing a label vector, and a dgCMatrix object with 6513 rows and 127 variables

Details

This data set includes the following fields:

• label the label for each record

• data a sparse Matrix of dgCMatrix class, with 126 columns.

References

https://archive.ics.uci.edu/ml/datasets/Mushroom

Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.



6 cb.cv.predict

callbacks Callback closures for booster training.

Description

These are used to perform various service tasks either during boosting iterations or at the end. This
approach helps to modularize many of such tasks without bloating the main training methods, and
it offers .

Details

By default, a callback function is run after each boosting iteration. An R-attribute is_pre_iteration
could be set for a callback to define a pre-iteration function.

When a callback function has finalize parameter, its finalizer part will also be run after the boost-
ing is completed.

WARNING: side-effects!!! Be aware that these callback functions access and modify things in the
environment from which they are called from, which is a fairly uncommon thing to do in R.

To write a custom callback closure, make sure you first understand the main concepts about R
environments. Check either R documentation on environment or the Environments chapter from
the "Advanced R" book by Hadley Wickham. Further, the best option is to read the code of some
of the existing callbacks - choose ones that do something similar to what you want to achieve.
Also, you would need to get familiar with the objects available inside of the xgb.train and xgb.cv
internal environments.

See Also

cb.print.evaluation, cb.evaluation.log, cb.reset.parameters, cb.early.stop, cb.save.model,
cb.cv.predict, xgb.train, xgb.cv

cb.cv.predict Callback closure for returning cross-validation based predictions.

Description

Callback closure for returning cross-validation based predictions.

Usage

cb.cv.predict(save_models = FALSE)

Arguments

save_models a flag for whether to save the folds’ models.

http://adv-r.had.co.nz/Environments.html


cb.early.stop 7

Details

This callback function saves predictions for all of the test folds, and also allows to save the folds’
models.

It is a "finalizer" callback and it uses early stopping information whenever it is available, thus it
must be run after the early stopping callback if the early stopping is used.

Callback function expects the following values to be set in its calling frame: bst_folds, basket,
data, end_iteration, params, num_parallel_tree, num_class.

Value

Predictions are returned inside of the pred element, which is either a vector or a matrix, depending
on the number of prediction outputs per data row. The order of predictions corresponds to the order
of rows in the original dataset. Note that when a custom folds list is provided in xgb.cv, the
predictions would only be returned properly when this list is a non-overlapping list of k sets of
indices, as in a standard k-fold CV. The predictions would not be meaningful when user-provided
folds have overlapping indices as in, e.g., random sampling splits. When some of the indices in the
training dataset are not included into user-provided folds, their prediction value would be NA.

See Also

callbacks

cb.early.stop Callback closure to activate the early stopping.

Description

Callback closure to activate the early stopping.

Usage

cb.early.stop(
stopping_rounds,
maximize = FALSE,
metric_name = NULL,
verbose = TRUE

)

Arguments

stopping_rounds

The number of rounds with no improvement in the evaluation metric in order to
stop the training.

maximize whether to maximize the evaluation metric



8 cb.evaluation.log

metric_name the name of an evaluation column to use as a criteria for early stopping. If not
set, the last column would be used. Let’s say the test data in watchlist was la-
belled as dtest, and one wants to use the AUC in test data for early stopping re-
gardless of where it is in the watchlist, then one of the following would need to
be set: metric_name='dtest-auc' or metric_name='dtest_auc'. All dash
’-’ characters in metric names are considered equivalent to ’_’.

verbose whether to print the early stopping information.

Details

This callback function determines the condition for early stopping by setting the stop_condition
= TRUE flag in its calling frame.

The following additional fields are assigned to the model’s R object:

• best_score the evaluation score at the best iteration

• best_iteration at which boosting iteration the best score has occurred (1-based index)

The Same values are also stored as xgb-attributes:

• best_iteration is stored as a 0-based iteration index (for interoperability of binary models)

• best_msg message string is also stored.

At least one data element is required in the evaluation watchlist for early stopping to work.

Callback function expects the following values to be set in its calling frame: stop_condition,
bst_evaluation, rank, bst (or bst_folds and basket), iteration, begin_iteration, end_iteration,
num_parallel_tree.

See Also

callbacks, xgb.attr

cb.evaluation.log Callback closure for logging the evaluation history

Description

Callback closure for logging the evaluation history

Usage

cb.evaluation.log()



cb.gblinear.history 9

Details

This callback function appends the current iteration evaluation results bst_evaluation available
in the calling parent frame to the evaluation_log list in a calling frame.

The finalizer callback (called with finalize = TURE in the end) converts the evaluation_log list
into a final data.table.

The iteration evaluation result bst_evaluation must be a named numeric vector.

Note: in the column names of the final data.table, the dash ’-’ character is replaced with the under-
score ’_’ in order to make the column names more like regular R identifiers.

Callback function expects the following values to be set in its calling frame: evaluation_log,
bst_evaluation, iteration.

See Also

callbacks

cb.gblinear.history Callback closure for collecting the model coefficients history of a
gblinear booster during its training.

Description

Callback closure for collecting the model coefficients history of a gblinear booster during its train-
ing.

Usage

cb.gblinear.history(sparse = FALSE)

Arguments

sparse when set to FALSE/TRUE, a dense/sparse matrix is used to store the result.
Sparse format is useful when one expects only a subset of coefficients to be
non-zero, when using the "thrifty" feature selector with fairly small number of
top features selected per iteration.

Details

To keep things fast and simple, gblinear booster does not internally store the history of linear model
coefficients at each boosting iteration. This callback provides a workaround for storing the coeffi-
cients’ path, by extracting them after each training iteration.

Callback function expects the following values to be set in its calling frame: bst (or bst_folds).

Value

Results are stored in the coefs element of the closure. The xgb.gblinear.history convenience
function provides an easy way to access it. With xgb.train, it is either a dense of a sparse matrix.
While with xgb.cv, it is a list (an element per each fold) of such matrices.



10 cb.gblinear.history

See Also

callbacks, xgb.gblinear.history.

Examples

#### Binary classification:

## Keep the number of threads to 1 for examples
nthread <- 1
data.table::setDTthreads(nthread)

# In the iris dataset, it is hard to linearly separate Versicolor class from the rest
# without considering the 2nd order interactions:
x <- model.matrix(Species ~ .^2, iris)[,-1]
colnames(x)
dtrain <- xgb.DMatrix(scale(x), label = 1*(iris$Species == "versicolor"), nthread = nthread)
param <- list(booster = "gblinear", objective = "reg:logistic", eval_metric = "auc",

lambda = 0.0003, alpha = 0.0003, nthread = nthread)
# For 'shotgun', which is a default linear updater, using high eta values may result in
# unstable behaviour in some datasets. With this simple dataset, however, the high learning
# rate does not break the convergence, but allows us to illustrate the typical pattern of
# "stochastic explosion" behaviour of this lock-free algorithm at early boosting iterations.
bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 1.,

callbacks = list(cb.gblinear.history()))
# Extract the coefficients' path and plot them vs boosting iteration number:
coef_path <- xgb.gblinear.history(bst)
matplot(coef_path, type = 'l')

# With the deterministic coordinate descent updater, it is safer to use higher learning rates.
# Will try the classical componentwise boosting which selects a single best feature per round:
bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 0.8,

updater = 'coord_descent', feature_selector = 'thrifty', top_k = 1,
callbacks = list(cb.gblinear.history()))

matplot(xgb.gblinear.history(bst), type = 'l')
# Componentwise boosting is known to have similar effect to Lasso regularization.
# Try experimenting with various values of top_k, eta, nrounds,
# as well as different feature_selectors.

# For xgb.cv:
bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 100, eta = 0.8,

callbacks = list(cb.gblinear.history()))
# coefficients in the CV fold #3
matplot(xgb.gblinear.history(bst)[[3]], type = 'l')

#### Multiclass classification:
#
dtrain <- xgb.DMatrix(scale(x), label = as.numeric(iris$Species) - 1, nthread = nthread)
param <- list(booster = "gblinear", objective = "multi:softprob", num_class = 3,

lambda = 0.0003, alpha = 0.0003, nthread = nthread)
# For the default linear updater 'shotgun' it sometimes is helpful
# to use smaller eta to reduce instability



cb.print.evaluation 11

bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 70, eta = 0.5,
callbacks = list(cb.gblinear.history()))

# Will plot the coefficient paths separately for each class:
matplot(xgb.gblinear.history(bst, class_index = 0), type = 'l')
matplot(xgb.gblinear.history(bst, class_index = 1), type = 'l')
matplot(xgb.gblinear.history(bst, class_index = 2), type = 'l')

# CV:
bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 70, eta = 0.5,

callbacks = list(cb.gblinear.history(FALSE)))
# 1st fold of 1st class
matplot(xgb.gblinear.history(bst, class_index = 0)[[1]], type = 'l')

cb.print.evaluation Callback closure for printing the result of evaluation

Description

Callback closure for printing the result of evaluation

Usage

cb.print.evaluation(period = 1, showsd = TRUE)

Arguments

period results would be printed every number of periods

showsd whether standard deviations should be printed (when available)

Details

The callback function prints the result of evaluation at every period iterations. The initial and the
last iteration’s evaluations are always printed.

Callback function expects the following values to be set in its calling frame: bst_evaluation (also
bst_evaluation_err when available), iteration, begin_iteration, end_iteration.

See Also

callbacks



12 cb.save.model

cb.reset.parameters Callback closure for resetting the booster’s parameters at each itera-
tion.

Description

Callback closure for resetting the booster’s parameters at each iteration.

Usage

cb.reset.parameters(new_params)

Arguments

new_params a list where each element corresponds to a parameter that needs to be reset. Each
element’s value must be either a vector of values of length nrounds to be set at
each iteration, or a function of two parameters learning_rates(iteration,
nrounds) which returns a new parameter value by using the current iteration
number and the total number of boosting rounds.

Details

This is a "pre-iteration" callback function used to reset booster’s parameters at the beginning of
each iteration.

Note that when training is resumed from some previous model, and a function is used to reset
a parameter value, the nrounds argument in this function would be the the number of boosting
rounds in the current training.

Callback function expects the following values to be set in its calling frame: bst or bst_folds,
iteration, begin_iteration, end_iteration.

See Also

callbacks

cb.save.model Callback closure for saving a model file.

Description

Callback closure for saving a model file.

Usage

cb.save.model(save_period = 0, save_name = "xgboost.model")



dim.xgb.DMatrix 13

Arguments

save_period save the model to disk after every save_period iterations; 0 means save the
model at the end.

save_name the name or path for the saved model file. It can contain a sprintf format-
ting specifier to include the integer iteration number in the file name. E.g.,
with save_name = ’xgboost_ the file saved at iteration 50 would be named "xg-
boost_0050.model".

Details

This callback function allows to save an xgb-model file, either periodically after each save_period’s
or at the end.

Callback function expects the following values to be set in its calling frame: bst, iteration,
begin_iteration, end_iteration.

See Also

callbacks

dim.xgb.DMatrix Dimensions of xgb.DMatrix

Description

Returns a vector of numbers of rows and of columns in an xgb.DMatrix.

Usage

## S3 method for class 'xgb.DMatrix'
dim(x)

Arguments

x Object of class xgb.DMatrix

Details

Note: since nrow and ncol internally use dim, they can also be directly used with an xgb.DMatrix
object.



14 dimnames.xgb.DMatrix

Examples

data(agaricus.train, package='xgboost')
train <- agaricus.train
dtrain <- xgb.DMatrix(train$data, label=train$label, nthread = 2)

stopifnot(nrow(dtrain) == nrow(train$data))
stopifnot(ncol(dtrain) == ncol(train$data))
stopifnot(all(dim(dtrain) == dim(train$data)))

dimnames.xgb.DMatrix Handling of column names of xgb.DMatrix

Description

Only column names are supported for xgb.DMatrix, thus setting of row names would have no effect
and returned row names would be NULL.

Usage

## S3 method for class 'xgb.DMatrix'
dimnames(x)

## S3 replacement method for class 'xgb.DMatrix'
dimnames(x) <- value

Arguments

x object of class xgb.DMatrix

value a list of two elements: the first one is ignored and the second one is column
names

Details

Generic dimnames methods are used by colnames. Since row names are irrelevant, it is recom-
mended to use colnames directly.

Examples

data(agaricus.train, package='xgboost')
train <- agaricus.train
dtrain <- xgb.DMatrix(train$data, label=train$label, nthread = 2)
dimnames(dtrain)
colnames(dtrain)
colnames(dtrain) <- make.names(1:ncol(train$data))
print(dtrain, verbose=TRUE)



getinfo 15

getinfo Get information of an xgb.DMatrix object

Description

Get information of an xgb.DMatrix object

Usage

getinfo(object, ...)

## S3 method for class 'xgb.DMatrix'
getinfo(object, name, ...)

Arguments

object Object of class xgb.DMatrix

... other parameters

name the name of the information field to get (see details)

Details

The name field can be one of the following:

• label: label XGBoost learn from ;

• weight: to do a weight rescale ;

• base_margin: base margin is the base prediction XGBoost will boost from ;

• nrow: number of rows of the xgb.DMatrix.

group can be setup by setinfo but can’t be retrieved by getinfo.

Examples

data(agaricus.train, package='xgboost')
dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))

labels <- getinfo(dtrain, 'label')
setinfo(dtrain, 'label', 1-labels)

labels2 <- getinfo(dtrain, 'label')
stopifnot(all(labels2 == 1-labels))



16 predict.xgb.Booster

normalize Scale feature value to have mean 0, standard deviation 1

Description

This is used to compare multiple features on the same plot. Internal utility function

Usage

normalize(x)

Arguments

x Numeric vector

Value

Numeric vector with mean 0 and sd 1.

predict.xgb.Booster Predict method for eXtreme Gradient Boosting model

Description

Predicted values based on either xgboost model or model handle object.

Usage

## S3 method for class 'xgb.Booster'
predict(
object,
newdata,
missing = NA,
outputmargin = FALSE,
ntreelimit = NULL,
predleaf = FALSE,
predcontrib = FALSE,
approxcontrib = FALSE,
predinteraction = FALSE,
reshape = FALSE,
training = FALSE,
iterationrange = NULL,
strict_shape = FALSE,
...

)

## S3 method for class 'xgb.Booster.handle'
predict(object, ...)



predict.xgb.Booster 17

Arguments

object Object of class xgb.Booster or xgb.Booster.handle

newdata takes matrix, dgCMatrix, dgRMatrix, dsparseVector, local data file or xgb.DMatrix.
For single-row predictions on sparse data, it’s recommended to use CSR format.
If passing a sparse vector, it will take it as a row vector.

missing Missing is only used when input is dense matrix. Pick a float value that repre-
sents missing values in data (e.g., sometimes 0 or some other extreme value is
used).

outputmargin whether the prediction should be returned in the for of original untransformed
sum of predictions from boosting iterations’ results. E.g., setting outputmargin=TRUE
for logistic regression would result in predictions for log-odds instead of proba-
bilities.

ntreelimit Deprecated, use iterationrange instead.

predleaf whether predict leaf index.

predcontrib whether to return feature contributions to individual predictions (see Details).

approxcontrib whether to use a fast approximation for feature contributions (see Details).
predinteraction

whether to return contributions of feature interactions to individual predictions
(see Details).

reshape whether to reshape the vector of predictions to a matrix form when there are
several prediction outputs per case. This option has no effect when either of
predleaf, predcontrib, or predinteraction flags is TRUE.

training whether is the prediction result used for training. For dart booster, training pre-
dicting will perform dropout.

iterationrange Specifies which layer of trees are used in prediction. For example, if a random
forest is trained with 100 rounds. Specifying ‘iterationrange=(1, 21)‘, then only
the forests built during [1, 21) (half open set) rounds are used in this prediction.
It’s 1-based index just like R vector. When set to c(1, 1) XGBoost will use all
trees.

strict_shape Default is FALSE. When it’s set to TRUE, output type and shape of prediction are
invariant to model type.

... Parameters passed to predict.xgb.Booster

Details

Note that iterationrange would currently do nothing for predictions from gblinear, since gblinear
doesn’t keep its boosting history.

One possible practical applications of the predleaf option is to use the model as a generator of new
features which capture non-linearity and interactions, e.g., as implemented in xgb.create.features.

Setting predcontrib = TRUE allows to calculate contributions of each feature to individual pre-
dictions. For "gblinear" booster, feature contributions are simply linear terms (feature_beta * fea-
ture_value). For "gbtree" booster, feature contributions are SHAP values (Lundberg 2017) that sum



18 predict.xgb.Booster

to the difference between the expected output of the model and the current prediction (where the hes-
sian weights are used to compute the expectations). Setting approxcontrib = TRUE approximates
these values following the idea explained in http://blog.datadive.net/interpreting-random-forests/.

With predinteraction = TRUE, SHAP values of contributions of interaction of each pair of features
are computed. Note that this operation might be rather expensive in terms of compute and memory.
Since it quadratically depends on the number of features, it is recommended to perform selection of
the most important features first. See below about the format of the returned results.

Value

The return type is different depending whether strict_shape is set to TRUE. By default, for re-
gression or binary classification, it returns a vector of length nrows(newdata). For multiclass
classification, either a num_class * nrows(newdata) vector or a (nrows(newdata), num_class)
dimension matrix is returned, depending on the reshape value.

When predleaf = TRUE, the output is a matrix object with the number of columns corresponding
to the number of trees.

When predcontrib = TRUE and it is not a multiclass setting, the output is a matrix object with
num_features + 1 columns. The last "+ 1" column in a matrix corresponds to bias. For a mul-
ticlass case, a list of num_class elements is returned, where each element is such a matrix. The
contribution values are on the scale of untransformed margin (e.g., for binary classification would
mean that the contributions are log-odds deviations from bias).

When predinteraction = TRUE and it is not a multiclass setting, the output is a 3d array with
dimensions c(nrow, num_features + 1, num_features + 1). The off-diagonal (in the last two
dimensions) elements represent different features interaction contributions. The array is symmetric
WRT the last two dimensions. The "+ 1" columns corresponds to bias. Summing this array along
the last dimension should produce practically the same result as predict with predcontrib = TRUE.
For a multiclass case, a list of num_class elements is returned, where each element is such an array.

When strict_shape is set to TRUE, the output is always an array. For normal prediction, the output
is a 2-dimension array (num_class, nrow(newdata)).

For predcontrib = TRUE, output is (ncol(newdata) + 1, num_class, nrow(newdata)) For predinteraction
= TRUE, output is (ncol(newdata) + 1, ncol(newdata) + 1, num_class, nrow(newdata)) For
predleaf = TRUE, output is (n_trees_in_forest, num_class, n_iterations, nrow(newdata))

References

Scott M. Lundberg, Su-In Lee, "A Unified Approach to Interpreting Model Predictions", NIPS
Proceedings 2017, https://arxiv.org/abs/1705.07874

Scott M. Lundberg, Su-In Lee, "Consistent feature attribution for tree ensembles", https://arxiv.
org/abs/1706.06060

See Also

xgb.train.

http://blog.datadive.net/interpreting-random-forests/
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1706.06060
https://arxiv.org/abs/1706.06060


predict.xgb.Booster 19

Examples

## binary classification:

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')

## Keep the number of threads to 2 for examples
nthread <- 2
data.table::setDTthreads(nthread)

train <- agaricus.train
test <- agaricus.test

bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 0.5, nthread = nthread, nrounds = 5, objective = "binary:logistic")

# use all trees by default
pred <- predict(bst, test$data)
# use only the 1st tree
pred1 <- predict(bst, test$data, iterationrange = c(1, 2))

# Predicting tree leafs:
# the result is an nsamples X ntrees matrix
pred_leaf <- predict(bst, test$data, predleaf = TRUE)
str(pred_leaf)

# Predicting feature contributions to predictions:
# the result is an nsamples X (nfeatures + 1) matrix
pred_contr <- predict(bst, test$data, predcontrib = TRUE)
str(pred_contr)
# verify that contributions' sums are equal to log-odds of predictions (up to float precision):
summary(rowSums(pred_contr) - qlogis(pred))
# for the 1st record, let's inspect its features that had non-zero contribution to prediction:
contr1 <- pred_contr[1,]
contr1 <- contr1[-length(contr1)] # drop BIAS
contr1 <- contr1[contr1 != 0] # drop non-contributing features
contr1 <- contr1[order(abs(contr1))] # order by contribution magnitude
old_mar <- par("mar")
par(mar = old_mar + c(0,7,0,0))
barplot(contr1, horiz = TRUE, las = 2, xlab = "contribution to prediction in log-odds")
par(mar = old_mar)

## multiclass classification in iris dataset:

lb <- as.numeric(iris$Species) - 1
num_class <- 3
set.seed(11)
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,

max_depth = 4, eta = 0.5, nthread = 2, nrounds = 10, subsample = 0.5,
objective = "multi:softprob", num_class = num_class)

# predict for softmax returns num_class probability numbers per case:
pred <- predict(bst, as.matrix(iris[, -5]))



20 prepare.ggplot.shap.data

str(pred)
# reshape it to a num_class-columns matrix
pred <- matrix(pred, ncol=num_class, byrow=TRUE)
# convert the probabilities to softmax labels
pred_labels <- max.col(pred) - 1
# the following should result in the same error as seen in the last iteration
sum(pred_labels != lb)/length(lb)

# compare that to the predictions from softmax:
set.seed(11)
bst <- xgboost(data = as.matrix(iris[, -5]), label = lb,

max_depth = 4, eta = 0.5, nthread = 2, nrounds = 10, subsample = 0.5,
objective = "multi:softmax", num_class = num_class)

pred <- predict(bst, as.matrix(iris[, -5]))
str(pred)
all.equal(pred, pred_labels)
# prediction from using only 5 iterations should result
# in the same error as seen in iteration 5:
pred5 <- predict(bst, as.matrix(iris[, -5]), iterationrange=c(1, 6))
sum(pred5 != lb)/length(lb)

prepare.ggplot.shap.data

Combine and melt feature values and SHAP contributions for sample
observations.

Description

Conforms to data format required for ggplot functions.

Usage

prepare.ggplot.shap.data(data_list, normalize = FALSE)

Arguments

data_list List containing ’data’ and ’shap_contrib’ returned by xgb.shap.data().

normalize Whether to standardize feature values to have mean 0 and standard deviation 1
(useful for comparing multiple features on the same plot). Default FALSE.

Details

Internal utility function.

Value

A data.table containing the observation ID, the feature name, the feature value (normalized if spec-
ified), and the SHAP contribution value.



print.xgb.Booster 21

print.xgb.Booster Print xgb.Booster

Description

Print information about xgb.Booster.

Usage

## S3 method for class 'xgb.Booster'
print(x, verbose = FALSE, ...)

Arguments

x an xgb.Booster object

verbose whether to print detailed data (e.g., attribute values)

... not currently used

Examples

data(agaricus.train, package='xgboost')
train <- agaricus.train
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,

eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
attr(bst, 'myattr') <- 'memo'

print(bst)
print(bst, verbose=TRUE)

print.xgb.cv.synchronous

Print xgb.cv result

Description

Prints formatted results of xgb.cv.

Usage

## S3 method for class 'xgb.cv.synchronous'
print(x, verbose = FALSE, ...)



22 print.xgb.DMatrix

Arguments

x an xgb.cv.synchronous object

verbose whether to print detailed data

... passed to data.table.print

Details

When not verbose, it would only print the evaluation results, including the best iteration (when
available).

Examples

data(agaricus.train, package='xgboost')
train <- agaricus.train
cv <- xgb.cv(data = train$data, label = train$label, nfold = 5, max_depth = 2,

eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
print(cv)
print(cv, verbose=TRUE)

print.xgb.DMatrix Print xgb.DMatrix

Description

Print information about xgb.DMatrix. Currently it displays dimensions and presence of info-fields
and colnames.

Usage

## S3 method for class 'xgb.DMatrix'
print(x, verbose = FALSE, ...)

Arguments

x an xgb.DMatrix object

verbose whether to print colnames (when present)

... not currently used

Examples

data(agaricus.train, package='xgboost')
dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))

dtrain
print(dtrain, verbose=TRUE)



setinfo 23

setinfo Set information of an xgb.DMatrix object

Description

Set information of an xgb.DMatrix object

Usage

setinfo(object, ...)

## S3 method for class 'xgb.DMatrix'
setinfo(object, name, info, ...)

Arguments

object Object of class "xgb.DMatrix"

... other parameters

name the name of the field to get

info the specific field of information to set

Details

The name field can be one of the following:

• label: label XGBoost learn from ;

• weight: to do a weight rescale ;

• base_margin: base margin is the base prediction XGBoost will boost from ;

• group: number of rows in each group (to use with rank:pairwise objective).

Examples

data(agaricus.train, package='xgboost')
dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))

labels <- getinfo(dtrain, 'label')
setinfo(dtrain, 'label', 1-labels)
labels2 <- getinfo(dtrain, 'label')
stopifnot(all.equal(labels2, 1-labels))



24 xgb.attr

slice Get a new DMatrix containing the specified rows of original
xgb.DMatrix object

Description

Get a new DMatrix containing the specified rows of original xgb.DMatrix object

Usage

slice(object, ...)

## S3 method for class 'xgb.DMatrix'
slice(object, idxset, ...)

## S3 method for class 'xgb.DMatrix'
object[idxset, colset = NULL]

Arguments

object Object of class "xgb.DMatrix"

... other parameters (currently not used)

idxset a integer vector of indices of rows needed

colset currently not used (columns subsetting is not available)

Examples

data(agaricus.train, package='xgboost')
dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))

dsub <- slice(dtrain, 1:42)
labels1 <- getinfo(dsub, 'label')
dsub <- dtrain[1:42, ]
labels2 <- getinfo(dsub, 'label')
all.equal(labels1, labels2)

xgb.attr Accessors for serializable attributes of a model.

Description

These methods allow to manipulate the key-value attribute strings of an xgboost model.



xgb.attr 25

Usage

xgb.attr(object, name)

xgb.attr(object, name) <- value

xgb.attributes(object)

xgb.attributes(object) <- value

Arguments

object Object of class xgb.Booster or xgb.Booster.handle.

name a non-empty character string specifying which attribute is to be accessed.

value a value of an attribute for xgb.attr<-; for xgb.attributes<- it’s a list (or an
object coercible to a list) with the names of attributes to set and the elements
corresponding to attribute values. Non-character values are converted to charac-
ter. When attribute value is not a scalar, only the first index is used. Use NULL to
remove an attribute.

Details

The primary purpose of xgboost model attributes is to store some meta-data about the model. Note
that they are a separate concept from the object attributes in R. Specifically, they refer to key-
value strings that can be attached to an xgboost model, stored together with the model’s binary
representation, and accessed later (from R or any other interface). In contrast, any R-attribute
assigned to an R-object of xgb.Booster class would not be saved by xgb.save because an xgboost
model is an external memory object and its serialization is handled externally. Also, setting an
attribute that has the same name as one of xgboost’s parameters wouldn’t change the value of that
parameter for a model. Use xgb.parameters<- to set or change model parameters.

The attribute setters would usually work more efficiently for xgb.Booster.handle than for xgb.Booster,
since only just a handle (pointer) would need to be copied. That would only matter if attributes need
to be set many times. Note, however, that when feeding a handle of an xgb.Booster object to the at-
tribute setters, the raw model cache of an xgb.Booster object would not be automatically updated,
and it would be user’s responsibility to call xgb.serialize to update it.

The xgb.attributes<- setter either updates the existing or adds one or several attributes, but it
doesn’t delete the other existing attributes.

Value

xgb.attr returns either a string value of an attribute or NULL if an attribute wasn’t stored in a model.

xgb.attributes returns a list of all attribute stored in a model or NULL if a model has no stored
attributes.

Examples

data(agaricus.train, package='xgboost')
train <- agaricus.train



26 xgb.Booster.complete

bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")

xgb.attr(bst, "my_attribute") <- "my attribute value"
print(xgb.attr(bst, "my_attribute"))
xgb.attributes(bst) <- list(a = 123, b = "abc")

xgb.save(bst, 'xgb.model')
bst1 <- xgb.load('xgb.model')
if (file.exists('xgb.model')) file.remove('xgb.model')
print(xgb.attr(bst1, "my_attribute"))
print(xgb.attributes(bst1))

# deletion:
xgb.attr(bst1, "my_attribute") <- NULL
print(xgb.attributes(bst1))
xgb.attributes(bst1) <- list(a = NULL, b = NULL)
print(xgb.attributes(bst1))

xgb.Booster.complete Restore missing parts of an incomplete xgb.Booster object.

Description

It attempts to complete an xgb.Booster object by restoring either its missing raw model memory
dump (when it has no raw data but its xgb.Booster.handle is valid) or its missing internal handle
(when its xgb.Booster.handle is not valid but it has a raw Booster memory dump).

Usage

xgb.Booster.complete(object, saveraw = TRUE)

Arguments

object object of class xgb.Booster

saveraw a flag indicating whether to append raw Booster memory dump data when it
doesn’t already exist.

Details

While this method is primarily for internal use, it might be useful in some practical situations.

E.g., when an xgb.Booster model is saved as an R object and then is loaded as an R object, its han-
dle (pointer) to an internal xgboost model would be invalid. The majority of xgboost methods should
still work for such a model object since those methods would be using xgb.Booster.complete in-
ternally. However, one might find it to be more efficient to call the xgb.Booster.complete function
explicitly once after loading a model as an R-object. That would prevent further repeated implicit
reconstruction of an internal booster model.



xgb.config 27

Value

An object of xgb.Booster class.

Examples

data(agaricus.train, package='xgboost')
bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,

eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
saveRDS(bst, "xgb.model.rds")

# Warning: The resulting RDS file is only compatible with the current XGBoost version.
# Refer to the section titled "a-compatibility-note-for-saveRDS-save".
bst1 <- readRDS("xgb.model.rds")
if (file.exists("xgb.model.rds")) file.remove("xgb.model.rds")
# the handle is invalid:
print(bst1$handle)

bst1 <- xgb.Booster.complete(bst1)
# now the handle points to a valid internal booster model:
print(bst1$handle)

xgb.config Accessors for model parameters as JSON string.

Description

Accessors for model parameters as JSON string.

Usage

xgb.config(object)

xgb.config(object) <- value

Arguments

object Object of class xgb.Booster

value A JSON string.

Examples

data(agaricus.train, package='xgboost')
## Keep the number of threads to 1 for examples
nthread <- 1
data.table::setDTthreads(nthread)
train <- agaricus.train

bst <- xgboost(



28 xgb.create.features

data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = nthread, nrounds = 2, objective = "binary:logistic"

)
config <- xgb.config(bst)

xgb.create.features Create new features from a previously learned model

Description

May improve the learning by adding new features to the training data based on the decision trees
from a previously learned model.

Usage

xgb.create.features(model, data, ...)

Arguments

model decision tree boosting model learned on the original data
data original data (usually provided as a dgCMatrix matrix)
... currently not used

Details

This is the function inspired from the paragraph 3.1 of the paper:

Practical Lessons from Predicting Clicks on Ads at Facebook
(Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yan, xin Shi, Antoine Atallah, Ralf
Herbrich, Stuart Bowers, Joaquin Quinonero Candela)

International Workshop on Data Mining for Online Advertising (ADKDD) - August 24, 2014

https://research.facebook.com/publications/practical-lessons-from-predicting-clicks-on-ads-at-facebook/.

Extract explaining the method:

"We found that boosted decision trees are a powerful and very convenient way to implement non-
linear and tuple transformations of the kind we just described. We treat each individual tree as a
categorical feature that takes as value the index of the leaf an instance ends up falling in. We use
1-of-K coding of this type of features.

For example, consider the boosted tree model in Figure 1 with 2 subtrees, where the first subtree
has 3 leafs and the second 2 leafs. If an instance ends up in leaf 2 in the first subtree and leaf 1 in
second subtree, the overall input to the linear classifier will be the binary vector [0, 1, 0, 1, 0],
where the first 3 entries correspond to the leaves of the first subtree and last 2 to those of the second
subtree.

[...]

We can understand boosted decision tree based transformation as a supervised feature encoding that
converts a real-valued vector into a compact binary-valued vector. A traversal from root node to a
leaf node represents a rule on certain features."

https://research.facebook.com/publications/practical-lessons-from-predicting-clicks-on-ads-at-facebook/


xgb.cv 29

Value

dgCMatrix matrix including both the original data and the new features.

Examples

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
dtest <- with(agaricus.test, xgb.DMatrix(data, label = label, nthread = 2))

param <- list(max_depth=2, eta=1, silent=1, objective='binary:logistic')
nrounds = 4

bst = xgb.train(params = param, data = dtrain, nrounds = nrounds, nthread = 2)

# Model accuracy without new features
accuracy.before <- sum((predict(bst, agaricus.test$data) >= 0.5) == agaricus.test$label) /

length(agaricus.test$label)

# Convert previous features to one hot encoding
new.features.train <- xgb.create.features(model = bst, agaricus.train$data)
new.features.test <- xgb.create.features(model = bst, agaricus.test$data)

# learning with new features
new.dtrain <- xgb.DMatrix(

data = new.features.train, label = agaricus.train$label, nthread = 2
)
new.dtest <- xgb.DMatrix(

data = new.features.test, label = agaricus.test$label, nthread = 2
)
watchlist <- list(train = new.dtrain)
bst <- xgb.train(params = param, data = new.dtrain, nrounds = nrounds, nthread = 2)

# Model accuracy with new features
accuracy.after <- sum((predict(bst, new.dtest) >= 0.5) == agaricus.test$label) /

length(agaricus.test$label)

# Here the accuracy was already good and is now perfect.
cat(paste("The accuracy was", accuracy.before, "before adding leaf features and it is now",

accuracy.after, "!\n"))

xgb.cv Cross Validation

Description

The cross validation function of xgboost



30 xgb.cv

Usage

xgb.cv(
params = list(),
data,
nrounds,
nfold,
label = NULL,
missing = NA,
prediction = FALSE,
showsd = TRUE,
metrics = list(),
obj = NULL,
feval = NULL,
stratified = TRUE,
folds = NULL,
train_folds = NULL,
verbose = TRUE,
print_every_n = 1L,
early_stopping_rounds = NULL,
maximize = NULL,
callbacks = list(),
...

)

Arguments

params the list of parameters. The complete list of parameters is available in the online
documentation. Below is a shorter summary:

• objective objective function, common ones are
– reg:squarederror Regression with squared loss.
– binary:logistic logistic regression for classification.
– See xgb.train() for complete list of objectives.

• eta step size of each boosting step
• max_depth maximum depth of the tree
• nthread number of thread used in training, if not set, all threads are used

See xgb.train for further details. See also demo/ for walkthrough example in
R.

data takes an xgb.DMatrix, matrix, or dgCMatrix as the input.

nrounds the max number of iterations

nfold the original dataset is randomly partitioned into nfold equal size subsamples.

label vector of response values. Should be provided only when data is an R-matrix.

missing is only used when input is a dense matrix. By default is set to NA, which means
that NA values should be considered as ’missing’ by the algorithm. Sometimes,
0 or other extreme value might be used to represent missing values.

http://xgboost.readthedocs.io/en/latest/parameter.html
http://xgboost.readthedocs.io/en/latest/parameter.html


xgb.cv 31

prediction A logical value indicating whether to return the test fold predictions from each
CV model. This parameter engages the cb.cv.predict callback.

showsd boolean, whether to show standard deviation of cross validation

metrics list of evaluation metrics to be used in cross validation, when it is not specified,
the evaluation metric is chosen according to objective function. Possible options
are:

• error binary classification error rate
• rmse Rooted mean square error
• logloss negative log-likelihood function
• mae Mean absolute error
• mape Mean absolute percentage error
• auc Area under curve
• aucpr Area under PR curve
• merror Exact matching error, used to evaluate multi-class classification

obj customized objective function. Returns gradient and second order gradient with
given prediction and dtrain.

feval customized evaluation function. Returns list(metric='metric-name', value='metric-value')
with given prediction and dtrain.

stratified a boolean indicating whether sampling of folds should be stratified by the val-
ues of outcome labels.

folds list provides a possibility to use a list of pre-defined CV folds (each element
must be a vector of test fold’s indices). When folds are supplied, the nfold and
stratified parameters are ignored.

train_folds list list specifying which indicies to use for training. If NULL (the default) all
indices not specified in folds will be used for training.

verbose boolean, print the statistics during the process

print_every_n Print each n-th iteration evaluation messages when verbose>0. Default is 1
which means all messages are printed. This parameter is passed to the cb.print.evaluation
callback.

early_stopping_rounds

If NULL, the early stopping function is not triggered. If set to an integer k, train-
ing with a validation set will stop if the performance doesn’t improve for k
rounds. Setting this parameter engages the cb.early.stop callback.

maximize If feval and early_stopping_rounds are set, then this parameter must be set
as well. When it is TRUE, it means the larger the evaluation score the better. This
parameter is passed to the cb.early.stop callback.

callbacks a list of callback functions to perform various task during boosting. See callbacks.
Some of the callbacks are automatically created depending on the parameters’
values. User can provide either existing or their own callback methods in order
to customize the training process.

... other parameters to pass to params.



32 xgb.cv

Details

The original sample is randomly partitioned into nfold equal size subsamples.

Of the nfold subsamples, a single subsample is retained as the validation data for testing the model,
and the remaining nfold - 1 subsamples are used as training data.

The cross-validation process is then repeated nrounds times, with each of the nfold subsamples
used exactly once as the validation data.

All observations are used for both training and validation.

Adapted from https://en.wikipedia.org/wiki/Cross-validation_%28statistics%29

Value

An object of class xgb.cv.synchronous with the following elements:

• call a function call.

• params parameters that were passed to the xgboost library. Note that it does not capture
parameters changed by the cb.reset.parameters callback.

• callbacks callback functions that were either automatically assigned or explicitly passed.

• evaluation_log evaluation history stored as a data.table with the first column correspond-
ing to iteration number and the rest corresponding to the CV-based evaluation means and stan-
dard deviations for the training and test CV-sets. It is created by the cb.evaluation.log
callback.

• niter number of boosting iterations.

• nfeatures number of features in training data.

• folds the list of CV folds’ indices - either those passed through the folds parameter or
randomly generated.

• best_iteration iteration number with the best evaluation metric value (only available with
early stopping).

• best_ntreelimit and the ntreelimit Deprecated attributes, use best_iteration instead.

• pred CV prediction values available when prediction is set. It is either vector or matrix (see
cb.cv.predict).

• models a list of the CV folds’ models. It is only available with the explicit setting of the
cb.cv.predict(save_models = TRUE) callback.

Examples

data(agaricus.train, package='xgboost')
dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
cv <- xgb.cv(data = dtrain, nrounds = 3, nthread = 2, nfold = 5, metrics = list("rmse","auc"),

max_depth = 3, eta = 1, objective = "binary:logistic")
print(cv)
print(cv, verbose=TRUE)

https://en.wikipedia.org/wiki/Cross-validation_%28statistics%29


xgb.DMatrix 33

xgb.DMatrix Construct xgb.DMatrix object

Description

Construct xgb.DMatrix object from either a dense matrix, a sparse matrix, or a local file. Supported
input file formats are either a LIBSVM text file or a binary file that was created previously by
xgb.DMatrix.save).

Usage

xgb.DMatrix(
data,
info = list(),
missing = NA,
silent = FALSE,
nthread = NULL,
...

)

Arguments

data a matrix object (either numeric or integer), a dgCMatrix object, a dgRMatrix
object (only when making predictions from a fitted model), a dsparseVector
object (only when making predictions from a fitted model, will be interpreted as
a row vector), or a character string representing a filename.

info a named list of additional information to store in the xgb.DMatrix object. See
setinfo for the specific allowed kinds of

missing a float value to represents missing values in data (used only when input is a dense
matrix). It is useful when a 0 or some other extreme value represents missing
values in data.

silent whether to suppress printing an informational message after loading from a file.

nthread Number of threads used for creating DMatrix.

... the info data could be passed directly as parameters, without creating an info
list.

Examples

data(agaricus.train, package='xgboost')
## Keep the number of threads to 1 for examples
nthread <- 1
data.table::setDTthreads(nthread)
dtrain <- with(

agaricus.train, xgb.DMatrix(data, label = label, nthread = nthread)
)
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')



34 xgb.dump

dtrain <- xgb.DMatrix('xgb.DMatrix.data')
if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')

xgb.DMatrix.save Save xgb.DMatrix object to binary file

Description

Save xgb.DMatrix object to binary file

Usage

xgb.DMatrix.save(dmatrix, fname)

Arguments

dmatrix the xgb.DMatrix object

fname the name of the file to write.

Examples

data(agaricus.train, package='xgboost')
dtrain <- with(agaricus.train, xgb.DMatrix(data, label = label, nthread = 2))
xgb.DMatrix.save(dtrain, 'xgb.DMatrix.data')
dtrain <- xgb.DMatrix('xgb.DMatrix.data')
if (file.exists('xgb.DMatrix.data')) file.remove('xgb.DMatrix.data')

xgb.dump Dump an xgboost model in text format.

Description

Dump an xgboost model in text format.

Usage

xgb.dump(
model,
fname = NULL,
fmap = "",
with_stats = FALSE,
dump_format = c("text", "json"),
...

)



xgb.gblinear.history 35

Arguments

model the model object.

fname the name of the text file where to save the model text dump. If not provided or
set to NULL, the model is returned as a character vector.

fmap feature map file representing feature types. See demo/ for walkthrough ex-
ample in R, and https://github.com/dmlc/xgboost/blob/master/demo/
data/featmap.txt for example Format.

with_stats whether to dump some additional statistics about the splits. When this option is
on, the model dump contains two additional values: gain is the approximate loss
function gain we get in each split; cover is the sum of second order gradient in
each node.

dump_format either ’text’ or ’json’ format could be specified.

... currently not used

Value

If fname is not provided or set to NULL the function will return the model as a character vector.
Otherwise it will return TRUE.

Examples

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,

eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
# save the model in file 'xgb.model.dump'
dump_path = file.path(tempdir(), 'model.dump')
xgb.dump(bst, dump_path, with_stats = TRUE)

# print the model without saving it to a file
print(xgb.dump(bst, with_stats = TRUE))

# print in JSON format:
cat(xgb.dump(bst, with_stats = TRUE, dump_format='json'))

xgb.gblinear.history Extract gblinear coefficients history.

Description

A helper function to extract the matrix of linear coefficients’ history from a gblinear model created
while using the cb.gblinear.history() callback.

https://github.com/dmlc/xgboost/blob/master/demo/data/featmap.txt
https://github.com/dmlc/xgboost/blob/master/demo/data/featmap.txt


36 xgb.ggplot.deepness

Usage

xgb.gblinear.history(model, class_index = NULL)

Arguments

model either an xgb.Booster or a result of xgb.cv(), trained using the cb.gblinear.history()
callback.

class_index zero-based class index to extract the coefficients for only that specific class in
a multinomial multiclass model. When it is NULL, all the coefficients are re-
turned. Has no effect in non-multiclass models.

Value

For an xgb.train result, a matrix (either dense or sparse) with the columns corresponding to it-
eration’s coefficients (in the order as xgb.dump() would return) and the rows corresponding to
boosting iterations.

For an xgb.cv result, a list of such matrices is returned with the elements corresponding to CV
folds.

xgb.ggplot.deepness Plot model trees deepness

Description

Visualizes distributions related to depth of tree leafs. xgb.plot.deepness uses base R graphics,
while xgb.ggplot.deepness uses the ggplot backend.

Usage

xgb.ggplot.deepness(
model = NULL,
which = c("2x1", "max.depth", "med.depth", "med.weight")

)

xgb.plot.deepness(
model = NULL,
which = c("2x1", "max.depth", "med.depth", "med.weight"),
plot = TRUE,
...

)

Arguments

model either an xgb.Booster model generated by the xgb.train function or a data.table
result of the xgb.model.dt.tree function.

which which distribution to plot (see details).



xgb.ggplot.deepness 37

plot (base R barplot) whether a barplot should be produced. If FALSE, only a
data.table is returned.

... other parameters passed to barplot or plot.

Details

When which="2x1", two distributions with respect to the leaf depth are plotted on top of each other:

• the distribution of the number of leafs in a tree model at a certain depth;

• the distribution of average weighted number of observations ("cover") ending up in leafs at
certain depth.

Those could be helpful in determining sensible ranges of the max_depth and min_child_weight
parameters.

When which="max.depth" or which="med.depth", plots of either maximum or median depth per
tree with respect to tree number are created. And which="med.weight" allows to see how a tree’s
median absolute leaf weight changes through the iterations.

This function was inspired by the blog post https://github.com/aysent/random-forest-leaf-visualization.

Value

Other than producing plots (when plot=TRUE), the xgb.plot.deepness function silently returns a
processed data.table where each row corresponds to a terminal leaf in a tree model, and contains
information about leaf’s depth, cover, and weight (which is used in calculating predictions).

The xgb.ggplot.deepness silently returns either a list of two ggplot graphs when which="2x1"
or a single ggplot graph for the other which options.

See Also

xgb.train, xgb.model.dt.tree.

Examples

data(agaricus.train, package='xgboost')
## Keep the number of threads to 2 for examples
nthread <- 2
data.table::setDTthreads(nthread)

## Change max_depth to a higher number to get a more significant result
bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 6,

eta = 0.1, nthread = nthread, nrounds = 50, objective = "binary:logistic",
subsample = 0.5, min_child_weight = 2)

xgb.plot.deepness(bst)
xgb.ggplot.deepness(bst)

xgb.plot.deepness(bst, which='max.depth', pch=16, col=rgb(0,0,1,0.3), cex=2)

xgb.plot.deepness(bst, which='med.weight', pch=16, col=rgb(0,0,1,0.3), cex=2)

https://github.com/aysent/random-forest-leaf-visualization


38 xgb.ggplot.importance

xgb.ggplot.importance Plot feature importance as a bar graph

Description

Represents previously calculated feature importance as a bar graph. xgb.plot.importance uses
base R graphics, while xgb.ggplot.importance uses the ggplot backend.

Usage

xgb.ggplot.importance(
importance_matrix = NULL,
top_n = NULL,
measure = NULL,
rel_to_first = FALSE,
n_clusters = c(1:10),
...

)

xgb.plot.importance(
importance_matrix = NULL,
top_n = NULL,
measure = NULL,
rel_to_first = FALSE,
left_margin = 10,
cex = NULL,
plot = TRUE,
...

)

Arguments

importance_matrix

a data.table returned by xgb.importance.

top_n maximal number of top features to include into the plot.

measure the name of importance measure to plot. When NULL, ’Gain’ would be used for
trees and ’Weight’ would be used for gblinear.

rel_to_first whether importance values should be represented as relative to the highest ranked
feature. See Details.

n_clusters (ggplot only) a numeric vector containing the min and the max range of the
possible number of clusters of bars.

... other parameters passed to barplot (except horiz, border, cex.names, names.arg,
and las).

left_margin (base R barplot) allows to adjust the left margin size to fit feature names. When
it is NULL, the existing par('mar') is used.



xgb.ggplot.importance 39

cex (base R barplot) passed as cex.names parameter to barplot.

plot (base R barplot) whether a barplot should be produced. If FALSE, only a
data.table is returned.

Details

The graph represents each feature as a horizontal bar of length proportional to the importance of a
feature. Features are shown ranked in a decreasing importance order. It works for importances from
both gblinear and gbtree models.

When rel_to_first = FALSE, the values would be plotted as they were in importance_matrix.
For gbtree model, that would mean being normalized to the total of 1 ("what is feature’s importance
contribution relative to the whole model?"). For linear models, rel_to_first = FALSE would show
actual values of the coefficients. Setting rel_to_first = TRUE allows to see the picture from the
perspective of "what is feature’s importance contribution relative to the most important feature?"

The ggplot-backend method also performs 1-D clustering of the importance values, with bar colors
corresponding to different clusters that have somewhat similar importance values.

Value

The xgb.plot.importance function creates a barplot (when plot=TRUE) and silently returns a
processed data.table with n_top features sorted by importance.

The xgb.ggplot.importance function returns a ggplot graph which could be customized after-
wards. E.g., to change the title of the graph, add + ggtitle("A GRAPH NAME") to the result.

See Also

barplot.

Examples

data(agaricus.train)
## Keep the number of threads to 2 for examples
nthread <- 2
data.table::setDTthreads(nthread)

bst <- xgboost(
data = agaricus.train$data, label = agaricus.train$label, max_depth = 3,
eta = 1, nthread = nthread, nrounds = 2, objective = "binary:logistic"

)

importance_matrix <- xgb.importance(colnames(agaricus.train$data), model = bst)

xgb.plot.importance(importance_matrix, rel_to_first = TRUE, xlab = "Relative importance")

(gg <- xgb.ggplot.importance(importance_matrix, measure = "Frequency", rel_to_first = TRUE))
gg + ggplot2::ylab("Frequency")



40 xgb.ggplot.shap.summary

xgb.ggplot.shap.summary

SHAP contribution dependency summary plot

Description

Compare SHAP contributions of different features.

Usage

xgb.ggplot.shap.summary(
data,
shap_contrib = NULL,
features = NULL,
top_n = 10,
model = NULL,
trees = NULL,
target_class = NULL,
approxcontrib = FALSE,
subsample = NULL

)

xgb.plot.shap.summary(
data,
shap_contrib = NULL,
features = NULL,
top_n = 10,
model = NULL,
trees = NULL,
target_class = NULL,
approxcontrib = FALSE,
subsample = NULL

)

Arguments

data data as a matrix or dgCMatrix.

shap_contrib a matrix of SHAP contributions that was computed earlier for the above data.
When it is NULL, it is computed internally using model and data.

features a vector of either column indices or of feature names to plot. When it is NULL,
feature importance is calculated, and top_n high ranked features are taken.

top_n when features is NULL, top_n [1, 100] most important features in a model are
taken.

model an xgb.Booster model. It has to be provided when either shap_contrib or
features is missing.



xgb.importance 41

trees passed to xgb.importance when features = NULL.

target_class is only relevant for multiclass models. When it is set to a 0-based class index,
only SHAP contributions for that specific class are used. If it is not set, SHAP
importances are averaged over all classes.

approxcontrib passed to predict.xgb.Booster when shap_contrib = NULL.

subsample a random fraction of data points to use for plotting. When it is NULL, it is set
so that up to 100K data points are used.

Details

A point plot (each point representing one sample from data) is produced for each feature, with the
points plotted on the SHAP value axis. Each point (observation) is coloured based on its feature
value. The plot hence allows us to see which features have a negative / positive contribution on the
model prediction, and whether the contribution is different for larger or smaller values of the feature.
We effectively try to replicate the summary_plot function from https://github.com/shap/shap

Value

A ggplot2 object.

See Also

xgb.plot.shap, xgb.ggplot.shap.summary, https://github.com/shap/shap

Examples

# See \code{\link{xgb.plot.shap}}.

xgb.importance Importance of features in a model.

Description

Creates a data.table of feature importances in a model.

Usage

xgb.importance(
feature_names = NULL,
model = NULL,
trees = NULL,
data = NULL,
label = NULL,
target = NULL

)

https://github.com/shap/shap


42 xgb.importance

Arguments

feature_names character vector of feature names. If the model already contains feature names,
those would be used when feature_names=NULL (default value). Non-null
feature_names could be provided to override those in the model.

model object of class xgb.Booster.

trees (only for the gbtree booster) an integer vector of tree indices that should be
included into the importance calculation. If set to NULL, all trees of the model
are parsed. It could be useful, e.g., in multiclass classification to get feature
importances for each class separately. IMPORTANT: the tree index in xgboost
models is zero-based (e.g., use trees = 0:4 for first 5 trees).

data deprecated.

label deprecated.

target deprecated.

Details

This function works for both linear and tree models.

For linear models, the importance is the absolute magnitude of linear coefficients. For that reason,
in order to obtain a meaningful ranking by importance for a linear model, the features need to be on
the same scale (which you also would want to do when using either L1 or L2 regularization).

Value

For a tree model, a data.table with the following columns:

• Features names of the features used in the model;

• Gain represents fractional contribution of each feature to the model based on the total gain of
this feature’s splits. Higher percentage means a more important predictive feature.

• Cover metric of the number of observation related to this feature;

• Frequency percentage representing the relative number of times a feature have been used in
trees.

A linear model’s importance data.table has the following columns:

• Features names of the features used in the model;

• Weight the linear coefficient of this feature;

• Class (only for multiclass models) class label.

If feature_names is not provided and model doesn’t have feature_names, index of the features
will be used instead. Because the index is extracted from the model dump (based on C++ code), it
starts at 0 (as in C/C++ or Python) instead of 1 (usual in R).



xgb.load 43

Examples

# binomial classification using gbtree:
data(agaricus.train, package='xgboost')
bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,

eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")
xgb.importance(model = bst)

# binomial classification using gblinear:
bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, booster = "gblinear",

eta = 0.3, nthread = 1, nrounds = 20, objective = "binary:logistic")
xgb.importance(model = bst)

# multiclass classification using gbtree:
nclass <- 3
nrounds <- 10
mbst <- xgboost(data = as.matrix(iris[, -5]), label = as.numeric(iris$Species) - 1,

max_depth = 3, eta = 0.2, nthread = 2, nrounds = nrounds,
objective = "multi:softprob", num_class = nclass)

# all classes clumped together:
xgb.importance(model = mbst)
# inspect importances separately for each class:
xgb.importance(model = mbst, trees = seq(from=0, by=nclass, length.out=nrounds))
xgb.importance(model = mbst, trees = seq(from=1, by=nclass, length.out=nrounds))
xgb.importance(model = mbst, trees = seq(from=2, by=nclass, length.out=nrounds))

# multiclass classification using gblinear:
mbst <- xgboost(data = scale(as.matrix(iris[, -5])), label = as.numeric(iris$Species) - 1,

booster = "gblinear", eta = 0.2, nthread = 1, nrounds = 15,
objective = "multi:softprob", num_class = nclass)

xgb.importance(model = mbst)

xgb.load Load xgboost model from binary file

Description

Load xgboost model from the binary model file.

Usage

xgb.load(modelfile)

Arguments

modelfile the name of the binary input file.



44 xgb.load.raw

Details

The input file is expected to contain a model saved in an xgboost model format using either
xgb.save or cb.save.model in R, or using some appropriate methods from other xgboost in-
terfaces. E.g., a model trained in Python and saved from there in xgboost format, could be loaded
from R.

Note: a model saved as an R-object, has to be loaded using corresponding R-methods, not xgb.load.

Value

An object of xgb.Booster class.

See Also

xgb.save, xgb.Booster.complete.

Examples

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')

## Keep the number of threads to 1 for examples
nthread <- 1
data.table::setDTthreads(nthread)

train <- agaricus.train
test <- agaricus.test
bst <- xgboost(

data = train$data, label = train$label, max_depth = 2, eta = 1,
nthread = nthread,
nrounds = 2,
objective = "binary:logistic"

)

xgb.save(bst, 'xgb.model')
bst <- xgb.load('xgb.model')
if (file.exists('xgb.model')) file.remove('xgb.model')

xgb.load.raw Load serialised xgboost model from R’s raw vector

Description

User can generate raw memory buffer by calling xgb.save.raw

Usage

xgb.load.raw(buffer, as_booster = FALSE)



xgb.model.dt.tree 45

Arguments

buffer the buffer returned by xgb.save.raw

as_booster Return the loaded model as xgb.Booster instead of xgb.Booster.handle.

xgb.model.dt.tree Parse a boosted tree model text dump

Description

Parse a boosted tree model text dump into a data.table structure.

Usage

xgb.model.dt.tree(
feature_names = NULL,
model = NULL,
text = NULL,
trees = NULL,
use_int_id = FALSE,
...

)

Arguments

feature_names character vector of feature names. If the model already contains feature names,
those would be used when feature_names=NULL (default value). Non-null
feature_names could be provided to override those in the model.

model object of class xgb.Booster

text character vector previously generated by the xgb.dump function (where pa-
rameter with_stats = TRUE should have been set). text takes precedence over
model.

trees an integer vector of tree indices that should be parsed. If set to NULL, all trees
of the model are parsed. It could be useful, e.g., in multiclass classification to
get only the trees of one certain class. IMPORTANT: the tree index in xgboost
models is zero-based (e.g., use trees = 0:4 for first 5 trees).

use_int_id a logical flag indicating whether nodes in columns "Yes", "No", "Missing" should
be represented as integers (when FALSE) or as "Tree-Node" character strings
(when FALSE).

... currently not used.



46 xgb.model.dt.tree

Value

A data.table with detailed information about model trees’ nodes.

The columns of the data.table are:

• Tree: integer ID of a tree in a model (zero-based index)

• Node: integer ID of a node in a tree (zero-based index)

• ID: character identifier of a node in a model (only when use_int_id=FALSE)

• Feature: for a branch node, it’s a feature id or name (when available); for a leaf note, it
simply labels it as 'Leaf'

• Split: location of the split for a branch node (split condition is always "less than")

• Yes: ID of the next node when the split condition is met

• No: ID of the next node when the split condition is not met

• Missing: ID of the next node when branch value is missing

• Quality: either the split gain (change in loss) or the leaf value

• Cover: metric related to the number of observation either seen by a split or collected by a leaf
during training.

When use_int_id=FALSE, columns "Yes", "No", and "Missing" point to model-wide node identi-
fiers in the "ID" column. When use_int_id=TRUE, those columns point to node identifiers from
the corresponding trees in the "Node" column.

Examples

# Basic use:

data(agaricus.train, package='xgboost')
## Keep the number of threads to 1 for examples
nthread <- 1
data.table::setDTthreads(nthread)

bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 2,
eta = 1, nthread = nthread, nrounds = 2,objective = "binary:logistic")

(dt <- xgb.model.dt.tree(colnames(agaricus.train$data), bst))

# This bst model already has feature_names stored with it, so those would be used when
# feature_names is not set:
(dt <- xgb.model.dt.tree(model = bst))

# How to match feature names of splits that are following a current 'Yes' branch:

merge(dt, dt[, .(ID, Y.Feature=Feature)], by.x='Yes', by.y='ID', all.x=TRUE)[order(Tree,Node)]



xgb.parameters<- 47

xgb.parameters<- Accessors for model parameters.

Description

Only the setter for xgboost parameters is currently implemented.

Usage

xgb.parameters(object) <- value

Arguments

object Object of class xgb.Booster or xgb.Booster.handle.

value a list (or an object coercible to a list) with the names of parameters to set and the
elements corresponding to parameter values.

Details

Note that the setter would usually work more efficiently for xgb.Booster.handle than for xgb.Booster,
since only just a handle would need to be copied.

Examples

data(agaricus.train, package='xgboost')
train <- agaricus.train

bst <- xgboost(data = train$data, label = train$label, max_depth = 2,
eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")

xgb.parameters(bst) <- list(eta = 0.1)

xgb.plot.multi.trees Project all trees on one tree and plot it

Description

Visualization of the ensemble of trees as a single collective unit.



48 xgb.plot.multi.trees

Usage

xgb.plot.multi.trees(
model,
feature_names = NULL,
features_keep = 5,
plot_width = NULL,
plot_height = NULL,
render = TRUE,
...

)

Arguments

model produced by the xgb.train function.

feature_names names of each feature as a character vector.

features_keep number of features to keep in each position of the multi trees.

plot_width width in pixels of the graph to produce

plot_height height in pixels of the graph to produce

render a logical flag for whether the graph should be rendered (see Value).

... currently not used

Details

This function tries to capture the complexity of a gradient boosted tree model in a cohesive way by
compressing an ensemble of trees into a single tree-graph representation. The goal is to improve
the interpretability of a model generally seen as black box.

Note: this function is applicable to tree booster-based models only.

It takes advantage of the fact that the shape of a binary tree is only defined by its depth (therefore,
in a boosting model, all trees have similar shape).

Moreover, the trees tend to reuse the same features.

The function projects each tree onto one, and keeps for each position the features_keep first
features (based on the Gain per feature measure).

This function is inspired by this blog post: https://wellecks.wordpress.com/2015/02/21/
peering-into-the-black-box-visualizing-lambdamart/

Value

When render = TRUE: returns a rendered graph object which is an htmlwidget of class grViz.
Similar to ggplot objects, it needs to be printed to see it when not running from command line.

When render = FALSE: silently returns a graph object which is of DiagrammeR’s class dgr_graph.
This could be useful if one wants to modify some of the graph attributes before rendering the graph
with render_graph.

https://wellecks.wordpress.com/2015/02/21/peering-into-the-black-box-visualizing-lambdamart/
https://wellecks.wordpress.com/2015/02/21/peering-into-the-black-box-visualizing-lambdamart/


xgb.plot.shap 49

Examples

data(agaricus.train, package='xgboost')
## Keep the number of threads to 2 for examples
nthread <- 2
data.table::setDTthreads(nthread)

bst <- xgboost(
data = agaricus.train$data, label = agaricus.train$label, max_depth = 15,
eta = 1, nthread = nthread, nrounds = 30, objective = "binary:logistic",
min_child_weight = 50, verbose = 0

)

p <- xgb.plot.multi.trees(model = bst, features_keep = 3)
print(p)

## Not run:
# Below is an example of how to save this plot to a file.
# Note that for `export_graph` to work, the DiagrammeRsvg and rsvg packages must also be installed.
library(DiagrammeR)
gr <- xgb.plot.multi.trees(model=bst, features_keep = 3, render=FALSE)
export_graph(gr, 'tree.pdf', width=1500, height=600)

## End(Not run)

xgb.plot.shap SHAP contribution dependency plots

Description

Visualizing the SHAP feature contribution to prediction dependencies on feature value.

Usage

xgb.plot.shap(
data,
shap_contrib = NULL,
features = NULL,
top_n = 1,
model = NULL,
trees = NULL,
target_class = NULL,
approxcontrib = FALSE,
subsample = NULL,
n_col = 1,
col = rgb(0, 0, 1, 0.2),
pch = ".",
discrete_n_uniq = 5,



50 xgb.plot.shap

discrete_jitter = 0.01,
ylab = "SHAP",
plot_NA = TRUE,
col_NA = rgb(0.7, 0, 1, 0.6),
pch_NA = ".",
pos_NA = 1.07,
plot_loess = TRUE,
col_loess = 2,
span_loess = 0.5,
which = c("1d", "2d"),
plot = TRUE,
...

)

Arguments

data data as a matrix or dgCMatrix.

shap_contrib a matrix of SHAP contributions that was computed earlier for the above data.
When it is NULL, it is computed internally using model and data.

features a vector of either column indices or of feature names to plot. When it is NULL,
feature importance is calculated, and top_n high ranked features are taken.

top_n when features is NULL, top_n [1, 100] most important features in a model are
taken.

model an xgb.Booster model. It has to be provided when either shap_contrib or
features is missing.

trees passed to xgb.importance when features = NULL.

target_class is only relevant for multiclass models. When it is set to a 0-based class index,
only SHAP contributions for that specific class are used. If it is not set, SHAP
importances are averaged over all classes.

approxcontrib passed to predict.xgb.Booster when shap_contrib = NULL.

subsample a random fraction of data points to use for plotting. When it is NULL, it is set
so that up to 100K data points are used.

n_col a number of columns in a grid of plots.

col color of the scatterplot markers.

pch scatterplot marker.
discrete_n_uniq

a maximal number of unique values in a feature to consider it as discrete.
discrete_jitter

an amount parameter of jitter added to discrete features’ positions.

ylab a y-axis label in 1D plots.

plot_NA whether the contributions of cases with missing values should also be plotted.

col_NA a color of marker for missing value contributions.

pch_NA a marker type for NA values.



xgb.plot.shap 51

pos_NA a relative position of the x-location where NA values are shown: min(x) +
(max(x) - min(x)) * pos_NA.

plot_loess whether to plot loess-smoothed curves. The smoothing is only done for features
with more than 5 distinct values.

col_loess a color to use for the loess curves.

span_loess the span parameter in loess’s call.

which whether to do univariate or bivariate plotting. NOTE: only 1D is implemented
so far.

plot whether a plot should be drawn. If FALSE, only a list of matrices is returned.

... other parameters passed to plot.

Details

These scatterplots represent how SHAP feature contributions depend of feature values. The similar-
ity to partial dependency plots is that they also give an idea for how feature values affect predictions.
However, in partial dependency plots, we usually see marginal dependencies of model prediction
on feature value, while SHAP contribution dependency plots display the estimated contributions of
a feature to model prediction for each individual case.

When plot_loess = TRUE is set, feature values are rounded to 3 significant digits and weighted
LOESS is computed and plotted, where weights are the numbers of data points at each rounded
value.

Note: SHAP contributions are shown on the scale of model margin. E.g., for a logistic binomial
objective, the margin is prediction before a sigmoidal transform into probability-like values. Also,
since SHAP stands for "SHapley Additive exPlanation" (model prediction = sum of SHAP contri-
butions for all features + bias), depending on the objective used, transforming SHAP contributions
for a feature from the marginal to the prediction space is not necessarily a meaningful thing to do.

Value

In addition to producing plots (when plot=TRUE), it silently returns a list of two matrices:

• data the values of selected features;

• shap_contrib the contributions of selected features.

References

Scott M. Lundberg, Su-In Lee, "A Unified Approach to Interpreting Model Predictions", NIPS
Proceedings 2017, https://arxiv.org/abs/1705.07874

Scott M. Lundberg, Su-In Lee, "Consistent feature attribution for tree ensembles", https://arxiv.
org/abs/1706.06060

Examples

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')

## Keep the number of threads to 1 for examples

https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1706.06060
https://arxiv.org/abs/1706.06060


52 xgb.plot.tree

nthread <- 1
data.table::setDTthreads(nthread)
nrounds <- 20

bst <- xgboost(agaricus.train$data, agaricus.train$label, nrounds = nrounds,
eta = 0.1, max_depth = 3, subsample = .5,

method = "hist", objective = "binary:logistic", nthread = nthread, verbose = 0)

xgb.plot.shap(agaricus.test$data, model = bst, features = "odor=none")
contr <- predict(bst, agaricus.test$data, predcontrib = TRUE)
xgb.plot.shap(agaricus.test$data, contr, model = bst, top_n = 12, n_col = 3)
xgb.ggplot.shap.summary(agaricus.test$data, contr, model = bst, top_n = 12) # Summary plot

# multiclass example - plots for each class separately:
nclass <- 3
x <- as.matrix(iris[, -5])
set.seed(123)
is.na(x[sample(nrow(x) * 4, 30)]) <- TRUE # introduce some missing values
mbst <- xgboost(data = x, label = as.numeric(iris$Species) - 1, nrounds = nrounds,

max_depth = 2, eta = 0.3, subsample = .5, nthread = nthread,
objective = "multi:softprob", num_class = nclass, verbose = 0)

trees0 <- seq(from=0, by=nclass, length.out=nrounds)
col <- rgb(0, 0, 1, 0.5)
xgb.plot.shap(x, model = mbst, trees = trees0, target_class = 0, top_n = 4,

n_col = 2, col = col, pch = 16, pch_NA = 17)
xgb.plot.shap(x, model = mbst, trees = trees0 + 1, target_class = 1, top_n = 4,

n_col = 2, col = col, pch = 16, pch_NA = 17)
xgb.plot.shap(x, model = mbst, trees = trees0 + 2, target_class = 2, top_n = 4,

n_col = 2, col = col, pch = 16, pch_NA = 17)
xgb.ggplot.shap.summary(x, model = mbst, target_class = 0, top_n = 4) # Summary plot

xgb.plot.tree Plot a boosted tree model

Description

Read a tree model text dump and plot the model.

Usage

xgb.plot.tree(
feature_names = NULL,
model = NULL,
trees = NULL,
plot_width = NULL,
plot_height = NULL,
render = TRUE,
show_node_id = FALSE,
...

)



xgb.plot.tree 53

Arguments

feature_names names of each feature as a character vector.

model produced by the xgb.train function.

trees an integer vector of tree indices that should be visualized. If set to NULL, all
trees of the model are included. IMPORTANT: the tree index in xgboost model
is zero-based (e.g., use trees = 0:2 for the first 3 trees in a model).

plot_width the width of the diagram in pixels.

plot_height the height of the diagram in pixels.

render a logical flag for whether the graph should be rendered (see Value).

show_node_id a logical flag for whether to show node id’s in the graph.

... currently not used.

Details

The content of each node is organised that way:

• Feature name.

• Cover: The sum of second order gradient of training data classified to the leaf. If it is square
loss, this simply corresponds to the number of instances seen by a split or collected by a leaf
during training. The deeper in the tree a node is, the lower this metric will be.

• Gain (for split nodes): the information gain metric of a split (corresponds to the importance
of the node in the model).

• Value (for leafs): the margin value that the leaf may contribute to prediction.

The tree root nodes also indicate the Tree index (0-based).

The "Yes" branches are marked by the "< split_value" label. The branches that also used for missing
values are marked as bold (as in "carrying extra capacity").

This function uses GraphViz as a backend of DiagrammeR.

Value

When render = TRUE: returns a rendered graph object which is an htmlwidget of class grViz.
Similar to ggplot objects, it needs to be printed to see it when not running from command line.

When render = FALSE: silently returns a graph object which is of DiagrammeR’s class dgr_graph.
This could be useful if one wants to modify some of the graph attributes before rendering the graph
with render_graph.

Examples

data(agaricus.train, package='xgboost')

bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label, max_depth = 3,
eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")

# plot all the trees
xgb.plot.tree(model = bst)

https://www.graphviz.org/


54 xgb.save

# plot only the first tree and display the node ID:
xgb.plot.tree(model = bst, trees = 0, show_node_id = TRUE)

## Not run:
# Below is an example of how to save this plot to a file.
# Note that for `export_graph` to work, the DiagrammeRsvg and rsvg packages must also be installed.
library(DiagrammeR)
gr <- xgb.plot.tree(model=bst, trees=0:1, render=FALSE)
export_graph(gr, 'tree.pdf', width=1500, height=1900)
export_graph(gr, 'tree.png', width=1500, height=1900)

## End(Not run)

xgb.save Save xgboost model to binary file

Description

Save xgboost model to a file in binary format.

Usage

xgb.save(model, fname)

Arguments

model model object of xgb.Booster class.

fname name of the file to write.

Details

This methods allows to save a model in an xgboost-internal binary format which is universal among
the various xgboost interfaces. In R, the saved model file could be read-in later using either the
xgb.load function or the xgb_model parameter of xgb.train.

Note: a model can also be saved as an R-object (e.g., by using readRDS or save). However, it
would then only be compatible with R, and corresponding R-methods would need to be used to
load it. Moreover, persisting the model with readRDS or save) will cause compatibility problems
in future versions of XGBoost. Consult a-compatibility-note-for-saveRDS-save to learn how
to persist models in a future-proof way, i.e. to make the model accessible in future releases of
XGBoost.

See Also

xgb.load, xgb.Booster.complete.



xgb.save.raw 55

Examples

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')

## Keep the number of threads to 1 for examples
nthread <- 1
data.table::setDTthreads(nthread)

train <- agaricus.train
test <- agaricus.test
bst <- xgboost(

data = train$data, label = train$label, max_depth = 2, eta = 1,
nthread = nthread,
nrounds = 2,
objective = "binary:logistic"

)
xgb.save(bst, 'xgb.model')
bst <- xgb.load('xgb.model')
if (file.exists('xgb.model')) file.remove('xgb.model')

xgb.save.raw Save xgboost model to R’s raw vector, user can call xgb.load.raw to
load the model back from raw vector

Description

Save xgboost model from xgboost or xgb.train

Usage

xgb.save.raw(model, raw_format = "deprecated")

Arguments

model the model object.

raw_format The format for encoding the booster. Available options are

• json: Encode the booster into JSON text document.

• ubj: Encode the booster into Universal Binary JSON.

• deprecated: Encode the booster into old customized binary format.

Right now the default is deprecated but will be changed to ubj in upcoming
release.



56 xgb.serialize

Examples

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')

## Keep the number of threads to 2 for examples
nthread <- 2
data.table::setDTthreads(nthread)

train <- agaricus.train
test <- agaricus.test
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,

eta = 1, nthread = nthread, nrounds = 2,objective = "binary:logistic")

raw <- xgb.save.raw(bst)
bst <- xgb.load.raw(raw)

xgb.serialize Serialize the booster instance into R’s raw vector. The serialization
method differs from xgb.save.raw as the latter one saves only the
model but not parameters. This serialization format is not stable
across different xgboost versions.

Description

Serialize the booster instance into R’s raw vector. The serialization method differs from xgb.save.raw
as the latter one saves only the model but not parameters. This serialization format is not stable
across different xgboost versions.

Usage

xgb.serialize(booster)

Arguments

booster the booster instance

Examples

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
bst <- xgboost(data = train$data, label = train$label, max_depth = 2,

eta = 1, nthread = 2, nrounds = 2,objective = "binary:logistic")
raw <- xgb.serialize(bst)
bst <- xgb.unserialize(raw)



xgb.set.config, xgb.get.config 57

xgb.set.config, xgb.get.config

Set and get global configuration

Description

Global configuration consists of a collection of parameters that can be applied in the global scope.
See https://xgboost.readthedocs.io/en/stable/parameter.html for the full list of param-
eters supported in the global configuration. Use xgb.set.config to update the values of one or
more global-scope parameters. Use xgb.get.config to fetch the current values of all global-scope
parameters (listed in https://xgboost.readthedocs.io/en/stable/parameter.html).

Usage

xgb.set.config(...)

xgb.get.config()

Arguments

... List of parameters to be set, as keyword arguments

Value

xgb.set.config returns TRUE to signal success. xgb.get.config returns a list containing all
global-scope parameters and their values.

Examples

# Set verbosity level to silent (0)
xgb.set.config(verbosity = 0)
# Now global verbosity level is 0
config <- xgb.get.config()
print(config$verbosity)
# Set verbosity level to warning (1)
xgb.set.config(verbosity = 1)
# Now global verbosity level is 1
config <- xgb.get.config()
print(config$verbosity)

https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html


58 xgb.train

xgb.train eXtreme Gradient Boosting Training

Description

xgb.train is an advanced interface for training an xgboost model. The xgboost function is a
simpler wrapper for xgb.train.

Usage

xgb.train(
params = list(),
data,
nrounds,
watchlist = list(),
obj = NULL,
feval = NULL,
verbose = 1,
print_every_n = 1L,
early_stopping_rounds = NULL,
maximize = NULL,
save_period = NULL,
save_name = "xgboost.model",
xgb_model = NULL,
callbacks = list(),
...

)

xgboost(
data = NULL,
label = NULL,
missing = NA,
weight = NULL,
params = list(),
nrounds,
verbose = 1,
print_every_n = 1L,
early_stopping_rounds = NULL,
maximize = NULL,
save_period = NULL,
save_name = "xgboost.model",
xgb_model = NULL,
callbacks = list(),
...

)



xgb.train 59

Arguments

params the list of parameters. The complete list of parameters is available in the online
documentation. Below is a shorter summary:
1. General Parameters

• booster which booster to use, can be gbtree or gblinear. Default: gbtree.

2. Booster Parameters
2.1. Parameters for Tree Booster

• eta control the learning rate: scale the contribution of each tree by a factor
of 0 < eta < 1 when it is added to the current approximation. Used to pre-
vent overfitting by making the boosting process more conservative. Lower
value for eta implies larger value for nrounds: low eta value means model
more robust to overfitting but slower to compute. Default: 0.3

• gamma minimum loss reduction required to make a further partition on a
leaf node of the tree. the larger, the more conservative the algorithm will
be.

• max_depth maximum depth of a tree. Default: 6
• min_child_weight minimum sum of instance weight (hessian) needed in a

child. If the tree partition step results in a leaf node with the sum of instance
weight less than min_child_weight, then the building process will give up
further partitioning. In linear regression mode, this simply corresponds to
minimum number of instances needed to be in each node. The larger, the
more conservative the algorithm will be. Default: 1

• subsample subsample ratio of the training instance. Setting it to 0.5 means
that xgboost randomly collected half of the data instances to grow trees and
this will prevent overfitting. It makes computation shorter (because less
data to analyse). It is advised to use this parameter with eta and increase
nrounds. Default: 1

• colsample_bytree subsample ratio of columns when constructing each
tree. Default: 1

• lambda L2 regularization term on weights. Default: 1
• alpha L1 regularization term on weights. (there is no L1 reg on bias be-

cause it is not important). Default: 0
• num_parallel_tree Experimental parameter. number of trees to grow per

round. Useful to test Random Forest through XGBoost (set colsample_bytree
< 1, subsample < 1 and round = 1) accordingly. Default: 1

• monotone_constraints A numerical vector consists of 1, 0 and -1 with its
length equals to the number of features in the training data. 1 is increasing,
-1 is decreasing and 0 is no constraint.

• interaction_constraints A list of vectors specifying feature indices of
permitted interactions. Each item of the list represents one permitted in-
teraction where specified features are allowed to interact with each other.
Feature index values should start from 0 (0 references the first column).
Leave argument unspecified for no interaction constraints.

2.2. Parameters for Linear Booster

• lambda L2 regularization term on weights. Default: 0

http://xgboost.readthedocs.io/en/latest/parameter.html
http://xgboost.readthedocs.io/en/latest/parameter.html


60 xgb.train

• lambda_bias L2 regularization term on bias. Default: 0
• alpha L1 regularization term on weights. (there is no L1 reg on bias be-

cause it is not important). Default: 0

3. Task Parameters

• objective specify the learning task and the corresponding learning ob-
jective, users can pass a self-defined function to it. The default objective
options are below:

– reg:squarederror Regression with squared loss (Default).
– reg:squaredlogerror: regression with squared log loss 1/2∗(log(pred+
1)−log(label+1))2. All inputs are required to be greater than -1. Also,
see metric rmsle for possible issue with this objective.

– reg:logistic logistic regression.
– reg:pseudohubererror: regression with Pseudo Huber loss, a twice

differentiable alternative to absolute loss.
– binary:logistic logistic regression for binary classification. Output

probability.
– binary:logitraw logistic regression for binary classification, output

score before logistic transformation.
– binary:hinge: hinge loss for binary classification. This makes pre-

dictions of 0 or 1, rather than producing probabilities.
– count:poisson: Poisson regression for count data, output mean of

Poisson distribution. max_delta_step is set to 0.7 by default in pois-
son regression (used to safeguard optimization).

– survival:cox: Cox regression for right censored survival time data
(negative values are considered right censored). Note that predictions
are returned on the hazard ratio scale (i.e., as HR = exp(marginal_prediction)
in the proportional hazard function h(t) = h0(t) * HR).

– survival:aft: Accelerated failure time model for censored survival
time data. See Survival Analysis with Accelerated Failure Time for
details.

– aft_loss_distribution: Probability Density Function used by survival:aft
and aft-nloglik metric.

– multi:softmax set xgboost to do multiclass classification using the
softmax objective. Class is represented by a number and should be
from 0 to num_class - 1.

– multi:softprob same as softmax, but prediction outputs a vector of
ndata * nclass elements, which can be further reshaped to ndata, nclass
matrix. The result contains predicted probabilities of each data point
belonging to each class.

– rank:pairwise set xgboost to do ranking task by minimizing the pair-
wise loss.

– rank:ndcg: Use LambdaMART to perform list-wise ranking where
Normalized Discounted Cumulative Gain (NDCG) is maximized.

– rank:map: Use LambdaMART to perform list-wise ranking where Mean
Average Precision (MAP) is maximized.

https://xgboost.readthedocs.io/en/latest/tutorials/aft_survival_analysis.html
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision


xgb.train 61

– reg:gamma: gamma regression with log-link. Output is a mean of
gamma distribution. It might be useful, e.g., for modeling insurance
claims severity, or for any outcome that might be gamma-distributed.

– reg:tweedie: Tweedie regression with log-link. It might be useful,
e.g., for modeling total loss in insurance, or for any outcome that might
be Tweedie-distributed.

• base_score the initial prediction score of all instances, global bias. De-
fault: 0.5

• eval_metric evaluation metrics for validation data. Users can pass a self-
defined function to it. Default: metric will be assigned according to objec-
tive(rmse for regression, and error for classification, mean average precision
for ranking). List is provided in detail section.

data training dataset. xgb.train accepts only an xgb.DMatrix as the input. xgboost,
in addition, also accepts matrix, dgCMatrix, or name of a local data file.

nrounds max number of boosting iterations.

watchlist named list of xgb.DMatrix datasets to use for evaluating model performance.
Metrics specified in either eval_metric or feval will be computed for each
of these datasets during each boosting iteration, and stored in the end as a field
named evaluation_log in the resulting object. When either verbose>=1 or
cb.print.evaluation callback is engaged, the performance results are contin-
uously printed out during the training. E.g., specifying watchlist=list(validation1=mat1,
validation2=mat2) allows to track the performance of each round’s model on
mat1 and mat2.

obj customized objective function. Returns gradient and second order gradient with
given prediction and dtrain.

feval customized evaluation function. Returns list(metric='metric-name', value='metric-value')
with given prediction and dtrain.

verbose If 0, xgboost will stay silent. If 1, it will print information about performance. If
2, some additional information will be printed out. Note that setting verbose >
0 automatically engages the cb.print.evaluation(period=1) callback func-
tion.

print_every_n Print each n-th iteration evaluation messages when verbose>0. Default is 1
which means all messages are printed. This parameter is passed to the cb.print.evaluation
callback.

early_stopping_rounds

If NULL, the early stopping function is not triggered. If set to an integer k, train-
ing with a validation set will stop if the performance doesn’t improve for k
rounds. Setting this parameter engages the cb.early.stop callback.

maximize If feval and early_stopping_rounds are set, then this parameter must be set
as well. When it is TRUE, it means the larger the evaluation score the better. This
parameter is passed to the cb.early.stop callback.

save_period when it is non-NULL, model is saved to disk after every save_period rounds,
0 means save at the end. The saving is handled by the cb.save.model callback.

save_name the name or path for periodically saved model file.

https://en.wikipedia.org/wiki/Gamma_distribution#Applications
https://en.wikipedia.org/wiki/Tweedie_distribution#Applications


62 xgb.train

xgb_model a previously built model to continue the training from. Could be either an object
of class xgb.Booster, or its raw data, or the name of a file with a previously
saved model.

callbacks a list of callback functions to perform various task during boosting. See callbacks.
Some of the callbacks are automatically created depending on the parameters’
values. User can provide either existing or their own callback methods in order
to customize the training process.

... other parameters to pass to params.

label vector of response values. Should not be provided when data is a local data file
name or an xgb.DMatrix.

missing by default is set to NA, which means that NA values should be considered as
’missing’ by the algorithm. Sometimes, 0 or other extreme value might be used
to represent missing values. This parameter is only used when input is a dense
matrix.

weight a vector indicating the weight for each row of the input.

Details

These are the training functions for xgboost.

The xgb.train interface supports advanced features such as watchlist, customized objective and
evaluation metric functions, therefore it is more flexible than the xgboost interface.

Parallelization is automatically enabled if OpenMP is present. Number of threads can also be manu-
ally specified via the nthread parameter.

The evaluation metric is chosen automatically by XGBoost (according to the objective) when the
eval_metric parameter is not provided. User may set one or several eval_metric parameters.
Note that when using a customized metric, only this single metric can be used. The following is the
list of built-in metrics for which XGBoost provides optimized implementation:

• rmse root mean square error. https://en.wikipedia.org/wiki/Root_mean_square_error

• logloss negative log-likelihood. https://en.wikipedia.org/wiki/Log-likelihood

• mlogloss multiclass logloss. https://scikit-learn.org/stable/modules/generated/
sklearn.metrics.log_loss.html

• error Binary classification error rate. It is calculated as (# wrong cases) / (# all cases).
By default, it uses the 0.5 threshold for predicted values to define negative and positive in-
stances. Different threshold (e.g., 0.) could be specified as "error@0."

• merror Multiclass classification error rate. It is calculated as (# wrong cases) / (# all
cases).

• mae Mean absolute error

• mape Mean absolute percentage error

• auc Area under the curve. https://en.wikipedia.org/wiki/Receiver_operating_characteristic#
’Area_under_curve for ranking evaluation.

• aucpr Area under the PR curve. https://en.wikipedia.org/wiki/Precision_and_recall
for ranking evaluation.

https://en.wikipedia.org/wiki/Root_mean_square_error
https://en.wikipedia.org/wiki/Log-likelihood
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#'Area_under_curve
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#'Area_under_curve
https://en.wikipedia.org/wiki/Precision_and_recall


xgb.train 63

• ndcg Normalized Discounted Cumulative Gain (for ranking task). https://en.wikipedia.
org/wiki/NDCG

The following callbacks are automatically created when certain parameters are set:

• cb.print.evaluation is turned on when verbose > 0; and the print_every_n parameter is
passed to it.

• cb.evaluation.log is on when watchlist is present.

• cb.early.stop: when early_stopping_rounds is set.

• cb.save.model: when save_period > 0 is set.

Value

An object of class xgb.Booster with the following elements:

• handle a handle (pointer) to the xgboost model in memory.

• raw a cached memory dump of the xgboost model saved as R’s raw type.

• niter number of boosting iterations.

• evaluation_log evaluation history stored as a data.table with the first column correspond-
ing to iteration number and the rest corresponding to evaluation metrics’ values. It is created
by the cb.evaluation.log callback.

• call a function call.

• params parameters that were passed to the xgboost library. Note that it does not capture
parameters changed by the cb.reset.parameters callback.

• callbacks callback functions that were either automatically assigned or explicitly passed.

• best_iteration iteration number with the best evaluation metric value (only available with
early stopping).

• best_score the best evaluation metric value during early stopping. (only available with early
stopping).

• feature_names names of the training dataset features (only when column names were defined
in training data).

• nfeatures number of features in training data.

References

Tianqi Chen and Carlos Guestrin, "XGBoost: A Scalable Tree Boosting System", 22nd SIGKDD
Conference on Knowledge Discovery and Data Mining, 2016, https://arxiv.org/abs/1603.
02754

See Also

callbacks, predict.xgb.Booster, xgb.cv

https://en.wikipedia.org/wiki/NDCG
https://en.wikipedia.org/wiki/NDCG
https://arxiv.org/abs/1603.02754
https://arxiv.org/abs/1603.02754


64 xgb.train

Examples

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')

## Keep the number of threads to 1 for examples
nthread <- 1
data.table::setDTthreads(nthread)

dtrain <- with(
agaricus.train, xgb.DMatrix(data, label = label, nthread = nthread)

)
dtest <- with(

agaricus.test, xgb.DMatrix(data, label = label, nthread = nthread)
)
watchlist <- list(train = dtrain, eval = dtest)

## A simple xgb.train example:
param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = nthread,

objective = "binary:logistic", eval_metric = "auc")
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist)

## An xgb.train example where custom objective and evaluation metric are
## used:
logregobj <- function(preds, dtrain) {

labels <- getinfo(dtrain, "label")
preds <- 1/(1 + exp(-preds))
grad <- preds - labels
hess <- preds * (1 - preds)
return(list(grad = grad, hess = hess))

}
evalerror <- function(preds, dtrain) {

labels <- getinfo(dtrain, "label")
err <- as.numeric(sum(labels != (preds > 0)))/length(labels)
return(list(metric = "error", value = err))

}

# These functions could be used by passing them either:
# as 'objective' and 'eval_metric' parameters in the params list:
param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = nthread,

objective = logregobj, eval_metric = evalerror)
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist)

# or through the ... arguments:
param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = nthread)
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,

objective = logregobj, eval_metric = evalerror)

# or as dedicated 'obj' and 'feval' parameters of xgb.train:
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,

obj = logregobj, feval = evalerror)



xgb.unserialize 65

## An xgb.train example of using variable learning rates at each iteration:
param <- list(max_depth = 2, eta = 1, verbose = 0, nthread = nthread,

objective = "binary:logistic", eval_metric = "auc")
my_etas <- list(eta = c(0.5, 0.1))
bst <- xgb.train(param, dtrain, nrounds = 2, watchlist,

callbacks = list(cb.reset.parameters(my_etas)))

## Early stopping:
bst <- xgb.train(param, dtrain, nrounds = 25, watchlist,

early_stopping_rounds = 3)

## An 'xgboost' interface example:
bst <- xgboost(data = agaricus.train$data, label = agaricus.train$label,

max_depth = 2, eta = 1, nthread = nthread, nrounds = 2,
objective = "binary:logistic")

pred <- predict(bst, agaricus.test$data)

xgb.unserialize Load the instance back from xgb.serialize

Description

Load the instance back from xgb.serialize

Usage

xgb.unserialize(buffer, handle = NULL)

Arguments

buffer the buffer containing booster instance saved by xgb.serialize

handle An xgb.Booster.handle object which will be overwritten with the new dese-
rialized object. Must be a null handle (e.g. when loading the model through
‘readRDS‘). If not provided, a new handle will be created.

Value

An xgb.Booster.handle object.



66 xgboost-deprecated

xgboost-deprecated Deprecation notices.

Description

At this time, some of the parameter names were changed in order to make the code style more
uniform. The deprecated parameters would be removed in the next release.

Details

To see all the current deprecated and new parameters, check the xgboost:::depr_par_lut table.

A deprecation warning is shown when any of the deprecated parameters is used in a call. An
additional warning is shown when there was a partial match to a deprecated parameter (as R is able
to partially match parameter names).



Index

∗ datasets
agaricus.test, 4
agaricus.train, 5

[.xgb.DMatrix (slice), 24

a-compatibility-note-for-saveRDS-save,
3

agaricus.test, 4
agaricus.train, 5

barplot, 39

callbacks, 6, 7–13, 31, 62, 63
cb.cv.predict, 6, 6, 31, 32
cb.early.stop, 6, 7, 31, 61
cb.evaluation.log, 6, 8, 32, 63
cb.gblinear.history, 9
cb.print.evaluation, 6, 11, 31, 61
cb.reset.parameters, 6, 12, 32, 63
cb.save.model, 6, 12, 44, 61

dim.xgb.DMatrix, 13
dimnames.xgb.DMatrix, 14
dimnames<-.xgb.DMatrix

(dimnames.xgb.DMatrix), 14

environment, 6

getinfo, 15

loess, 51

normalize, 16

predict.xgb.Booster, 16, 41, 50, 63
prepare.ggplot.shap.data, 20
print.xgb.Booster, 21
print.xgb.cv.synchronous, 21
print.xgb.DMatrix, 22

readRDS, 54

render_graph, 48, 53

save, 3, 54
saveRDS, 3
setinfo, 23, 33
slice, 24
sprintf, 13

xgb.attr, 8, 24
xgb.attr<- (xgb.attr), 24
xgb.attributes (xgb.attr), 24
xgb.attributes<- (xgb.attr), 24
xgb.Booster.complete, 26, 44, 54
xgb.config, 27
xgb.config<- (xgb.config), 27
xgb.create.features, 17, 28
xgb.cv, 6, 29, 63
xgb.DMatrix, 33
xgb.DMatrix.save, 33, 34
xgb.dump, 34
xgb.gblinear.history, 9, 10, 35
xgb.get.config (xgb.set.config,

xgb.get.config), 57
xgb.ggplot.deepness, 36
xgb.ggplot.importance, 38
xgb.ggplot.shap.summary, 40, 41
xgb.importance, 38, 41, 41, 50
xgb.load, 3, 43, 54
xgb.load.raw, 4, 44
xgb.model.dt.tree, 37, 45
xgb.parameters<-, 47
xgb.plot.deepness

(xgb.ggplot.deepness), 36
xgb.plot.importance

(xgb.ggplot.importance), 38
xgb.plot.multi.trees, 47
xgb.plot.shap, 41, 49
xgb.plot.shap.summary

(xgb.ggplot.shap.summary), 40
xgb.plot.tree, 52

67



68 INDEX

xgb.save, 3, 44, 54
xgb.save.raw, 3, 4, 55, 56
xgb.serialize, 4, 56, 65
xgb.set.config (xgb.set.config,

xgb.get.config), 57
xgb.set.config, xgb.get.config, 57
xgb.train, 6, 18, 30, 37, 54, 58
xgb.unserialize, 65
xgboost (xgb.train), 58
xgboost-deprecated, 66


	a-compatibility-note-for-saveRDS-save
	agaricus.test
	agaricus.train
	callbacks
	cb.cv.predict
	cb.early.stop
	cb.evaluation.log
	cb.gblinear.history
	cb.print.evaluation
	cb.reset.parameters
	cb.save.model
	dim.xgb.DMatrix
	dimnames.xgb.DMatrix
	getinfo
	normalize
	predict.xgb.Booster
	prepare.ggplot.shap.data
	print.xgb.Booster
	print.xgb.cv.synchronous
	print.xgb.DMatrix
	setinfo
	slice
	xgb.attr
	xgb.Booster.complete
	xgb.config
	xgb.create.features
	xgb.cv
	xgb.DMatrix
	xgb.DMatrix.save
	xgb.dump
	xgb.gblinear.history
	xgb.ggplot.deepness
	xgb.ggplot.importance
	xgb.ggplot.shap.summary
	xgb.importance
	xgb.load
	xgb.load.raw
	xgb.model.dt.tree
	xgb.parameters<-
	xgb.plot.multi.trees
	xgb.plot.shap
	xgb.plot.tree
	xgb.save
	xgb.save.raw
	xgb.serialize
	xgb.set.config, xgb.get.config
	xgb.train
	xgb.unserialize
	xgboost-deprecated
	Index

