
Package ‘xega’
July 21, 2025

Title Extended Evolutionary and Genetic Algorithms

Version 0.9.0.8

Description Implementation of a scalable, highly configurable, and
e(x)tended architecture for (e)volutionary and (g)enetic (a)lgorithms.
Multiple representations (binary, real-coded, permutation, and
derivation-tree), a rich collection of genetic operators,
as well as an extended processing pipeline are provided
for genetic algorithms (Goldberg, D. E. (1989, ISBN:0-201-15767-5)),
differential evolution (Price, Kenneth V., Storn, Rainer M. and Lampinen, Jouni A. (2005)
<doi:10.1007/3-540-31306-0>), simulated annealing (Aarts, E., and Korst, J.
(1989, ISBN:0-471-92146-7)), grammar-based genetic programming
(Geyer-Schulz (1997, ISBN:978-3-7908-0830-X)), and grammatical evolution
(Ryan, C., O'Neill, M., and Collins, J. J. (2018) <doi:10.1007/978-3-319-78717-6>).
All algorithms reuse basic adaptive mechanisms for performance optimization.
Sequential or parallel execution (on multi-core machines,
local clusters, and high-performance computing environments)
is available for all algorithms. See
<https://github.com/ageyerschulz/xega/tree/main/examples/executionModel>.

License MIT + file LICENSE

URL https://github.com/ageyerschulz/xega

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 3.5.0), parallelly, filelock

Imports xegaSelectGene, xegaBNF, xegaDerivationTrees, xegaGaGene,
xegaGpGene, xegaGeGene, xegaDfGene, xegaPermGene,
xegaPopulation

Suggests testthat (>= 3.0.0)

NeedsCompilation no

Author Andreas Geyer-Schulz [aut, cre] (ORCID:
<https://orcid.org/0009-0000-5237-3579>)

Maintainer Andreas Geyer-Schulz <Andreas.Geyer-Schulz@kit.edu>

Repository CRAN

Date/Publication 2025-04-17 23:10:02 UTC

1

https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/978-3-319-78717-6
https://github.com/ageyerschulz/xega/tree/main/examples/executionModel
https://github.com/ageyerschulz/xega
https://orcid.org/0009-0000-5237-3579

2 booleanGrammar

Contents
booleanGrammar . 2
compileBNF . 3
createExclusiveFile . 4
lau15 . 4
NewEnvXOR . 5
Parabola2D . 6
Parabola2DEarly . 7
sgXCrossoverFactory . 8
sgXDecodeGeneFactory . 9
sgXGeneMapFactory . 9
sgXInitGeneFactory . 10
sgXMutationFactory . 11
sgXReplicationFactory . 12
xega . 13
xegaReRun . 15
xegaRun . 16
xegaVersion . 39

Index 40

booleanGrammar A constant function with a boolean grammar.

Description

For the distribution of examples of BNF in grammars.

Usage

booleanGrammar()

Details

Imported from package xegaBNF for use in examples.

Value

A named list with $filename and $BNF, the grammar of a boolean grammar with two variables.

See Also

Other Grammar: compileBNF()

Examples

booleanGrammar()

compileBNF 3

compileBNF Compile a BNF.

Description

compileBNF() produces a context-free grammar from its specification in Backus-Naur form (BNF).
Warning: No error checking implemented.

Usage

compileBNF(g, verbose = FALSE)

Arguments

g A character string with a BNF.

verbose Boolean. TRUE: Show progress. Default: FALSE.

Details

A grammar consists of the symbol table ST, the production table PT, the start symbol Start, and
the short production table SPT. An example BNF is provided by booleanGrammar().

The function performs the following steps:

1. Make the symbol table.

2. Make the production table.

3. Extract the start symbol.

4. Compile a short production table.

5. Return the grammar.

For a full documentation, see <https://CRAN.R-project.org/package=xegaBNF>

Value

A grammar object (list) with the attributes name (the filename of the grammar), ST (symbol table),
PT (production table), Start (the start symbol of the grammar), and SPT (the short production table).

See Also

Other Grammar: booleanGrammar()

Examples

g<-compileBNF(booleanGrammar())
g$ST
g$PT
g$Start
g$SPT

4 lau15

createExclusiveFile Create a unique filename.

Description

Name conflicts in filenames are avoided by

• Including the time fractions below a second (tfrac).

• Padding the name with 6 random letters.

• Locking and retrying (as a last resort). The program stops after 10 unsuccessful attempts of
finding a unique name.

Created by Jens Kleineheismann (2025).

Usage

createExclusiveFile(fpath = ".", prefix = "data", ext = ".dat")

Arguments

fpath File path. Default: ".".

prefix The filename. Default: "data".

ext The file extension. Default: ".dat".

Value

A filename. Components: [prefix]_[year][month][day]_[h][min][sec]_[node]_[pid]_[pad]_[fracsec].[ext]

Examples

tmp<-tempdir()
fn<-createExclusiveFile(fpath=tmp, prefix="data", ext=".dat")
cat(fn)

lau15 The problem environment lau15

Description

15 abstract cities for which a traveling salesman solution is sought. Solution: A path with a length
of 291.

Usage

lau15

NewEnvXOR 5

Format

An object of class list of length 14.

References

Lau, H. T. (1986): Combinatorial Heuristic Algorithms in FORTRAN. Springer, 1986. <doi:10.1007/978-
3-642-61649-5>

See Also

Other Problem Environment: NewEnvXOR(), Parabola2D, Parabola2DEarly

Examples

names(lau15)
lau15$genelength()

NewEnvXOR Generate the problem environment EnvXOR

Description

NewEnvXOR() generates the problem environment for the XOR-Problem.

The problem environment provides an abstract interface to the simple genetic programming algo-
rithm. ProblemEnv$f(parm) defines the function we want to optimize.

A problem environment is a function factory with the following elements:

1. name(): A string with the name of the environment.

2. ProblemEnv$f(word): Function with the word a word of the language (as a text string).

Should be provided by the user as a standard R-file.

Usage

NewEnvXOR()

Value

The problem environment:

• $name: The name of the problem environment.

• $f: The fitness function. For this environment, fitness is defined as the number of correct test
cases (correct function) and the inverse of the number of terminal symbols. The second part
means that a boolean function with a fewer number of variables and logical functions is fitter
than one with more variables and logical functions if both solve the same number of test cases.

6 Parabola2D

See Also

Other Problem Environment: Parabola2D, Parabola2DEarly, lau15

Examples

EnvXOR<-NewEnvXOR()
EnvXOR$name()
a2<-"OR(OR(D1, D2), (AND(NOT(D1), NOT(D2))))"
a3<-"OR(OR(D1, D2), AND(D1, D2))"
a4<-"AND(OR(D1,D2),NOT(AND(D1,D2)))"
gp4<-"(AND(AND(OR(D2,D1),NOT(AND(D1,D2))),(OR(D2,D1))))"
EnvXOR$f(a2)
EnvXOR$f(a3)
EnvXOR$f(a4)
EnvXOR$f(gp4)

Parabola2D Problem environment for a 2-dimensional quadratic parabola

Description

Problem environment for finding maxima and minima of a 2-dimensional quadratic parabola.

Usage

Parabola2D

Format

An object of class list of length 8.

Value

A named list

• $name(): Returns the name of the problem environment.

• $bitlength(): The vector of the bitlengths of the parameters.

• $genelength(): The number of bits of a gene.

• $lb(): The vector of lower bounds of the parameters.

• $ub(): The vector of upper bounds of the parameters.

• $f(parm): The implementation of the function of the quadratic parabola.

– parm: A 2-element vector of reals.
– Returns the value of the function.

• $describe(): Returns the description of the problem environment.

• $solution(): The solutions (maxima/minima) of the problem environment (if known).

Parabola2DEarly 7

See Also

Other Problem Environment: NewEnvXOR(), Parabola2DEarly, lau15

Examples

names(Parabola2D)
Parabola2D$name()
Parabola2D$describe()
Parabola2D$bitlength()
Parabola2D$genelength()
Parabola2D$lb()
Parabola2D$ub()
Parabola2D$f
Parabola2D$f(c(2.2, -1.37))
Parabola2D$solution()
Parabola2D$solution()$minimum
Parabola2D$solution()$minpoints
Parabola2D$solution()$maximum
Parabola2D$solution()$maxpoints

Parabola2DEarly Problem environment for a 2-dimensional quadratic parabola.

Description

An example of a problem environment with an early termination condition.

Usage

Parabola2DEarly

Format

An object of class list of length 9.

Value

A problem environment (see Parabola2D). Parabola2DEarly$terminate(solution, lF) is a test
function which returns true if the solution is in an epsilon environment of a known solution. To
invoke this function, use xegaRun(..., early=TRUE, ...). The epsilon which determines the
length of the interval as a fraction of the known optimal solution is configured by e.g. xegaRun(
..., terminationEps=0.001, ...).

See Also

Other Problem Environment: NewEnvXOR(), Parabola2D, lau15

8 sgXCrossoverFactory

sgXCrossoverFactory Factory for configuring a gene-dependent Crossover function.

Description

sgXCrossoverFactory() selects

1. the algorithm-specific crossover factory and
2. the method in this factory.

Usage

sgXCrossoverFactory(algorithm = "sga", method = "CrossGene")

Arguments

algorithm Specifies algorithm. Available: "sga", "sgde", "sgperm", "sge", sgp". Default:
"sga".

method Crossover method. Algorithm (gene representation) dependent. Default: CrossGene().
Must be available in the gene-specific crossover factories.

Details

The available methods for each algorithm are:

• "sga": "Cross2Gene", "UCross2Gene", "UPCross2Gene", "CrossGene", "UCrossGene", "UP-
CrossGene".

• "sge": "Cross2Gene", "UCross2Gene", "UPCross2Gene", "CrossGene", "UCrossGene", "UP-
CrossGene".

• "sgede": "CrossGene", "UCrossGene", "UPCrossGene".
• "sgp": "CrossGene", "Cross2Gene", "AllCrossGene", "AllCross2Gene", "FilterCrossGene",

"FilterCross2Gene".
• "sgde": "CrossGene", "UCrossGene", "UPCrossGene".
• "sgperm": "CrossGene", "Cross2Gene".

Value

Crossover function from the crossover factory of the selected package.

See Also

Other Configuration: sgXDecodeGeneFactory(), sgXGeneMapFactory(), sgXInitGeneFactory(),
sgXMutationFactory(), sgXReplicationFactory()

Examples

sgXCrossoverFactory(algorithm="sga", method="CrossGene")

sgXDecodeGeneFactory 9

sgXDecodeGeneFactory Factory for configuring a gene-dependent DecodeGene function.

Description

A gene-specific decoder must be provided.

Usage

sgXDecodeGeneFactory(algorithm = "sga", method = "DecodeGene")

Arguments

algorithm "sga", "sgde", "sgperm", "sge", "sgede", "sgp". Default: "sga".

method Method. Default: "DecodeGene".

Value

Decode function for the selected algorithm from the correct package.

See Also

Other Configuration: sgXCrossoverFactory(), sgXGeneMapFactory(), sgXInitGeneFactory(),
sgXMutationFactory(), sgXReplicationFactory()

Examples

sgXDecodeGeneFactory(algorithm="sgperm", method="DecodeGene")

sgXGeneMapFactory Factory for configuring a gene-dependent geneMap function.

Description

The geneMap function depends on the gene representation and the algorithm selected.

Usage

sgXGeneMapFactory(algorithm = "sga", method = "Bin2Dec")

Arguments

algorithm Algorithm. Available: "sga", "sgde", "sgperm", "sge", sgp". Default: "sga".

method The GeneMap method. The choices depend on the algorithm.

10 sgXInitGeneFactory

Details

Methods available for the different algorithms are:

• "sga": "Bin2Dec", "Gray2Dec", "Identity", "Permutation".

• "sgde": "Identity".

• "sgperm": "Identity". The gene map function is not used in the decoder.

• "sgp": "Identity". The gene map function is not used in the decoder.

• "sge": "Mod" or "Bucket".

• "sgede": "Identity".

Value

GeneMap function for the selected algorithm from the correct package.

See Also

Other Configuration: sgXCrossoverFactory(), sgXDecodeGeneFactory(), sgXInitGeneFactory(),
sgXMutationFactory(), sgXReplicationFactory()

Examples

sgXGeneMapFactory(algorithm="sga", method="Bin2Dec")

sgXInitGeneFactory Factory for configuring a gene-dependent InitGene function.

Description

Factory for configuring a gene-dependent InitGene function.

Usage

sgXInitGeneFactory(algorithm = "sga", method = "InitGene")

Arguments

algorithm Algorithm. Available: "sga", "sgde", "sgperm", "sge", sgp". Default: "sga".

method Method. Default: "InitGene". For sgp, method = "InitGene" or "InitGeneGe".

Value

InitGene function from the correct package.

sgXMutationFactory 11

See Also

Other Configuration: sgXCrossoverFactory(), sgXDecodeGeneFactory(), sgXGeneMapFactory(),
sgXMutationFactory(), sgXReplicationFactory()

Examples

sgXInitGeneFactory(algorithm="sgperm")

sgXMutationFactory Factory for configuring a gene-dependent Mutation function.

Description

sgXMutationFactory() selects

1. the algorithm-specific mutation factory and

2. the method in this factory.

Usage

sgXMutationFactory(algorithm = "sga", method = "MutateGene")

Arguments

algorithm Algorithm. Available: "sga", "sgde", "sgperm", "sge", sgp". Default: "sga".

method Method. Available methods are package-dependent.

Details

The available methods for each factory are:

• "sga": "MutateGene", "IVM".

• "sge": "MutateGene", "IVM".

• "sgp": "MutateGene", "MutateAllGene", "MutateFilterGene".

• "sgede": "MutateGene", "MutateGeneDE".

• "sgde": "MutateGene", "MutateGeneDE".

• "sgperm": "MutateGene", "MutateGeneOrderBased", "MutateGenekInversion", "MutateGene2Opt",
"MutateGenekOptLK", "MutateGeneGreedy", "MutateGeneBestGreedy", "MutateGeneMix".

Value

MutateGene function for the selected algorithm from the correct package.

12 sgXReplicationFactory

See Also

Other Configuration: sgXCrossoverFactory(), sgXDecodeGeneFactory(), sgXGeneMapFactory(),
sgXInitGeneFactory(), sgXReplicationFactory()

Examples

sgXMutationFactory(algorithm="sga", method="MutateGene")

sgXReplicationFactory Factory for configuring a gene-dependent Replication function.

Description

Factory for configuring a gene-dependent Replication function.

Usage

sgXReplicationFactory(algorithm = "sga", method = "Kid1")

Arguments

algorithm Algorithm. Available: "sga", "sgde", "sgperm", "sge", "sgede", sgp". Default:
"sga".

method Method.
Options are package-dependent:

• "sga", "sgperm", "sge", sgp": "Kid1", "Kid2".
• "sgde", "sgede": "DE".

Value

A replication function for the algorithm from the correct package.

See Also

Other Configuration: sgXCrossoverFactory(), sgXDecodeGeneFactory(), sgXGeneMapFactory(),
sgXInitGeneFactory(), sgXMutationFactory()

Examples

sgXReplicationFactory(algorithm="sgp", method="Kid1")

xega 13

xega Package xega

Description

The main program of the e(x)tended (e)volutionary and (g)enetic (a)lgorithm (xega) package.

Layers (in top-down direction)

1. Top-level main programs (Package xega <https://CRAN.R-project.org/package=xega>): xegaRun(),
xegaReRun()

2. Population-level operations - independent of representation (Package xegaPopulation
<https://CRAN.R-project.org/package=xegaPopulation>): The population layer consists of
functions for initializing, logging, observing, evaluating a population of genes, as well as
computing the next population.

3. Gene-level operations - representation-dependent.

(a) Binary representation (Package xegaGaGene <https://CRAN.R-project.org/package=xegaGaGene>):
Initialization of random binary genes, several gene maps for binary genes, several muta-
tion operators, several crossover operators with 1 and 2 kids, replication pipelines for 1
and 2 kids, and, last but not least, function factories for configuration.

(b) Real-coded genes (Package xegaDfGene <https://CRAN.R-project.org/package=xegaDfGene>).
(c) Permutation genes (Package xegaPermGene <https://CRAN.R-project.org/package=xegaPermGene>).
(d) Derivation-tree genes (Package xegaGpGene <https://CRAN.project.org/package=xegaGpGene>).
(e) Binary genes with a grammar-driven decoder (Package xegaGeGene <https://CRAN.project.org/package=xegaGeGene>).

4. Gene-level operations - independent of representation (Package xegaSelectGene <https://CRAN.project.org/package=xegaSelectGene>).
Functions for static and adaptive fitness scaling, gene selection, gene evaluation, as well as
measuring performance and configuration.

Early Termination

A problem environment may implement a function terminate(solution) which returns TRUE if
the solution meets a condition for early termination.

Parallel and Distributed Execution

Several implementations of a parallel lapply() function are provided. They support the parallel
and distributed execution of fitness functions on several combinations of hard- and software archi-
tectures. A parallel lapply()-function must have the following abstract interface:

parallelApply(pop, EvalGene, lF)

where pop is a list of genes, EvalGene the evaluation function for the fitness of a gene, and lF the
local function configuration of the algorithm.

The several implementations of a parallelApply() function are provided. The implementations
use

14 xega

• the function parallel::mclapply() for multi-core parallelization by the fork mechanism of
Unix-based operating systems on a single machine.

• the function parallel::parLapply() for socket connections on a single or multiple ma-
chines on the Internet.

• the function future.apply::future_lapply() for asynchronous parallelization based on
future packages.

In addition, user-defined parallel apply functions can be provided. Example scripts for using the
Rmpi::mpi.parLapply() function of the Rmpi package are provided for an HPC environment with
Slurm as well as on a notebook.

The Architecture of the xegaX-Packages

The xegaX-packages are a family of R-packages which implement e(x)tended (e)volutionary and
(g)enetic (a)lgorithms (xega). The architecture has 3 layers, namely the user interface layer, the
population layer, and the gene layer:

• The user interface layer (package xega <https://CRAN.R-project.org/package=xega>) pro-
vides a function call interface and configuration support for several algorithms: genetic al-
gorithms (sga), permutation-based genetic algorithms (sgPerm), derivation-free algorithms as
e.g. differential evolution (sgde), grammar-based genetic programming (sgp), and grammati-
cal evolution (sge).

• The population layer (package xegaPopulation <https://CRAN.R-project.org/package=xegaPopulation>
) contains population-related functionality as well as support for population statistics depen-
dent adaptive mechanisms and for parallelization.

• The gene layer is split into a representation-independent and a representation-dependent part:

1. The representation-independent part (package xegaSelectGene <https://CRAN.R-project.org/package=xegaSelectGene>
) is responsible for variants of selection operators, evaluation strategies for genes, as well
as profiling and timing capabilities.

2. The representation-dependent part consists of the following packages:
– xegaGaGene <https://CRAN.R-project.org/package=xegaGaGene> for binary-coded

genetic algorithms.
– xegaPermGene <https://CRAN.R-project.org/package=xegaPermGene> for permutation-

based genetic algorithms.
– xegaDfGene <https://CRAN.R-project.org/package=xegaDfGene> for derivation-free

algorithms e.g. differential evolution.
– xegaGpGene <https://CRAN.R-project.org/package=xegaGpGene> for grammar-based

genetic algorithms.
– xegaGeGene <https://CRAN.R-project.org/package=xegaGaGene> for grammatical

evolution algorithms.
The packages xegaDerivationTrees and xegaBNF support the packages xegaGpGene
and xegaGeGene:

– xegaBNF <https://CRAN.R-project.org/package=xegaBNF> essentially provides a gram-
mar compiler and

– xegaDerivationTrees <https://CRAN.R-project.org/package=xegaDerivationTrees>
an abstract data type for derivation trees.

xegaReRun 15

Copyright

(c) 2023 Andreas Geyer-Schulz

License

MIT

URL

https://github.com/ageyerschulz/xega

Installation

From CRAN by install.packages('xega')

Author(s)

Andreas Geyer-Schulz

See Also

Useful links:

• https://github.com/ageyerschulz/xega

xegaReRun Run an evolutionary or genetic algorithm with the same configuration
as in the previous run.

Description

xegaReRun() runs a simple genetic algorithm with the same configuration as in the run specified
by the list element $GAconfig of the solution of a simple genetic algorithm.

Usage

xegaReRun(solution)

Arguments

solution The solution of a previous run of xegaRun().

Details

xegaReRun() does not capture the configuration for parallel/distributed processing for the execution
model "FutureApply", because the user defines the configuration before calling xegaRun().

If executionModel matches neither "Sequential" nor "MultiCore" or !is.null(uParApply)==TRUE,
a warning is printed, and the previous solution is returned.

https://github.com/ageyerschulz/xega

16 xegaRun

Value

A list of

1. $popStat: A matrix with mean, min, Q1, median, Q3, max, var, mad of population fitness as
columns: i-th row for i-th each generation.

2. $fit: Fitness vector if generations<=1 else: NULL.

3. $solution: With fields $solution$name, $solution$fitness, $solution$value, $numberOfSolutions,
$solution$genotype, $solution$phenotype, $solution$phenotypeValue,

4. $evalFail: Number of failures of fitness evaluations.

5. $GAconfig: The configuration of the GA used by xegaReRun().

6. $GAenv: Attribute value list of GAconfig.

7. $timer: An attribute value list with the time used (in seconds) in the main blocks of the GA:
tUsed, tInit, tNext, tEval, tObserve, and tSummary.

See Also

Other Main Program: xegaRun()

Examples

a<-xegaRun(Parabola2D, max=FALSE, algorithm="sga", generations=10, popsize=20, verbose=1)
b<-xegaReRun(a)
seqApply<-function(pop, EvalGene, lF) {lapply(pop, EvalGene, lF)}
c<-xegaRun(Parabola2D, max=FALSE, algorithm="sga", uParApply=seqApply)
b<-xegaReRun(c)

xegaRun Run an evolutionary or genetic algorithm for a problem environment
which contains a function to optimize.

Description

xegaRun() runs an evolutionary or genetic algorithm whose type is selected by algorithm. Avail-
able algorithms are:

1. "sga": Genetic algorithm with binary genes.

2. "sgde": Differential evolution with real genes.

3. "sgperm": Genetic algorithm with permutation genes.

4. "sgp": Grammar-based genetic programming with derivation-tree genes.

5. "sge": Grammatical evolution (genetic algorithm with binary genes and a grammar-driven
decoder.

6. "sgede": Grammatical evolution (genetic algorithm with real genes, genetic operators from
from differential evolution and a grammar-driven decoder.

The choice of the algorithm determines the gene-dependent configuration options.

xegaRun 17

Usage

xegaRun(
penv,
grammar = NULL,
max = TRUE,
algorithm = "sga",
popsize = 100,
generations = 20,
crossrate = 0.2,
mutrate = 1,
elitist = TRUE,
replay = 0,
maxdepth = 7,
maxtrials = 5,
codons = 25,
codonBits = 0,
codonPrecision = "LCM",
maxPBias = 0.01,
evalmethod = "EvalGeneU",
evalrep = 1,
reportEvalErrors = TRUE,
genemap = "Bin2Dec",
decoder = "DecodeGene",
crossrate2 = 0.3,
ivcrossrate = "Const",
crossover = "Cross2Gene",
uCrossSwap = 0.2,
mincrossdepth = 1,
maxcrossdepth = 7,
ivmutrate = "Const",
mutrate2 = 1,
bitmutrate = 0.005,
bitmutrate2 = 0.01,
maxmutdepth = 3,
minmutinsertiondepth = 1,
maxmutinsertiondepth = 7,
lambda = 0.05,
max2opt = 100,
scalefactor1 = 0.9,
scalefactor2 = 0.3,
scalefactor = "Const",
cutoffFit = 0.5,
mutation = "MutateGene",
replication = "Kid2",
initgene = "InitGene",
offset = 1,
eps = 0.01,
tournamentSize = 2,

18 xegaRun

selectionBias = 1.5,
maxTSR = 1.5,
selection = "SUS",
mateselection = "SUS",
selectionContinuation = TRUE,
scaling = "NoScaling",
scalingThreshold = 0,
scalingExp = 1,
scalingExp2 = 1,
rdmWeight = 1,
drMax = 2,
drMin = 0.5,
dispersionMeasure = "var",
scalingDelay = 1,
accept = "All",
alpha = 0.99,
beta = 2,
cooling = "ExponentialMultiplicative",
coolingPower = 1,
temp0 = 40,
tempN = 0.01,
verbose = 1,
logevals = FALSE,
allsolutions = FALSE,
early = FALSE,
terminationCondition = "NoTermination",
terminationEps = 0.01,
terminationThreshold = 0,
worstFitness = 0,
PACdelta = 0.01,
fSpace = "Hilbert",
cores = NA,
executionModel = "Sequential",
uParApply = NULL,
Cluster = NULL,
profile = FALSE,
batch = FALSE,
path = ".",
semantics = "byValue"

)

Arguments

penv Problem environment.

grammar A compiled grammar object. Default: NULL. Example: compileBNF(booleanGrammar())

max If TRUE then Maximize! Default: TRUE. Used in functions EvalGeneDet,
EvalGeneStoch, EvalGeneU, and EvalGeneR of package xegaSelectGene.

algorithm Specifies the algorithm class dependent on gene representation:

xegaRun 19

• "sga": Binary representation (Default).
• "sgde": Real representation. E.g. Differential evolution.
• "sgperm": Permutation representation.
• "sge": Binary representation. Grammatical evolution. (Not yet variable

length.)
• "sgede": Real representation. Genetic operators from differential evolution.

Grammatical evolution. (Not yet variable length.)
• "sgp": Derivation tree representation. Grammar Based Genetic Program-

ming.

popsize Population size. Default: 100.

generations Number of generations. Default: 20.

crossrate Probability of applying crossover operator. Default: 0.20. (Global parameter)

mutrate Probability of applying mutation operator. Default: 1.0. (Global parameter)

elitist Boolean. If TRUE, then keep the best solution in the population. Default: TRUE.

replay Integer. If replay>0, then use replay as the seed of the random number gener-
ator and store it for the exact repetition of this run. Default: 0.

maxdepth The maximal depth of a derivation tree. Default: 7. ("sgp").

maxtrials Maximal number of trials for finding subtrees with the same root symbol. De-
fault: 5. (sgp).

codons The maximal number of codons of derivations on a gene. Default: 25. ("sge").

codonBits The number of bits of a codon. Default: 0. ("sge").

codonPrecision Specify the method to set the number of bits of a codon ("sge"):

• "Min": Sufficient to code the maximal number of choices of production
rules for a non-terminal.

• "LCM": Contains the least common multiple of the prime factors of the
number of choices of production rules for all non-terminals.

• "MaxPBias": The computed precision guarantees that the choice rule bias
for a non-terminal is below maxPBias.

Argument of function factory xegaGePrecisionFactory in package xegaGeGene.

maxPBias The threshold of the choice rule bias. Default: 0.01. ("sge").

evalmethod Specifies the method of function evaluation:

• "EvalGeneU": The function is always evaluated. (Default)
• "EvalGeneR": The function is always evaluated. Repairs of the gene by the

decoder are possible.
• "Deterministic": The function is evaluated only once.
• "Stochastic": The expected function value and its variance are incremen-

tally updated.

Argument of function factory EvalGeneFactory in package xegaSelectGene.

evalrep Specifies the number of repeated fitness evaluations of a (stochastic) function.
reportEvalErrors

Report errors in the evaluation of fitness functions. Default: TRUE.

20 xegaRun

genemap Gene map for decoding. Default: "Bin2Dec". The default value works only for
algorithm "sga". Used as method argument of the function factory sgXGeneMapFactory
of package xega.
Available options determined by algorithm:

• "sga": Binary representation (Default).
– "Bin2Dec": For real parameter vectors.
– "Gray2Dec": For real parameter vectors.
– "Identity": For 0/1 parameter vectors.
– "Permutation": For permutations.

See the function factory xegaGaGeneMapFactory in package xegaGaGene.
• "sgp": Derivation tree. Gene map is not used, but must be specified. We

use xegaGaGene::xegaGaGeneMapFactory with method="Identity".
• "sge": Binary representation (Default). How are genes decoded?

– "Mod": The modulo rule.
– "Bucket": The bucket rule (with the mLCM). Problem: Mapping 1:
2^k to 1:mLCMG.

See the function factory xegaGeGeneMapFactory in package xegaGeGene.
• "sgde": Real coded gene. We use xegaDfGene::xegaDfGeneMapFactory

with method="Identity". Function used: xegaDfGene::xegaDfGeneMapIdentity
• "sgperm": Permutation gene. Gene map is not used, but must be specified.

We use xegaDfGene::xegaDfGeneMapFactory with method="Identity".
Function used: xegaDfGene::xegaDfGeneMapIdentity

decoder Specifies a decoder for a gene, Default: "DecodeGene". For algorithm sge, a
second decoder is available: DecodeGeneDT. This decoder is faster, but it may
generate code which still contains non-terminal symbols and which does not
work.

crossrate2 Crossover rate for genes with below “average” fitness. Probability of applying
crossover operator for genes with a “below average” fitness. Default: 0.30.
(Global parameter)

ivcrossrate Specifies the method of determining the crossover rate.

• "Const" Constant crossover rate. The probability of applying the crossover
operator is constant for the whole run of the algorithm. Default: "Const".

• "IV" Individually variable crossover rate. The crossrate of a gene is deter-
mined by the following threshold rule: If the fitness of the gene is higher
than lF$CutoffFit()* lF$CBestFitness(), then lF$CrossRate1() else
lF$CrossRate2() is used.

Argument of function factory CrossRateFactory in package xegaPopulation.

crossover Crossover method. Default: "CrossGene". The choice of crossover methods de-
pends on the setting of the argument algorithm. Used as the method argument
in function factory sgXCrossoverFactory of package xega.

• algorithm="sga": crossover is an argument of function factory xegaGaCrossoverFactory
in package xegaGaGene.

– Crossover operators with 1 kid:

* "CrossGene" one-point crossover.

xegaRun 21

* "UCrossGene" uniform crossover.

* "UPCrossgene" parameterized uniform crossover. Local parameter:
uCrossSwap.

– Crossover operators with 2 kids:

* "Cross2Gene" one-point crossover.

* "UCross2Gene" uniform crossover.

* "UPCross2gene" parameterized uniform crossover. Local parame-
ter: uCrossSwap.

• algorithm="sgp": crossover is an argument of function factory xegaGpCrossoverFactory
in package xegaGpGene.

– Crossover operators with 1 kid:

* "CrossGene" position-based one-point crossover.
– Crossover operators with 2 kids:

* "Cross2Gene" position-based one-point crossover.
• algorithm="sge": We use the factory xegaGaCrossoverFactory.

(Adaptation needed for variable-length binary representation.)
• algorithm="sgde": crossover is an argument of function factory xegaDfCrossoverFactory

in package xegaDfGene.
– Crossover operators with 1 kid:

* "CrossGene" one-point crossover (of reals)

* "UCrossGene" uniform crossover (of reals)

* "UPCrossGene" parametrized uniform crossover (of reals). Local
parameter: uCrossSwap.

– Crossover operators with 2 kids: Not implemented.
• algorithm="sgperm": crossover is an argument of function factory xegaPermCrossoverFactory

in package xegaPermGene.
– Crossover operators with 1 kid:

* "CrossGene" position-based one-point crossover.
– Crossover operators with 2 kids:

* "Cross2Gene" position-based one-point crossover.

uCrossSwap The fraction of positions swapped in the parametrized uniform crossover oper-
ator. A local crossover parameter. Default: 0.2. ("sga" and "sgde"). Used
in packages xegaGaGene and xegaDfGene for functions xegaGaUPCross2Gene,
xegaDfUPCross2Gene, xegaGaUPCrossGene, and xegaDfUPCrossGene.

mincrossdepth minimal depth of exchange nodes (roots of subtrees swapped by crossover).
("sgp").

maxcrossdepth Maximal depth of exchange nodes (roots of subtrees swapped by crossover).
("sgp"). Used in package xegaGpGene functions xegaGpCrossGene and xegaGpCross2Gene
in package xegaGpGene.

ivmutrate "Const" or "IV" (individually variable). Default: "Const".

mutrate2 Mutation rate. Default: 1.0. (Global parameter).

bitmutrate Bit mutation rate. Default: 0.005. A local mutation parameter. ("sga" and
"sge"). Used in package xegaGaGene functions MutateGene IVAdaptiveMutateGene

22 xegaRun

bitmutrate2 Bit mutation rate for genes with “below average” fitness. Default: 0.01. A
local mutation parameter. ("sga" and "sge"). Used in package xegaGaGene
functions IVAdaptiveMutateGene

maxmutdepth Maximal depth of a derivation tree inserted by a mutation operation. Default: 3.
("sgp").

minmutinsertiondepth

Minimal depth at which an insertion tree is inserted. Default: 1. ("sgp").
maxmutinsertiondepth

Maximal depth at which an insertion tree is inserted. Default: 7. ("sgp"). Used
in package xegaGpGene function xegaGpMutateGene.

lambda Decay rate. Default: 0.05. A local mutation parameter. ("sgperm"). Used in
package xegaPermGene function xegaPermMutateGenekInversion.

max2opt Maximal number of trials to find an improvement by a random edge exchange
in a permutation. Default: 100. ("sgperm"). Used in package xegaPermGene
function xegaPermMutateGene2Opt and xegaPermMutateGeneOptLK.

scalefactor1 Scale factor for differential mutation operator (Default: 0.9). ("sgde").

scalefactor2 Scale factor for differential mutation operator (Default: 0.2). ("sgde").

scalefactor Method for setting scale factor ("sgde"):

• "Const": Constant scale factor.
• "Uniform": A random scale factor in the interval from 0.000001 to 1.0.

cutoffFit Cutoff for fitness. Default: 0.5. ("sga" and "sge"). Used in package xegaGaGene
function IVAdaptiveMutateGene.

mutation Label specifies the mutation method dependent on algorithm. Default: "Mu-
tateGene". The (global) probability of calling a mutation method is specified
by mutrate and mutrate2. Used as method argument of the function factory
sgXMutationFactory in package xega.

• algorithm="sga": mutation is an argument of function factory xegaGaMutationFactory
in package xegaGaGene.

– "MutateGene": Bitwise mutation. Local parameter: bitmutrate. Func-
tion used: xegaGaGene::xegaGaMutateGene.

– "IVM": Individually variable mutation. Intuitively, we know that bad
genes need higher mutation rates. Good genes have a fitness which is
above a threshold fitness. The threshold is determined as a percentage
of the current best fitness in the population. The percentage is set by
the parameter cutoffFit. Local parameters: bitmutrate for good
genes. bitmutrate2 for bad genes. bitmutrate2 should be higher
than bitmutrate.

• algorithm="sgp": mutation is an argument of function factory xegaGpMutationFactory
in package xegaGpGene.

– "MutateGene": Random insertion of a random derivation tree. Local
parameter: maxmutdepth. Function used: xegaGpGene::xegaGpMutateGene.

• algorithm="sge": mutation is an argument of function factory xegaGaMutationFactory.
Nothing specific to grammatical evolution has been implemented.

xegaRun 23

• algorithm="sgde": mutation is an argument of function factory xegaDfMutationFactory
in package xegaDfGene.

– "MutateGene": Add the scaled difference of the parameters of two ran-
domly selected to a gene. Local parameters: Choice of function for
scalefactor as well as scalefactor1 and scalefactor2. Function
used: xegaDfGene::xegaDfMutateGeneDE.

• algorithm="sgperm": mutation is an argument of function factory xegaPermMutationFactory
in package xegaPermGene.

– "MutateGene": Function used: xegaPermGene::xegaPermMutateGeneOrderBased.
– "MutateGeneOrderBased": See "MutateGene".
– "MutateGenekInversion": Function used: xegaPermGene::xegaPermMutateGenekInversion.
– "MutateGene2Opt": Function used: xegaPermGene::xegaPermMutateGene2Opt.
– "MutateGenekOptLK": Function used: xegaPermGene::xegaPermMutateGenekOptLK.
– "MutateGeneGreedy": Function used: xegaPermGene::xegaPermMutateGeneGreedy.
– "MutateGeneBestGreedy": Function used: xegaPermGene::xegaPermMutateGeneBestGreedy.
– "MutateGeneMix": Function used: xegaPermGene::xegaPermMutateMix.

replication "Kid1" or "Kid2". Default: "Kid1". For algorithms "sga", "sgPerm", "sgp",
and "sge": "Kid1" means a crossover operator with one kid, "Kid2" means a
crossover operator with two kids.
For algorithm "sgde", replication must be set to "DE".
Used as the method argument of the function factory sgXReplicationFactory
of package xega.

initgene Default: "InitGene". For algorithm "sgp",

1. "InitGene": Random derivation tree.
2. "InitGeneGe": Random derivation tree from random integer vector.

offset Offset used in proportional selection. Default: 1. Used in the following func-
tions of package xegaSelectGene: ScaleFitness, PropFitOnLn, PropFit,
PropFitM, PropFitDiffOnLn, PropFitDiff, SUS.

eps Epsilon in proportional fitness difference selection. Default: 0.01. Used in
package xegaSelectGene function PropFitDiffM.

tournamentSize Tournament size. Default: 2. Used in package xegaSelectGene functions
SelectTournament, SelectSTournament.

selectionBias (> 1.0). Controls selection pressure for Whitley’s linear rank selection with
selective pressure. Default: 1.5. Near 1.0: almost uniform selection. Used in
package xegaSelectGene function SelectLRSelective,

maxTSR Controls selection pressure for Grefenstette and Baker’s linear rank selection
method. Should be higher than 1.0 and lower equal 2.0. Default: 1.5. Used in
package xegaSelectGene function SelectLinearRankTSR.

selection Selection method for the first parent of crossover. Default: "SUS".

mateselection Selection method for the second parent of crossover. Default: "SUS".
Available selection methods for the selection method of a parent:

• Uniform random selection: "Uniform".

24 xegaRun

• Uniform random selection without replacement: "UniformP".
• Proportional to fitness: "ProportionalOnln" (fastest), "Proportional", "Pro-

portionalM",
• Proportional to fitness differences: "PropFitDiffOnln" (fastest), "PropfitD-

iff", "PropfitDiffM",
• Stochastic universal sampling: "SUS",
• Tournament selection: "Duel" (fastest), "Tournament", "STournament",
• Rank selection: "LRSelective" (fastest), "LRTSR".

Argument of function factory SelectGeneFactory in package xegaSelectGene.
selectionContinuation

Boolean. If TRUE, precomputes selection indices for next generation once and
transforms selection function to index lookup continuation. Default: TRUE. Used
in package xegaPopulation function xegaNextPopulation.

scaling Scaling method. Default: "NoScaling". Available scaling methods:

• "NoScaling",
• "ConstantScaling" (Static),
• "ThresholdScaling" (Dynamic),
• "ContinuousScaling" (Dynamic).

Argument of function factory ScalingFactory in package xegaSelectGene.
scalingThreshold

Numerical constant. Default: 0.0. If the ratio of dispersion measures is in
[(1-scalingThreshold), 1+scalingThreshold)], fitness is not scaled. Used
in package xegaSelectGene function ThresholdScaleFitness.

scalingExp Scaling exponent k in fit^k. With "ConstantScaling": 0 =< k. With "Thresh-
oldScaling": 1 < k. (Default: 1) Used in package xegaSelectGene, functions
ScalingFitness, ThresholdScaleFitness.

scalingExp2 Scaling exponent for "ThresholdScaling": 0 <= k <1. (Default: 1) Used in pack-
age xegaSelectGene function ThresholdScaleFitness.

rdmWeight Numerical constant. Default: 1.0. Weight of ratio of dispersion measures in
continuous scaling. Used in package xegaSelectGene function ContinuousScaleFitness.

drMax Maximal allowable dispersion ratio. Default: 2.0. Used in package xegaSelectGene
function DispersionRatio.

drMin Minimal allowable dispersion ratio. Default: 0.5. Used in package xegaSelectGene
function DispersionRatio.

dispersionMeasure

Dispersion measure specifies a concrete dispersion measure of the population’s
fitness vector at generation k. (e.g. the variance of the population fitness). In
dynamic scaling methods the ratio of dispersion measures at k and k-j is often
used to adapt the selection pressure. Default: "var". Available dispersion mea-
sures: "var, "std", "mad", "cv", "range", "iqr". Argument of function factory
DispersionMeasureFactory in package xegaSelectGene.

scalingDelay The ratio of dispersion measures compares the current population dispersion at
t with the population dispersion at t-scalingdelay. Default: 1. Used in package
xegaSelectGene function DispersionRatio.

xegaRun 25

accept Acceptance rule for a new gene. Default: "All".

• "All" function AcceptNewGene

• "Best" function AcceptBest

• "Metropolis" function AcceptMetropolis. The behavior of this acceptance
rule depends on:
1. The distance between the fitness values. The larger the distance, the

larger the drop in acceptance probability.
2. alpha is 1 minus the discount rate of the cooling schedule. alpha is in

[0, 1]. The smaller the alpha, the faster the drop in temperature and
thus acceptance probability.

3. beta a constant. The larger the beta, the faster the drop in acceptance
probability.

4. temperature the starting value of the temperature. Must be higher
than the number of generations.

• "IVMetropolis" function AcceptIVMetropolis. The behavior of this ac-
ceptance rule is qualitatively the same as that of the Metropolis acceptance
rule above. The acceptance rule is adaptive by a correction of the temper-
ature in proportion to the difference between the fitness of the current best
and the fitness of the gene considered.

Argument of function factory AcceptFactory in package xegaPopulation.

alpha 1 minus the discount rate for temperature. (Default: 0.99). (Used in the cooling
schedule at the end of main GA-loop.)

beta Constant in the Metropolis acceptance rule. (Default: 2.0). (Used in the Metropo-
lis acceptance rule.)

cooling Cooling schedule for temperature. (Default: "ExponentialMultiplicative")

• "ExponentialMultiplicative" calls ExponentialMultiplicativeCooling
• "LogarithmicMultiplicative" calls LogarithmicMultiplicativeCooling
• "PowerMultiplicative" calls PowerMultiplicativeCooling
• "PowerAdditive" calls PowerAdditiveCooling
• "ExponentialAdditive" calls ExponentialAdditiveCooling
• "TrigonometricAdditive" calls TrigonometricAdditiveCooling

Argument of function factory CoolingFactory in package xegaPopulation.

coolingPower Exponent for PowerMultiplicative cooling schedule. (Default: 1. This is called
linear multiplicative cooling.)

temp0 Starting value of temperature (Default: 40). (Used in the Metropolis acceptance
rule. Updated in the cooling schedule.)

tempN Final value of temperature (Default: 0.01). (Used in the Metropolis acceptance
rule. Updated in the cooling schedule.)

verbose The value of verbose (Default: 1) controls the information displayed:

1. == 0: Nothing is displayed.
2. == 1: 1 point per generation.
3. > 1: Max(fit), number of solutions, indices.

26 xegaRun

4. > 2: and population fitness statistics.
5. > 3: and fitness, value of phenotype, and phenotype.
6. > 4: and str(genotype).

logevals Boolean. If TRUE then log all evaluations and their parameters in the file xegaEvalLog<exclusive
pattern>.rds. Default: FALSE.
log<-readRDS(xegaEvalLog<exclusive pattern>.rds) reads the log. The
log is a list of named lists with the following elements:

• $generation: The generation.
• $fit: The fitness value.
• $sigma: The standard deviation of the fitness value, if it exists. Default: 0.
• $obs: The number of observations for computing the fitness value, if it

exists. Default: 0.
• $phenotype: The phenotype of the gene.

allsolutions Boolean. If TRUE, then return all the best solutions. Default: FALSE.

early Boolean. If FALSE (Default), ignore the code for early termination. See Parabola2DEarly.
terminationCondition

Termination condition. Avalailable:

• "NoTermination" (Default).
• "AbsoluteError": Algorithm ends if current optimum is in optimum +/-
terminationEps.

• "RelativeError": Algorithm ends if current optimum is in optimum +/-
terminationEps*optimum. If the optimum is 0, the interval has length
0.

• "RelativeErrorZero": Algorithm ends if current optimum is in optimum
+/- terminationEps*optimum. If the optimum is 0, the interval is from
-terminationEps to terminationEps.

• "PAC": Algorithm ends if current optimum is in ub +/- terminationEps*optimum.
If ub is 0, the interval is from -terminationEps to terminationEps. ub
is an estimated upper PAC bound for the global optimum. The probability
that the optimum is above ub is set by PACdelta. The epsilon environment
by terminationEps.

• "GEQ": Algorithm ends if the current optimal phenotype value is greater
or equal than terminationThreshold.

• "LEQ": Algorithm ends if the current optimal phenotype value is less or
equal than terminationThreshold.

terminationEps Fraction of the known optimal solution for computing termination interval. De-
fault: 0.01. See Parabola2DEarly.

terminationThreshold

A threshold for terminating the algorithm. Defaul: 0.0.

worstFitness Set the worst fitness. Default: 0.0. Used e.g. in evalgeneU() for giving genes
whose evaluation failed a very low fitness value to decrease their survival rate
into the next generation.

PACdelta P(ub<opt)<PACdelta. Default: 0.01.

xegaRun 27

fSpace Function space of fitness function. Default: "Hilbert".

cores Number of cores used for multi-core parallel execution. (Default: NA. NA means
that the number of cores is set by parallelly:availableCores() if the exe-
cution model is "MultiCore" or "MultiCoreHet".

executionModel Execution model of fitness function evaluation. Available:

• "Sequential": base::lapply is used.
• "MultiCore": parallel::mclapply is used.
• "MultiCoreHet": parallel::mclapply is used. For tasks with a high vari-

ance in execution time.
• "FutureApply": future.apply::future_lapply is used. Requires the

specification of a plan.
• "FutureApplyHet": future.apply::future_lapply is used. For tasks

with a high variance in execution time. Requires the specification of a plan.
• "Cluster": parallel::parLapply is used. Requires a proper configuration

of the cluster and the specification of an exit handler to shutdown the cluster.
• "ClusterHet": parallel::parLapplyLB is used. Requires a proper config-

uration of the cluster and the specification of an exit handler to shutdown
the cluster. For tasks with a high variance in execution time.

Default: "Sequential".

uParApply A user-defined parallel apply function (e.g. for Rmpi). If specified, overrides
settings for executionModel. Default: NULL.

Cluster A cluster object generated by parallel::makeCluster() or parallelly::makeCluster().
Default: NULL.

profile Boolean. If TRUE measures execution time and counts the number of executions
of the main components of genetic algorithms. Default: FALSE.

batch Boolean. If TRUE, then save the result in the file xegaResult<exclusive pattern>.rds.
Default: FALSE.

path Path. Default: ".".

semantics Determines the representation of the local function list lF. Default: "byValue".

• "byValue": lF is a named list object.
• "byReference": lF is an environment.

Details

The algorithm expects a problem environment penv which is a named list with at least the following
functions:

• $name(): The name of the problem environment.

• $f(parm, gene=0, lF=0): The function to optimize. The parameters gene and lF are pro-
vided for future extensions.

Additional parameters needed depend on the algorithm and the problem environment. For example,
for binary genes for function optimization, additional elements must be provided:

• $bitlength(): The vector of the bitlengths of the parameters.

28 xegaRun

• $genelength(): The number of bits of a gene.

• $lb(): The vector of lower bounds of the parameters.

• $ub(): The vector of upper bounds of the parameters.

Value

Result object. A named list of

1. $popStat: A matrix with mean, min, Q1, median, Q3, max, variance, and median absolute
deviation of population fitness as columns: i-th row for the measures of the i-th generation.

2. $fit: Fitness vector if generations<=1 else: NULL.

3. $solution: Named list with fields

• $solution$name: Name of problem environment.
• $solution$fitness: Fitness value of the best solution.
• $solution$value: The evaluated best gene.
• $solution$numberofsolutions: Number of solutions with the same fitness.
• $solution$genotype: The gene is a genetic code.
• $solution$phenotype: The decoded gene.
• $solution$phenotypeValue: The value of the function of the parameters of the solu-

tion.
• $solution$evalFail: Number of failures or fitness evaluations
• and, if configured, $solution$allgenotypes, as well as $solution$allphenotypes.

4. $GAconfig: For rerun with xegaReRun().

5. $GAenv: Attribute value list of GAconfig.

6. $timer: An attribute value list with the time used (in seconds) in the main blocks of the GA:
tUsed, tInit, tNext, tEval, tObserve, and tSummary.

7. $logfn: File name of logfile. Default: NA.

8. $resfn: File name of RDS-file with result. Default: NA.

Problem Specification

The problem specification consists of

• penv: The problem environment.

• max: Maximize? Boolean. Default: TRUE.

• grammar: A grammar object. For the algorithms "sgp" and "sge".

Basic Parameters

The main parameters of a “standard” genetic algorithm are:

• popsize: Population size.

• generations: Number of generations.

• crossrate: Constant probability of one-point crossover.

xegaRun 29

• mutrate: Constant probability of mutation.

crossrate and mutrate specify the probability of applying the genetic operators crossover and
mutation to a gene.

Two more parameters are important:

• elitist: Boolean. If TRUE (default), the fittest gene always survives.

• replay: Integer. If 0 (default), a random seed of the random number generator is chosen. For
exact replications of a run of a genetic algorithm, set replay to a positive integer.

Global and Local Parameters

However, when using uniform crossover instead of one-point crossover, an additional parameter
which specifies the probability of taking a bit from the first parent becomes necessary. Therefore,
we distinguish between global and local operator parameters:

1. Global operator parameters: The probabilities of applying a crossover (crossrate) or a mu-
tation operator (mutrate) to a gene.

2. Local operator parameters: E.g. the per-bit probability of mutation or the probability of taking
a bit from parent 1 for the uniform crossover operator. Local operator parameters affect only
the genetic operator which needs them.

There exist several advantages of this classification of parameters:

• For the formal analysis of the behavior of the algorithms, we achieve a division in two parts:
The equations of the global parameters with operator-specific expressions as plug-ins.

• For empirically finding parameterizations for problem classes, we propose to fix local param-
eters at reasonable values (e.g. based on biological evidence) and conditional on this optimize
the (few) remaining global parameters.

• For parallelization, specialized gene processing pipelines can be built and more efficiently
executed, because the global parameters crossrate and mutrate decide which genes survive

1. unchanged,
2. mutated,
3. crossed, and
4. crossed as well as mutated.

To mimic a classic genetic algorithm with crossover and bit mutation rate, the probability of apply-
ing the mutation operator to a gene should be set to 1.

Global Adaptive Mechanisms

The adaptive mechanisms described in the following are based on threshold rules which determine
how a parameter of the genetic operator is adapted. The threshold conditions are based on popula-
tion statistics:

Adaptive Scaling. For adaptive scaling, select a dynamic scaling method, e.g. scaling="ThresholdScaling".
A high selection pressure decreases the dispersion in the population. The parameter scalingThreshold
is a numerical parameter which defines an interval from 1-scalingThreshold to 1+scalingThreshold:

1. If the RDM is in this interval, the fitness function is not scaled.

30 xegaRun

2. If the RDM is larger than the upper bound of the interval, the constant scalingExp which is
higher than 1 is chosen for the scaling function. This implements the rule: If the dispersion
has increased, increase the selection pressure.

3. If the RDM is smaller than the lower bound of the interval, the constant scalingExp2 which
is smaller than 1 is chosen for the scaling function. This implements the rule: If the dispersion
has decreased, increase the selection pressure.

The dispersion measure is computed as the ratio of the dispersion measure at t relative to the disper-
sion measure at t-scalingDelay. The default dispersion measure is the variance of the population
fitness (dispersionMeasure="var"). However, other dispersion measures ("std", "mad", "cv",
"range", "iqr") can be configured.

Another adaptive scaling method is continuous scaling (scaling="ContinuousScaling"). The
scaling exponent is adapted by a weighted ratio of dispersion measures. The weight of the exponent
is set by rdmWeight=1.1, its default is 1.0. Since the ratio of dispersion measures may be quite
unstable, the default limits for the ratio are drMin=0.5 and drMax=2.0.

Individually Variable Mutation and Crossover Probabilities
The rationale of individually variable mutation and crossover rates is that selected genes with a low
fitness should be changed by a genetic operator with a higher probability. This increases the chance
of survival of the gene because of the chance of a fitness increase through crossover or mutation.

Select an adaptive genetic operator rate: For the crossover rate, ivcrossrate="IV". For the muta-
tion rate, ivmutrate="IV".

If the fitness of a gene is higher than cutoffFit times the current best fitness, the crossover rate is
crossrate else the crossover rate is crossrate2.

If the fitness of a gene is higher than cutoffFit times the current best fitness, the mutation rate is
mutrate else the mutation rate is mutrate2.

The Initialization of a Population

For the algorithms "sga", "sgde", and "sgperm" the information needed for initialization is the length
of the gene in bits, in parameters, and in the number of symbols of a permutation. For "sgp", the
depth bound gives an upper limit for the program which can be represented by a derivation tree.
For "sge", a codon is an integer for selecting a production rule. The number of bits of a gene is
codons*codonBits.

Algorithm Parameters
"sga" Number of bits. penv$genelength()
"sgde" Number of parameters. length(penv$bitlength(), penv$lb(), penv$ub()
"sgede" Number of Codons. codons, codonPrecision
"sgperm" Number of symbols. penv$genelength()
"sgp" Depth bound of derivation tree. maxdepth
"sge" Number of codons and codons, codonBits, codonPrecision, maxPBias

number of bits of a codon.

The Pipeline of Genetic Operators

The pipeline of genetic operators merges the pipeline of a genetic algorithm with the pipeline of
evolutionary algorithms and simulated annealing by adding an acceptance step:

xegaRun 31

• For evolutionary algorithms, the acceptance rule accept="Best" means that the fitter gene
out of a parent and its kid survives (is copied into the next generation).

• For genetic algorithms the acceptance rule accept="All" means that always the kid survives.

• For simulated annealing the acceptance rule accept="Metropolis" means that the survival
probability of a kid with a fitness worse than its parent decreases as the number of generations
executed increases.

Proper configuration of the pipeline allows the configuration of new algorithm variants which mix
elements of genetic, evolutionary, and simulated annealing algorithms.

The following table gives a working standard configuration of the pipeline of the genetic operators
for each of the five algorithms:

Step/Algorithm "sga" "sgde" "sgperm"
(next) Scaling NoScaling NoScaling NoScaling
(next) Selection SUS UniformP SUS
(next) Replication Kid2 DE Kid2
(next) Crossover Cross2Gene UCrossGene Cross2Gene
(next) Mutation MutateGene MutateGeneDE MutateGene
(next) Acceptance All Best All
(eval) Decoder Bin2Dec Identity Identity
(eval) Evaluation EvalGeneU EvalGeneU EvalGeneU

Step/Algorithm "sgp" "sge" "sgede"
(next) Scaling NoScaling NoScaling NoScaling
(next) Selection SUS SUS UniformP
(next) Replication Kid2 Kid2 DE
(next) Crossover Cross2Gene Cross2Gene UCrossGene
(next) Mutation MutateGene MutateGene MutateGeneDE
(next) Acceptance All All Best
(eval) Decoder - Mod Identity
(eval) Evaluation EvalGeneU EvalGeneU EvalGeneU

Scaling

In genetic algorithms, scaling of the fitness functions has the purpose of increasing or decreasing
the selection pressure. Two classes of scaling methods are available:

• Constant scaling methods.

– No scaling (configured by scaling="NoScaling").
– Constant scaling (configured by scaling="ConstantScaling"). Depends on the scaling

exponent scalingExp.

• Adaptive scaling methods.

– Threshold scaling (configured by scaling="ThresholdScaling"). It is configured with
the scaling exponents scalingExp and scalingExp2, and the scaling threshold scalingThreshold.
It uses a threshold rule about the change of a dispersion measure of the population fitness
lF$RDM() to choose the scaling exponent:

32 xegaRun

* lF$RDM()>1+scalingThreshold: The scaling exponent is scalingExp which should
be greater than 1. Rationale: Increase selection pressure to reduce the dispersion of
fitness.

* lF$RDM()<1-scalingThreshold: The scaling exponent is scalingExp2 which should
be lower than 1. Rationale: Decrease selection pressure to increase the dispersion of
fitness.

* Else: Scaling exponent is 1. Fitness is not scaled.
– Continuous scaling (configured by scaling="ContinuousScaling"). The ratio of the

dispersion measures lF$RDM() is greater than 1 if the dispersion increased in the last
generation and less than 1 if the dispersion decreased in the last generation. The scaling
exponent is the product of the ratio of the dispersion measures lF$RDM() with the weight
rdmWeight.

The change of the dispersion measure of the population fitness is measured by the function lF$RDM()
(RDM means (R)atio of (D)ispersion (M)easure). This function depends on

• the choice of a dispersion measure of the population fitness dispersionMeasure. The vari-
ance is the default (dispersionMeasure="var"). The following dispersion measures of the
population fitness are avalaible: Variance ("var"), standard deviation ("std"), median abso-
lute deviation ("mad"), coefficient of variation ("cv"), range ("range"), interquartile range
("iqr").

• the scaling delay scalingDelay. The default is scalingDelay=1. This means the ratio of
the variance of the fitness of the population at time t and the variance of the fitness of the
population at time t-1 is computed.

• the upper and lower bounds of the ratio of dispersion measures.

• Dispersion ratios may have extreme fluctuations: The parameters drMax and drMin define
upper and lower bounds of the ratio of dispersion measures. The defaults are drMax=2 and
drMin=1.

See package xegaSelectGene <https://CRAN.R-project.org/package=xegaSelectGene>

Selection

Selection operators determine which genes are chosen for the replication process for the next gen-
eration. Selection operators are configured by selection and mateselection (the 2nd parent for
crossover). The default operator is stochastic universal selection for both parents (configured by
selection="SUS" and mateselection="SUS"). The following operators are implemented:

• Uniform random selection with replacement (configured by "Uniform"). Needed for simu-
lating uniform random mating behavior, for computer experiments without selection pressure,
and for computing random search solutions as naive benchmarks.

• Uniform random selection without replacement (configured by "UniformP"). Needed for
differential evolution.

• Selection proportional to fitness (in O(n) by "SelectPropFit", in O(n*log(n)) by "SelectPropFitOnln",
and in O(n^2) by "SelectPropFitM"). offset configures the shift of the fitness vector if
min(fit)=<0.

xegaRun 33

• Selection proportional to fitness differences (in O(n) by "SelectPropFitDiff", in O(n*log(n))
by "SelectPropFitDiffOnln", and in O(n^2) by "SelectPropFitDiffM"). Even the worst
gene should have a minimal chance of survival: eps is added to the fitness difference vec-
tor. This also guarantees numerical stability for populations in which all genes have the same
fitness.

• Deterministic tournament selection of k genes (configured by "Tournament"). The tourna-
ment size is configured by tournamentSize. Selection pressure increases with tournament
size. The worst k-1 genes of a population never survive.

• Deterministic tournament selection of 2 genes (configured by "Duel").

• Stochastic tournament selection of k genes (configured by "STournament"). The tournament
size is configured by tournamentSize.

• Linear rank selection with selective pressure (configured by "LRSelective"). The selection
bias which regulates the selection pressure is configured by selectionBias (should be be-
tween 1.0 (uniform selection) and 2.0).

• Linear rank selection with interpolated target sampling rates (configured by "LRTSR"). The
maximal target sampling rate is configured by maxTSR (should be between 1 and 2).

• Stochastic universal sampling (configured by "SUS").

If selectionContinuation=TRUE, then selection functions are computed exactly once per gener-
ation. They are transformed into lookup functions which deliver the index of selected genes by
indexing a vector of integers.

See package xegaSelectGene <https://CRAN.R-project.org/package=xegaSelectGene>

Replication

For genetic algorithms ("sga", "sgp", sgperm", and "sge") in the replication process of a gene the
crossover operator may by configured to produce one new gene (replication="Kid1") or two new
genes (replication="Kid2"). The first version loses genetic information in the crossover opera-
tion, whereas the second version retains the genetic material in the population. There is a depen-
dency between replication and crossover: "Kid2" requires a crossover operator which produces
two kids. The replication method is configured by the function xegaGaReplicationFactory() of
package xegaGaGene.

Note that only the function xegaGaReplicateGene of xegaGaGene (configured with replication="Kid1")
implements a genetic operator pipeline with an acceptance rule.

For differential evolution (algorithm "sgde") and grammatical evolution with differential evolution
operators (algorithm "sgede"), replication="DE" must be configured. The replication method
for differential evolution is configured by the function xegaDfReplicationFactory() of package
xegaDfGene. It implements a configurable acceptance rule. For classic differential evolution, use
accept="Best".

Crossover

The table below summarizes the crossover operators available in the current version.

Algorithm: "sga" and "sge" Package: xegaGaGene
Kids Name Function crossover= Influenced by

34 xegaRun

(2 kids) 1-Point xegaGaCross2Gene() "Cross2Gene"
Uniform xegaGaUCross2Gene() "UCross2Gene"
Parametrized Uniform xegaGaUPCross2Gene() "UPCross2Gene" ucrossSwap

(1 kid) 1-Point xegaGaCrossGene() "CrossGene"
Uniform xegaGaUCrossGene() "UCrossGene"
Parametrized Uniform xegaGaUPCrossGene() "UPCrossGene" ucrossSwap

Algorithm: "sgde" and "sgede" Package: xegaDfGene
(1 kid) 1-Point xegaDfCrossGene() "CrossGene"

Uniform xegaDfCrossGene() "UCrossGene"
Parametrized Uniform xegaDfUPCrossGene() "UPCrossGene" ucrossSwap

Algorithm: "sgperm" Package: xegaPermGene
(2 kids) Position-Based xegaPermCross2Gene() "Cross2Gene"
(1 kid) Position-Based xegaPermCrossGene() "CrossGene"
Algorithm: "sgp" Package: xegaGpGene
(2 kids) of Derivation Trees xegaGpAllCross2Gene() "Cross2Gene" or maxcrossdepth,

"All2Cross2Gene" maxdepth,
and maxtrials

of Depth-Filtered xegaGpFilterCross2Gene() "FilterCross2Gene" maxcrossdepth,
Derivation Trees mincrossdepth,

maxdepth,
and maxtrials

(1 kid) of Derivation Trees xegaGpAllCrossGene() "CrossGene" maxcrossdepth,
maxdepth,
and maxtrials

of Depth-Filtered xegaGpFilterCrossGene() "FilterCrossGene" maxcrossdepth,
Derivation Trees mincrossdepth,

maxdepth,
and maxtrials

Mutation

The table below summarizes the mutation operators in the current version.

Algorithm: "sga" and "sge" Package: xegaGaGene
Name Function mutation= Influenced by
Bit Mutation xegaGaMutateGene() "MutateGene" bitmutrate
Individually xegaGaIVAdaptiveMutateGene() "IVM" bitmutrate,
Variable Bit bitmutrate2,
Mutation and cutoffFit
Algorithm: "sgde" and "sgede" Package: xegaDfGene
Differential xegaDfMutateGeneDE() "MutateGene" or lF$ScaleFactor()
Evolution Mutation "MutateGeneDe" (Configurable)
Algorithm: "sgperm" Package: xegaPermGene
Generalized Order xegaPermMutateGeneOrderBased() "MutateGene" bitmutrate
Based Mutation "MutateGeneOrderBased"
k Inversion xegaPermMutateGenekInversion() "MutateGenekInversion" lambda
Mutation

xegaRun 35

2-Opt Mutation xegaPermMutateGene2Opt() "MutateGene2Opt" max2opt
k-Opt LK Mutation xegaPermMutateGenekOptLK() "MutateGenekOptLK" max2opt
(Lin-Kernighan)
Greedy Path xegaPermMutateGeneGreedy() "MutateGeneGreedy" lambda
Mutation
Best Greedy Path xegaPermMutateGeneBestGreedy() "MutateGeneBestGreedy" lambda
Mutation
Random Mutation xegaPermMutateMix() "MutateGeneMix"
Operator
Algorithm: "sgp" Package: xegaGpGene
Derivation Tree xegaGpMutateAllGene() "MutateGene" or maxmutdepth
Mutation "MutateAllGene"
Filtered Derivation xegaGpMutateGeneFilter() "MutateFilterGene" maxmutdepth,
Tree Mutation minmutinsertiondepth,

and maxmutinsertiondepth

Acceptance

Acceptance rules are extensions of genetic and evolutionary algorithms which - to the best of my
knowledge - have their origin in simulated annealing. An acceptance rule compares the fitness
value of a modified gene with the fitness value of its parent and determines which of the two genes
is passed into the next population.

An acceptance rule is only executed as part of the genetic operator pipeline, if replicate="Kid1"
or replicate="DE".

Two classes of acceptance rules are provided:

• Simple acceptance rules.

– Accept the new gene unconditionally (configured by accept="All"). The new gene is
always passed to the next population. Choose the rule for configuring a classic genetic
algorithm. (The default).

– Accept only the best gene (configured by accept="Best"). This acceptance rule guar-
antees an increasing fitness curve over the run of the algorithm. For example, classic
differential evolution uses this acceptance rule.

• Configurable acceptance rules. The rules always accept a new gene with a fitness improve-
ment. They also accept a new gene with a lower fitness with a probability which depends
on the fitness difference of the old and the new gene and a temperature parameter which is
reduced over the algorithm run by a configurable cooling schedule.

– The Metropolis acceptance rule (configured by accept="Metropolis"). The larger the
parameter beta is set, the faster the drop in acceptance probability.

– The individually adaptive Metropolis acceptance rule (configured by accept="IVMetropolis").
The larger the parameter beta is set, the faster the drop in acceptance probability. Indi-
vidually adaptive means that the temperature is corrected. The correction (increase) of
temperature depends on the difference between the fitness of the currently known best
solution and the fitness of the new gene.

The cooling schedule updates the temperature parameter at the end of the main loop. The following
cooling schedules are available:

36 xegaRun

• Exponential multiplicative cooling (configured by cooling="ExponentialMultiplicative").
Depends on the discount factor alpha and the start temperature temp0.

• Logarithmic multiplicative cooling (configured by cooling="LogarithmicMultiplicative").
Depends on the scaling factor alpha and the start temperature temp0.

• Power multiplicative cooling (configured by cooling="PowerMultiplicative"). Depends
on the scaling factor alpha, the cooling power exponent coolingPower, and the start temper-
ature temp0.

• Power additive cooling (configured by cooling="PowerAdditive"). Depends on the number
of generations generations, the cooling power exponent coolingPower, the start tempera-
ture temp0, and the final temperature tempN.

• Exponential additive cooling (configured by cooling="ExponentialAdditive"). Depends
on the number of generations generations, the start temperature temp0, and the final tem-
perature tempN.

• Trigonometric additive cooling (configured by cooling="TrigonometricAdditive"). De-
pends on the number of generations generations, the start temperature temp0, and the final
temperature tempN.

See package xegaPopulation <https://CRAN.R-project.org/package=xegaPopulation>

Decoder

Decoders are algorithm and task-dependent. Their implementation often makes use of a gene map.
The table below summarizes the available decoders and gene maps of the current version.

Algorithm: "sga" "sgde" "sgperm"
In package: xegaGaGene xegaDfGene xegaPermGene
Decoder: xegaGaDecodeGene() xegaDfDecodeGene() xegaPermDecodeGene()
Gene map factories: xegaGaGeneMapFactory() xegaDfGeneMapFactory() (Not configurable)
Method "Bin2Dec" "Identity"
Method "Gray2Dec"
Method "Identity"
Method "Permutation"

Algorithm: "sgp" "sge" "sgede"
In package: xegaGpGene xegaGeGene xegaGeGene
Decoder Factories (Not configurable) xegaGeDecodeGeneFactory() xegaGeDecodeGeneFactory()
Decoder: xegaGpDecodeGene()
Method: "DecodeGene" "DecodeGene"
Method: "DecodeGeneDT" "DecodeGeneDT"
Gene map factories: (Not configurable) xegaGeGeneMapFactory() xegaDfGeneMapFactory()
Method "Mod" "Identity"
Method "Buck"

xegaRun 37

Evaluation

The method of evaluation of a gene is configured by evalmethod: "EvalGeneU" means that the
function is always executed, "Deterministic" evaluates a gene only once, and "Stochastic" in-
crementally updates the mean and variance of a stochastic function. If reportEvalErrors==TRUE,
evaluation failures are reported. However, for grammatical evolution without gene repair this should
be set to FALSE. See package xegaSelectGene <https://CRAN.R-project.org/package=xegaSelectGene>

Distributed and Parallel Processing

The current scope of parallelization is the parallel evaluation of genes (the steps marked with
(eval) in the genetic operator pipeline. This strategy is less efficient for differential evolution and
permutation-based genetic algorithms because of the embedding of repeated evaluations into ge-
netic operators.

In general, distributed and parallel processing requires a sequence of three steps:

1. Configure and start the distributed or parallel infrastructure.

2. Distribute processing and collect results. In an evolutionary or genetic algorithm, the architec-
tural pattern used for the implementation of coarse-grained parallelism by parallel evaluation
of the fitness of the genes of a population is the master/worker pattern. In principle, the
lapply()-function for evaluating a population of genes is replaced by a parallel version.

3. Stop the distributed or parallel infrastructure.

For evolutionary and genetic algorithms, the second step is controlled by two parameters, namely
executionModel and uParApply:

1. If uParApply=NULL, then executionModel provides four ways of evaluating the fitness of a
population of genes:

(a) executionModel="Sequential": The apply function used is base::lapply(). (De-
fault).

(b) executionModel="MultiCore": The apply function used is parallel::mclapply(). If
the number of cores is not specified by cores, the number of available cores is determined
by parallelly::availableCores().

(c) executionModel="MultiCoreHet": The apply function used is parallel::mclapply()
with mc.preschedule=FALSE. If the number of cores is not specified by cores, the
number of available cores is determined by parallelly::availableCores(). This im-
proves speed for tasks with a high variance in execution time.

(d) executionModel="FutureApply": The apply function used is future.apply::future_lapply().
The parallel/distributed model depends on a proper future::plan() statement.

(e) executionModel="Cluster": The apply function used is parallel::parLapply().
The information about the configuration of the computing cluster (master, port, list of
workers) must be provided by Cluster=cl where cl<-parallel::makeClusterPSOCK(
rep(localhost, 5)) generates the cluster object and starts the R processes (of 5 workers
in the same machine).

2. Assume that a user-defined parallel apply function has been defined and called UPARAPPLY.
By setting uParApply=UPARAPPLY, the lapply() function used is UPARAPPLY(). This over-
rides the specification by executionModel. For example, parallelization via the MPI inter-
face can be achieved by providing a user-defined parallel lapply() function which is imple-

38 xegaRun

mented by a user-defined function whose function body is the line Rmpi::mpi.parLapply(
pop, FUN=EvalGene, lF=lF).

See package xegaPopulation <https://CRAN.R-project.org/package=xegaPopulation>

Acknowledgment.The author acknowledges support by the state of Baden-Württemberg through
bwHPC.

Reporting

• verbose controls the information reported on the screen. If verbose is 1, then one dot is
printed per generation to the console.

• reportEvalErrors=TRUE reports the output of errors of fitness function evaluations to the
console. Grammatical evolution (algorithm "sge") routinely attempts to evaluate incomplete
derivation trees. This leads to an evaluation error of the fitness function.

• profile=TRUE measures the time spent in executing the main blocks of the algorithm: InitPopulation(),
NextPopulation(), EvalPopulation(), ObservePopulation(), and SummaryPopulation().
The measurements are stored in the named list $timer of the result object.

• allSolutions=TRUE collects all solutions with the same fitness value. The lists of the geno-
types and phenotypes of these solutions are stored in $solution$allgenotypes and $allphenotypes
of the result object of the algorithm.

• batch=TRUE writes the result object and logevals=TRUE writes a list of all evaluated genes in
an rds-file in the current directory. path allows to write the rds-files into another directory.
The existence of the directory specified by path is not checked. batch=TRUE combined with
verbose=TRUE should be used in batch environments on HPC environments.

Semantics of the local function list lF

This is experimental. The rationale is to save on communication cost in multi-core processing.

• byValue is the Default.

• byReference converts lF to an evironment.

See Also

Other Main Program: xegaReRun()

Examples

a<-xegaRun(penv=Parabola2D, generations=10, popsize=20, verbose=0)
b<-xegaRun(penv=Parabola2D, algorithm="sga", generations=10, max=FALSE,

verbose=1, replay=5, profile=TRUE)
c<-xegaRun(penv=Parabola2D, max=FALSE, algorithm="sgde",

popsize=20, generations=50,
mutation="MutateGeneDE", scalefactor="Uniform", crossover="UCrossGene",
genemap="Identity", replication="DE",
selection="UniformP", mateselection="UniformP", accept="Best")

envXOR<-NewEnvXOR()
BG<-compileBNF(booleanGrammar())
d<-xegaRun(penv=envXOR, grammar=BG, algorithm="sgp",

xegaVersion 39

generations=4, popsize=20, verbose=0)
e<-xegaRun(penv=envXOR, grammar=BG, algorithm="sgp",

generations=4, popsize=20, verbose=0, initgene="InitGeneGe")
f<-xegaRun(penv=envXOR, grammar=BG, algorithm="sge", genemap="Mod",

generations=4, popsize=20, reportEvalErrors=FALSE, verbose=1)
g<-xegaRun(penv=envXOR, grammar=BG, max=TRUE, algorithm="sgede",

popsize=20, generations=4, verbose=1, reportEvalErrors=FALSE,
mutation="MutateGeneDE", scalefactor="Uniform", crossover="UCrossGene",
genemap="Identity", replication="DE",
selection="UniformP", mateselection="UniformP", accept="Best")

h<-xegaRun(penv=lau15, max=FALSE, algorithm="sgperm",
genemap="Identity", mutation="MutateGeneMix")

xegaVersion About this version.

Description

About this version.

Usage

xegaVersion(verbose = TRUE)

Arguments

verbose Boolean. If TRUE (Default), print package information and version number to
the console.

Value

Version number (invisible).

Examples

xegaVersion()

Index

∗ Configuration
sgXCrossoverFactory, 8
sgXDecodeGeneFactory, 9
sgXGeneMapFactory, 9
sgXInitGeneFactory, 10
sgXMutationFactory, 11
sgXReplicationFactory, 12

∗ File I/O
createExclusiveFile, 4

∗ Grammar
booleanGrammar, 2
compileBNF, 3

∗ Main Program
xegaReRun, 15
xegaRun, 16

∗ Package Description
xega, 13

∗ Problem Environment
lau15, 4
NewEnvXOR, 5
Parabola2D, 6
Parabola2DEarly, 7

∗ datasets
lau15, 4
Parabola2D, 6
Parabola2DEarly, 7

booleanGrammar, 2, 3

compileBNF, 2, 3
createExclusiveFile, 4

lau15, 4, 6, 7

NewEnvXOR, 5, 5, 7

Parabola2D, 5, 6, 6, 7
Parabola2DEarly, 5–7, 7, 26

sgXCrossoverFactory, 8, 9–12
sgXDecodeGeneFactory, 8, 9, 10–12

sgXGeneMapFactory, 8, 9, 9, 11, 12
sgXInitGeneFactory, 8–10, 10, 12
sgXMutationFactory, 8–11, 11, 12
sgXReplicationFactory, 8–12, 12

xega, 13
xega-package (xega), 13
xegaReRun, 15, 38
xegaRun, 16, 16
xegaVersion, 39

40

	booleanGrammar
	compileBNF
	createExclusiveFile
	lau15
	NewEnvXOR
	Parabola2D
	Parabola2DEarly
	sgXCrossoverFactory
	sgXDecodeGeneFactory
	sgXGeneMapFactory
	sgXInitGeneFactory
	sgXMutationFactory
	sgXReplicationFactory
	xega
	xegaReRun
	xegaRun
	xegaVersion
	Index

