Type: | Package |
Title: | Convert Trained 'XGBoost' Model to SQL Query |
Version: | 0.1.2 |
Description: | This tool enables in-database scoring of 'XGBoost' models built in R, by translating trained model objects into SQL query. 'XGBoost' https://xgboost.readthedocs.io/en/latest/index.html provides parallel tree boosting (also known as gradient boosting machine, or GBM) algorithms in a highly efficient, flexible and portable way. GBM algorithm is introduced by Friedman (2001) <doi:10.1214/aos/1013203451>, and more details on 'XGBoost' can be found in Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>. |
Author: | Chengjun Hou [aut, cre], Abhishek Bishoyi [aut] |
Maintainer: | Chengjun Hou <chengjun.hou@gmail.com> |
URL: | https://github.com/chengjunhou/xgb2sql |
BugReports: | https://github.com/chengjunhou/xgb2sql/issues |
Depends: | R (≥ 3.1.0) |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
LazyData: | true |
Imports: | xgboost (≥ 0.81.0.1), data.table (≥ 1.12.0) |
Suggests: | ggplot2, knitr, rmarkdown |
RoxygenNote: | 6.1.1 |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2019-03-09 04:20:22 UTC; Chengjun |
Repository: | CRAN |
Date/Publication: | 2019-03-13 13:50:03 UTC |
Transform XGBoost model object to SQL query.
Description
This function generates SQL query for in-database scoring of XGBoost models,
providing a robust and efficient way of model deployment. It takes in the trained XGBoost model xgbModel
,
name of the input database table input_table_name
,
and name of a unique identifier within that table unique_id
as input,
writes the SQL query to a file specified by output_file_name
.
Note that the input database table should be generated from the raw table using the one-hot encoding query output by onehot2sql()
,
or to provide the one-hot encoding query as input input_onehot_query
to this function, working as sub-query inside the final model scoring query.
Usage
booster2sql(xgbModel, print_progress = FALSE, unique_id = NULL,
output_file_name = NULL, input_table_name = NULL,
input_onehot_query = NULL)
Arguments
xgbModel |
The trained model object of class
|
print_progress |
Boolean indicator controls whether the SQL generating progress should be printed to console. |
unique_id |
A row unique identifier is crucial for in-database scoring of XGBoost model. If not given, SQL query will be generated with id name "ROW_KEY". |
output_file_name |
File name that the SQL syntax will write to. It must not be empty in order for this function to run. |
input_table_name |
Name of raw data table in the database, that the SQL query will select from. If not given, SQL query will be generated with table name "MODREADY_TABLE". |
input_onehot_query |
SQL query of one-hot encoding generated by |
Value
The SQL query will write to the file specified by output_file_name
.
Examples
library(xgboost)
# load data
df = data.frame(ggplot2::diamonds)
head(df)
# data processing
out <- onehot2sql(df)
x <- out$model.matrix[,colnames(out$model.matrix)!='price']
y <- out$model.matrix[,colnames(out$model.matrix)=='price']
# model training
bst <- xgboost(data = x,
label = y,
max.depth = 3,
eta = .3,
nround = 5,
nthread = 1,
objective = 'reg:linear')
# generate model scoring SQL script with ROW_KEY and MODREADY_TABLE
booster2sql(bst, output_file_name='xgb.txt')
Prepare training data in R so that it is ready for XGBoost model fitting. Meta information is stored so the exact transformation can be applied to any new data. It also outputs SQL query performing the exact one-hot encoding for in-database data preparation.
Description
This function performs full one-hot encoding for all the categorical features inside the training data,
with all NAs inside both categorical and numeric features preserved.
Other than outputting a matrix model.matrix
which is the data after processing,
it also outputs meta
information keeping track of all the transformation the function performs,
while SQL query for the transformation is kept in output sql
and write to the file specified by output_file_name
.
If meta
is specified as input to the function, the transformation and the corresponding SQL query will
follow what is kept in meta
exactly.
Usage
onehot2sql(data, meta = NULL, sep = "_", ws_replace = TRUE,
ws_replace_with = "", unique_id = NULL, output_file_name = NULL,
input_table_name = NULL)
Arguments
data |
Data object of class |
meta |
Optional, a list keeps track of all the transformation that has been taken on the categorical features. |
sep |
Separation symbol between the categorical features and their levels, which will be the column names inside the output |
ws_replace |
Boolean indicator controls whether white-space and punctuation inside categorical feature levels should be replaced, default to TRUE. |
ws_replace_with |
Replacing symbol, default to ” which means all white-space and punctuation should be removed. |
unique_id |
A row unique identifier is crucial for in-database scoring of XGBoost model. If not given, SQL query will be generated with id name "ROW_KEY". |
output_file_name |
Optional, a file name that the SQL query will write to. |
input_table_name |
Name of raw data table in the database, that the SQL query will select from. If not given, SQL query will be generated with table name "INPUT_TABLE". |
Value
A list of 1). meta
data tracking the transformation;
2). matrix model.matrix
is the data after processing which is ready for XGBoost fitting;
3). SQL query sql
performing the exact one-hot encoding in the database.
Examples
library(data.table)
### load test data
df = data.frame(ggplot2::diamonds)
head(df)
d1 = data.frame(ggplot2::diamonds)
d1[1,2] = NA # NA on 1st row cut
d1[2,5] = NA # NA on 2nd row depth
head(d1)
d2 = data.table(ggplot2::diamonds)
d2[, cut:=factor(cut, ordered=FALSE)]
d2[, clarity:=as.character(clarity)]
d2[, tsdt:=as.IDate('2017-01-05')]
d2[1:3, tsdt:=tsdt-1]
head(d2)
### out is obtained for training data
out <- onehot2sql(df)
out1 <- onehot2sql(d1) # NA is kept in the output
out2 <- onehot2sql(d2) # all non-numeric features will be treated as categorical
### perform same transformation for new data when meta is given
# test-1: new data has column class change
newdata = df[1:5,]
newdata$cut = as.character(newdata$cut)
onehot2sql(newdata, meta=out$meta)$model.matrix
# test-2: new data has NA
newdata = df[1:5,]
newdata[1,1]=NA; newdata[2,1]=NA; newdata[3,2]=NA; newdata[3,3]=NA; newdata[5,4]=NA
onehot2sql(newdata, meta=out$meta)$model.matrix
# test-3: newdata has column with new elements
newdata = d2[1:5,]
newdata[5,clarity:='NEW']; newdata[1,tsdt:=as.IDate('2017-05-01')]
onehot2sql(newdata, meta=out2$meta)$model.matrix
# test-4: newdata has new columns
newdata = d2[1:5,]
newdata[,new_col:=1]
onehot2sql(newdata, meta=out2$meta)$model.matrix
# test-5: newdata is lacking some columns
newdata = d2[1:5,]
newdata[,cut:=NULL]
onehot2sql(newdata, meta=out2$meta)$model.matrix