Type: | Package |
Title: | Word Clouds |
Version: | 2.6 |
Author: | Ian Fellows |
Maintainer: | Ian Fellows <ian@fellstat.com> |
Description: | Functionality to create pretty word clouds, visualize differences and similarity between documents, and avoid over-plotting in scatter plots with text. |
License: | LGPL-2.1 |
LazyLoad: | yes |
Depends: | methods, RColorBrewer |
Imports: | Rcpp (≥ 0.9.4) |
Suggests: | tm (≥ 0.6), slam |
URL: | http://blog.fellstat.com/?cat=11 http://www.fellstat.com |
LinkingTo: | Rcpp |
NeedsCompilation: | yes |
Packaged: | 2018-08-24 18:57:30 UTC; ianfellows |
Repository: | CRAN |
Date/Publication: | 2018-08-24 19:20:03 UTC |
United States State of the Union Addresses (2010 and 2011)
Description
Transcripts of the state of the union speeches. saved as a tm Corpus.
Usage
data(SOTU)
Author(s)
Barack Obama
Plot a commonality cloud
Description
Plot a cloud of words shared across documents
Usage
commonality.cloud(term.matrix,comonality.measure=min,max.words=300,...)
Arguments
term.matrix |
A term frequency matrix whose rows represent words and whose columns represent documents. |
comonality.measure |
A function taking a vector of frequencies for a single term, and returning a common frequency |
max.words |
Maximum number of words to be plotted. least frequent terms dropped |
... |
Additional parameters to be passed to wordcloud. |
Value
nothing
Examples
if(require(tm)){
data(SOTU)
corp <- SOTU
corp <- tm_map(corp, removePunctuation)
corp <- tm_map(corp, content_transformer(tolower))
corp <- tm_map(corp, removeNumbers)
corp <- tm_map(corp, function(x)removeWords(x,stopwords()))
term.matrix <- TermDocumentMatrix(corp)
term.matrix <- as.matrix(term.matrix)
colnames(term.matrix) <- c("SOTU 2010","SOTU 2011")
comparison.cloud(term.matrix,max.words=40,random.order=FALSE)
commonality.cloud(term.matrix,max.words=40,random.order=FALSE)
}
Plot a comparison cloud
Description
Plot a cloud comparing the frequencies of words across documents.
Usage
comparison.cloud(term.matrix,scale=c(4,.5), max.words=300,
random.order=FALSE, rot.per=.1,
colors=brewer.pal(max(3,ncol(term.matrix)),"Dark2"),
use.r.layout=FALSE, title.size=3,
title.colors=NULL, match.colors=FALSE,
title.bg.colors="grey90", ...)
Arguments
term.matrix |
A term frequency matrix whose rows represent words and whose columns represent documents. |
scale |
A vector of length 2 indicating the range of the size of the words. |
max.words |
Maximum number of words to be plotted. least frequent terms dropped |
random.order |
plot words in random order. If false, they will be plotted in decreasing frequency |
rot.per |
proportion words with 90 degree rotation |
colors |
Color words in the order of columns in |
use.r.layout |
if false, then c++ code is used for collision detection, otherwise R is used |
title.size |
Size of document titles |
title.colors |
Colors used for document titles. See details. |
match.colors |
Logical: should colors document titles colors match word colors? See details. |
title.bg.colors |
Colors used for the background of document titles. |
... |
Additional parameters to be passed to text (and strheight,strwidth). |
Details
Let p_{i,j}
be the rate at which word i occurs in document j, and p_j
be the
average across documents(\sum_ip_{i,j}/ndocs
). The size of each word is mapped to its maximum deviation
( max_i(p_{i,j}-p_j)
), and its angular position is determined by the document where that maximum occurs.
If title.colors
is not NULL
, it is used for document titles and match.colors
is ignored.
Value
nothing
Examples
if(require(tm)){
data(SOTU)
corp <- SOTU
corp <- tm_map(corp, removePunctuation)
corp <- tm_map(corp, content_transformer(tolower))
corp <- tm_map(corp, removeNumbers)
corp <- tm_map(corp, function(x)removeWords(x,stopwords()))
term.matrix <- TermDocumentMatrix(corp)
term.matrix <- as.matrix(term.matrix)
colnames(term.matrix) <- c("SOTU 2010","SOTU 2011")
comparison.cloud(term.matrix,max.words=40,random.order=FALSE)
comparison.cloud(term.matrix,max.words=40,random.order=FALSE,
title.colors=c("red","blue"),title.bg.colors=c("grey40","grey70"))
comparison.cloud(term.matrix,max.words=40,random.order=FALSE,
match.colors=TRUE)
}
Text Plot
Description
An x y plot of non-overlapping text
Usage
textplot(x, y, words, cex=1,new=TRUE, show.lines=TRUE, ...)
Arguments
x |
x coordinates |
y |
y coordinates |
words |
the text to plot |
cex |
font size |
new |
should a new plot be created |
show.lines |
if true, then lines are plotted between x,y and the word, for those words not covering their x,y coordinates |
... |
Additional parameters to be passed to wordlayout and text. |
Value
nothing
Examples
#calculate standardized MDS coordinates
dat <- sweep(USArrests,2,colMeans(USArrests))
dat <- sweep(dat,2,sqrt(diag(var(dat))),"/")
loc <- cmdscale(dist(dat))
#plot with no overlap
textplot(loc[,1],loc[,2],rownames(loc))
#scale by urban population size
textplot(loc[,1],loc[,2],rownames(loc),cex=USArrests$UrbanPop/max(USArrests$UrbanPop))
#x limits sets x bounds of plot, and forces all words to be in bounds
textplot(loc[,1],loc[,2],rownames(loc),xlim=c(-3.5,3.5))
#compare to text (many states unreadable)
plot(loc[,1],loc[,2],type="n")
text(loc[,1],loc[,2],rownames(loc))
Plot a word cloud
Description
Plot a word cloud
Usage
wordcloud(words,freq,scale=c(4,.5),min.freq=3,max.words=Inf,
random.order=TRUE, random.color=FALSE, rot.per=.1,
colors="black",ordered.colors=FALSE,use.r.layout=FALSE,
fixed.asp=TRUE, ...)
Arguments
words |
the words |
freq |
their frequencies |
scale |
A vector of length 2 indicating the range of the size of the words. |
min.freq |
words with frequency below min.freq will not be plotted |
max.words |
Maximum number of words to be plotted. least frequent terms dropped |
random.order |
plot words in random order. If false, they will be plotted in decreasing frequency |
random.color |
choose colors randomly from the colors. If false, the color is chosen based on the frequency |
rot.per |
proportion words with 90 degree rotation |
colors |
color words from least to most frequent |
ordered.colors |
if true, then colors are assigned to words in order |
use.r.layout |
if false, then c++ code is used for collision detection, otherwise R is used |
fixed.asp |
if TRUE, the aspect ratio is fixed. Variable aspect ratio only supported if rot.per==0 |
... |
Additional parameters to be passed to text (and strheight,strwidth). |
Details
If freq is missing, then words can either be a character vector, or Corpus. If it is a vector and freq is missing, standard stop words will be removed prior to plotting.
Value
nothing
See Also
Examples
wordcloud(c(letters, LETTERS, 0:9), seq(1, 1000, len = 62))
if(require(tm)){
##### from character #####
wordcloud(
"Many years ago the great British explorer George Mallory, who
was to die on Mount Everest, was asked why did he want to climb
it. He said, \"Because it is there.\"
Well, space is there, and we're going to climb it, and the
moon and the planets are there, and new hopes for knowledge
and peace are there. And, therefore, as we set sail we ask
God's blessing on the most hazardous and dangerous and greatest
adventure on which man has ever embarked.",
,random.order=FALSE)
## Not run:
data(crude)
crude <- tm_map(crude, removePunctuation)
crude <- tm_map(crude, function(x)removeWords(x,stopwords()))
##### from corpus #####
wordcloud(crude)
##### from frequency counts #####
tdm <- TermDocumentMatrix(crude)
m <- as.matrix(tdm)
v <- sort(rowSums(m),decreasing=TRUE)
d <- data.frame(word = names(v),freq=v)
wordcloud(d$word,d$freq)
#A bigger cloud with a minimum frequency of 2
wordcloud(d$word,d$freq,c(8,.3),2)
#Now lets try it with frequent words plotted first
wordcloud(d$word,d$freq,c(8,.5),2,,FALSE,.1)
##### with colors #####
if(require(RColorBrewer)){
pal <- brewer.pal(9,"BuGn")
pal <- pal[-(1:4)]
wordcloud(d$word,d$freq,c(8,.3),2,,FALSE,,.15,pal)
pal <- brewer.pal(6,"Dark2")
pal <- pal[-(1)]
wordcloud(d$word,d$freq,c(8,.3),2,,TRUE,,.15,pal)
#random colors
wordcloud(d$word,d$freq,c(8,.3),2,,TRUE,TRUE,.15,pal)
}
##### with font #####
wordcloud(d$word,d$freq,c(8,.3),2,,TRUE,,.15,pal,
vfont=c("gothic english","plain"))
wordcloud(d$word,d$freq,c(8,.3),2,100,TRUE,,.15,pal,vfont=c("script","plain"))
wordcloud(d$word,d$freq,c(8,.3),2,100,TRUE,,.15,pal,vfont=c("serif","plain"))
## End(Not run)
}
Word Layout
Description
finds text plot layout coordinates such that no text overlaps
Usage
wordlayout(x, y, words, cex=1, rotate90 = FALSE,
xlim=c(-Inf,Inf), ylim=c(-Inf,Inf), tstep=.1, rstep=.1, ...)
Arguments
x |
x coordinates |
y |
y coordinates |
words |
the text to plot |
cex |
font size |
rotate90 |
a value or vector indicating whether words should be rotated 90 degrees |
xlim |
x axis bounds for text |
ylim |
y axis bounds for text |
tstep |
the angle (theta) step size as the algorithm spirals out |
rstep |
the radius step size (in standard deviations) as the algorithm spirals out |
... |
Additional parameters to be passed to strwidth and strheight. |
Value
A matrix with columns representing x, y width and height.
Examples
#calculate standardized MDS coordinates
dat <- sweep(USArrests,2,colMeans(USArrests))
dat <- sweep(dat,2,sqrt(diag(var(dat))),"/")
loc <- cmdscale(dist(dat))
x <- loc[,1]
y <- loc[,2]
w <- rownames(loc)
#plot with no overlap and all words visible
plot(x,y,type="n",xlim=c(-3,3),ylim=c(-3,2))
lay <- wordlayout(x,y,w,xlim=c(-3,3),ylim=c(-3,2))
text(lay[,1]+.5*lay[,3],lay[,2]+.5*lay[,4],w)
#notice north dakota is only partially visible
textplot(x,y,w)