Package 'ubair'

July 22, 2025

Title Effects of External Conditions on Air Quality

Version 1.1.0

Description Analyzes the impact of external conditions on air quality using counterfactual approaches, featuring methods for data preparation, modeling, and visualization.

License GPL (>= 3)

URL https://gitlab.opencode.de/uba-ki-lab/ubair

Depends R (>= 4.4.0),

Encoding UTF-8

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0), deepnet, fastshap, treeshap, shapviz, knitr, rmarkdown

Config/testthat/edition 3

Imports rlang, data.table, dplyr, ggplot2, forecast, lubridate, tidyr, yaml, ranger, lightgbm

LazyData true

LazyDataCompression xz

VignetteBuilder knitr

Note Note: The included dataset is licensed under ``DL-DE-BY-2.0." See the dataset documentation for details.

NeedsCompilation no

Author Raphael Franke [aut], Imke Voss [aut, cre]

Maintainer Imke Voss <imke.voss@uba.de>

Repository CRAN

Date/Publication 2025-01-27 18:30:01 UTC

Contents

calc_performance_metrics	2
calc_summary_statistics	3
clean_data	4
copy_default_params	5
detrend 6	5
estimate_effect_size	7
get_meteo_available	3
load_params	3
load_uba_data_from_dir)
mock_env_data)
plot_counterfactual	1
plot_station_measurements	2
prepare_data_for_modelling	3
rescale_predictions	4
retrend_predictions	5
run_counterfactual	
run_dynamic_regression	7
run_fnn	
run_lightgbm)
run_rf	_
sample_data_DESN025	2
scale_data	3
split_data_counterfactual	4
26	_
$\mathcal{L}($	J

calc_performance_metrics

Calculates performance metrics of a business-as-usual model

Description

Index

Model agnostic function to calculate a number of common performance metrics on the reference time window. Uses the true data value and the predictions prediction for this calculation. The coverage is calculated from the columns value, prediction_lower and prediction_upper. Removes dates in the effect and buffer range as the model is not expected to be performing correctly for these times. The incorrectness is precisely what we are using for estimating the effect.

Usage

```
calc_performance_metrics(predictions, date_effect_start = NULL, buffer = 0)
```

Arguments

predictions data.table or data.frame with the following columns

date Date of the observation. Needs to be comparable to date_effect_start element.

value True observed value of the station

prediction Predicted model output for the same time and station as value

prediction_lower Lower end of the prediction interval prediction_upper Upper end of the prediction interval

date_effect_start

A date. Start date of the effect that is to be evaluated. The data from this point

onwards is disregarded for calculating model performance

buffer Integer. An additional buffer window before date_effect_start to account for

uncertainty in the effect start point. Disregards additional buffer data points for

model evaluation

Value

Named vector with performance metrics of the model

calc_summary_statistics

Calculates summary statistics for predictions and true values

Description

Helps with analyzing predictions by comparing them with the true values on a number of relevant summary statistics.

Usage

```
calc_summary_statistics(predictions, date_effect_start = NULL, buffer = 0)
```

Arguments

predictions Data.table or data.frame with the following columns

date Date of the observation. Needs to be comparable to date_effect_start ele-

ment.

value True observed value of the station

prediction Predicted model output for the same time and station as value

date_effect_start

A date. Start date of the effect that is to be evaluated. The data from this point

onwards is disregarded for calculating model performance

buffer Integer. An additional buffer window before date_effect_start to account for

uncertainty in the effect start point. Disregards additional buffer data points for

model evaluation

4 clean_data

Value

data.frame of summary statistics with columns true and prediction

clean_data

Clean and Optionally Aggregate Environmental Data

Description

Cleans a data table of environmental measurements by filtering for a specific station, removing duplicates, and optionally aggregating the data on a daily basis using the mean.

Usage

```
clean_data(env_data, station, aggregate_daily = FALSE)
```

Arguments

env_data A data table in long format. Must include columns:

Station Station identifier for the data.

Komponente Measured environmental component e.g. temperature, NO2.

Wert Measured value.

date Timestamp as Date-Time object (YYYY-MM-DD HH: MM: SS format).

Komponente_txt Textual description of the component.

station

Character. Name of the station to filter by.

aggregate_daily

Logical. If TRUE, aggregates data to daily mean values. Default is FALSE.

Details

Duplicate rows (by date, Komponente, and Station) are removed. A warning is issued if duplicates are found.

Value

A data.table:

- If aggregate_daily = TRUE: Contains columns for station, component, day, year, and the daily mean value of the measurements.
- If aggregate_daily = FALSE: Contains cleaned data with duplicates removed.

copy_default_params 5

Examples

```
# Example data
env_data <- data.table::data.table(</pre>
 Station = c("DENW094", "DENW094", "DENW006", "DENW094"),
 Komponente = c("N02", "03", "N02", "N02"),
 Wert = c(45, 30, 50, 40),
 date = as.POSIXct(c(
    "2023-01-01 08:00:00", "2023-01-01 09:00:00",
    "2023-01-01 08:00:00", "2023-01-02 08:00:00"
 )),
 Komponente_txt = c(
    "Nitrogen Dioxide", "Ozone", "Nitrogen Dioxide", "Nitrogen Dioxide"
 )
)
# Clean data for StationA without aggregation
cleaned_data <- clean_data(env_data, station = "DENW094", aggregate_daily = FALSE)</pre>
print(cleaned_data)
```

copy_default_params

Copy Default Parameters File

Description

Copies the default params. yaml file, included with the package, to a specified destination directory. This is useful for initializing parameter files for custom edits.

Usage

```
copy_default_params(dest_dir)
```

Arguments

dest_dir

Character. The path to the directory where the params. yaml file will be copied.

Details

The params.yaml file contains default model parameters for various configurations such as Light-GBM, dynamic regression, and others. See the <code>load_params()</code> 'documentation for an example of the file's structure.

Value

Nothing is returned. A message is displayed upon successful copying.

Examples

```
copy_default_params(tempdir())
```

6 detrend

detrend

Removes trend from data

Description

Takes a list of train and application data as prepared by split_data_counterfactual() and removes a polynomial, exponential or cubic spline spline trend function. Trend is obtained only from train data. Use as part of preprocessing before training a model based on decision trees, i.e. random forest and lightgbm. For the other methods it may be helpful but they are generally able to deal with trends themselves. Therefore we recommend to try out different versions and guide decisions using the model evaluation metrics from calc_performance_metrics().

Usage

```
detrend(split_data, mode = "linear", num_splines = 5, log_transform = FALSE)
```

Arguments

split_data List of two named dataframes called train and apply

String which defines type of trend is present. Options are "linear", "quadratic",
"exponential", "spline", "none". "none" returns original data

num_splines Defines the number of cubic splines if mode="spline". Choose num_splines=1
for cubic polynomial trend. If mode!="spline", this parameter is ignored

log_transform If TRUE, use a log-transformation before detrending to ensure positivity of all
predictions in the rest of the pipeline. A exp transformation is necessary during retrending to return to the solution space. Use only in combination with

log_transform parameter in retrend_predictions()

Details

Apply retrend_predictions() to predictions to return to the original data units.

Value

List of 3 elements. 2 dataframes: detrended train, apply and the trend function

Examples

```
data(mock_env_data)
split_data <- list(
    train = mock_env_data[1:80, ],
    apply = mock_env_data[81:100, ]
)
detrended_list <- detrend(split_data, mode = "linear")
detrended_train <- detrended_list$train
detrended_apply <- detrended_list$apply
trend <- detrended_list$model</pre>
```

estimate_effect_size 7

Description

Calculates an estimate for the absolute and relative effect size of the external effect. The absolute effect is the difference between the model bias in the reference time and the effect time windows. The relative effect is the absolute effect divided by the mean true value in the reference window.

Usage

```
estimate_effect_size(df, date_effect_start, buffer = 0, verbose = FALSE)
```

Arguments

df Data.table or data.frame with the following columns

date Date of the observation. Needs to be comparable to date_effect_start ele-

ment.

value True observed value of the station

prediction Predicted model output for the same time and station as value

date_effect_start

A date. Start date of the effect that is to be evaluated. The data from this point

onward is disregarded for calculating model performance.

buffer Integer. An additional buffer window before date_effect_start to account for

uncertainty in the effect start point. Disregards additional buffer data points for

model evaluation

verbose Prints an explanation of the results if TRUE

Details

Note: Since the bias is of the model is an average over predictions and true values, it is important, that the effect window is specified correctly. Imagine a scenario like a fire which strongly affects the outcome for one hour and is gone the next hour. If we use a two week effect window, the estimated effect will be 14*24=336 times smaller compared to using a 1-hour effect window. Generally, we advise against studying very short effects (single hour or single day). The variability of results will be too large to learn anything meaningful.

Value

A list with two numbers: Absolute and relative estimated effect size.

8 load_params

get_meteo_available Get Available Meteorological Components

Description

Identifies unique meteorological components from the provided environmental data, filtering only those that match the predefined UBA naming conventions. These components include "GLO", "LDR", "RFE", "TMP", "WIG", "WIR", "WIND_U", and "WIND_V".

Usage

```
get_meteo_available(env_data)
```

Arguments

env_data

Data table containing environmental data. Must contain column "Komponente"

Value

A vector of available meteorological components.

Examples

```
# Example environmental data
env_data <- data.table::data.table(
   Komponente = c("TMP", "NO2", "GLO", "WIR"),
   Wert = c(25, 40, 300, 50),
   date = as.POSIXct(c(
        "2023-01-01 08:00:00", "2023-01-01 09:00:00",
        "2023-01-01 10:00:00", "2023-01-01 11:00:00"
   ))
)
# Get available meteorological components
meteo_components <- get_meteo_available(env_data)
print(meteo_components)</pre>
```

load_params

Load Parameters from YAML File

Description

Reads a YAML file containing model parameters, including station settings, variables, and configurations for various models. If no file path is provided, the function defaults to loading params.yaml from the package's extdata directory.

Usage

```
load_params(filepath = NULL)
```

Arguments

filepath

Character. Path to the YAML file. If NULL, the function will attempt to load the default params.yaml provided in the package.

Details

The YAML file should define parameters in a structured format, such as:

```
target: 'NO2'
lightgbm:
   nrounds: 200
   eta: 0.03
   num_leaves: 32

dynamic_regression:
   ntrain: 8760

random_forest:
   num.trees: 300
   max.depth: 10

meteo_variables:
   - GLO
   - TMP
```

Value

A list containing the parameters loaded from the YAML file.

Examples

```
params <- load_params()

load_uba_data_from_dir</pre>
```

Description

This function loads data from CSV files in the specified directory. It supports two formats:

Load UBA Data from Directory

10 mock_env_data

Usage

```
load_uba_data_from_dir(data_dir)
```

Arguments

data_dir Character. Path to the directory containing .csv files.

Details

- 1. "inv": Files must contain the following columns:
 - Station, Komponente, Datum, Uhrzeit, Wert.
- 2. "24Spalten": Files must contain:
 - Station, Komponente, Datum, and columns Wert01, ..., Wert24.

File names should include "inv" or "24Spalten" to indicate their format. The function scans recursively for .csv files in subdirectories and combines the data into a single data.table in long format. Files that are not in the exected format will be ignored.

Value

A data. table containing the loaded data in long format. Returns an error if no valid files are found or the resulting dataset is empty.

mock_env_data

Mock Environmental Data

Description

A small dataset of environmental variables created for testing and examples. This dataset includes hourly observations with random values for meteorological and temporal variables.

Usage

```
mock_env_data
```

Format

A data frame with 100 rows and 12 variables:

date POSIXct. Date and time of the observation (hourly increments).

value Numeric. Randomly generated target variable.

GLO Numeric. Global radiation in W/m² (random values between 0 and 1000).

TMP Numeric. Temperature in °C (random values between -10 and 35).

RFE Numeric. Rainfall in mm (random values between 0 and 50).

WIG Numeric. Wind speed in m/s (random values between 0 and 20).

plot_counterfactual 11

```
WIR Numeric. Wind direction in degrees (random values between 0 and 360).
```

LDR Numeric. Longwave downward radiation in W/m² (random values between 0 and 500).

```
day_julian Integer. Julian day of the year, ranging from 1 to 10.
```

```
weekday Integer. Day of the week, ranging from 1 (Monday) to 7 (Sunday).
```

hour Integer. Hour of the day, ranging from 0 to 23.

date_unix Numeric. UNIX timestamp (seconds since 1970-01-01 00:00:00 UTC).

Source

Generated within the package for example purposes.

Examples

```
data(mock_env_data)
head(mock_env_data)
```

plot_counterfactual

Prepare Plot Data and Plot Counterfactuals

Description

Smooths the predictions using a rolling mean, prepares the data for plotting, and generates the counterfactual plot for the application window. Data before the red box are reference window, red box is buffer and values after black, dotted line are effect window.

Usage

```
plot_counterfactual(
   predictions,
   params,
   window_size = 14,
   date_effect_start = NULL,
   buffer = 0,
   plot_pred_interval = TRUE
)
```

Arguments

predictions The data.table containing the predictions (hourly)

params Parameters for plotting, including the target variable.

window_size The window size for the rolling mean (default is 14 days).

date_effect_start

A date. Start date of the effect that is to be evaluated. The data from this point onwards is disregarded for calculating model performance

buffer

Integer. An additional, optional buffer window before date_effect_start to account for uncertainty in the effect start point. Disregards additional buffer data points for model evaluation. Use buffer=0 for no buffer.

plot_pred_interval

Boolean. If TRUE, shows a grey band of the prediction interval.

Details

The optional grey ribbon is a prediction interval for the hourly values. The interpretation for a 90% prediction interval (to be defined in alpha parameter of run_counterfactual()) is that 90% of the true hourly values (not the rolled means) lie within the grey band. This might be helpful for getting an idea of the variance of the data and predictions.

Value

A ggplot object with the counterfactual plot. Can be adjusted further, e.g. set limits for the y-axis for better visualisation.

plot_station_measurements

Descriptive plot of daily time series data

Description

This function produces descriptive time-series plots with smoothing for the meteorological and potential target variables that were measured at a station.

Usage

```
plot_station_measurements(
  env_data,
  variables,
  years = NULL,
  smoothing_factor = 1
)
```

Arguments

env_data

A data table of measurements of one air quality measurement station. The data should contain the following columns:

Station Station identifier where the data was collected.

Komponente The environmental component being measured (e.g., temperature, NO2).

Wert The measured value of the component.

date The timestamp for the observation, formatted as a Date-Time object in the format "YYYY-MM-DD HH:MM:SS" (e.g., "2010-01-01 07:00:00").

Komponente_txt A textual description or label for the component.

variables

list of variables to plot. Must be in env_data\$Komponente. Meteorological variables can be obtained from params.yaml.

years

Optional. A numeric vector, list, or a range specifying the years to restrict the plotted data. You can provide:

- A single year: years = 2020
- A numeric vector of years: years = c(2019, 2020, 2021)
- A range of years: years = 2019: 2021 If not provided, data for all available years will be used.

smoothing_factor

A number that defines the magnitude of smoothing. Default is 1. Smaller numbers correspond to less smoothing, larger numbers to more.

Value

A ggplot object. This object contains:

- A time-series line plot for each variable in variables.
- Smoothed lines, with smoothing defined by smoothing_factor.

Examples

```
library(data.table)
env_data <- data.table(
   Station = "Station_1",
   Komponente = rep(c("TMP", "NO2"), length.out = 100),
   Wert = rnorm(100, mean = 20, sd = 5),
   date = rep(seq.POSIXt(as.POSIXct("2022-01-01"), , "hour", 50), each = 2),
   year = 2022,
   Komponente_txt = rep(c("Temperature", "NO2"), length.out = 100)
)
plot <- plot_station_measurements(env_data, variables = c("TMP", "NO2"))</pre>
```

```
prepare_data_for_modelling
```

Prepare Data for Training a model

Description

Prepares environmental data by filtering for relevant components, converting the data to a wide format, and adding temporal features. Should be called before split_data_counterfactual()

Usage

```
prepare_data_for_modelling(env_data, params)
```

14 rescale_predictions

Arguments

env_data A data table in long format. Must include the following columns:

Station Station identifier for the data.

Komponente The environmental component being measured (e.g., temperature, NO2).

Wert The measured value of the component.

date Timestamp as POSIXct object in YYYY-MM-DD HH: MM: SS format.

Komponente_txt A textual description of the component.

params A list of modelling parameters loaded from params. yaml. Must include:

meteo_variables A vector of meteorological variable names.

target The name of the target variable.

Value

A data.table in wide format, with columns: date, one column per component, and temporal features like date_unix, day_julian, weekday, and hour.

Examples

```
env_data <- data.table::data.table(
    Station = c("StationA", "StationA", "StationA"),
    Komponente = c("NO2", "TMP", "NO2"),
    Wert = c(50, 20, 40),
    date = as.POSIXct(c("2023-01-01 10:00:00", "2023-01-01 11:00:00", "2023-01-02 12:00:00"))

params <- list(meteo_variables = c("TMP"), target = "NO2")
prepared_data <- prepare_data_for_modelling(env_data, params)
print(prepared_data)</pre>
```

rescale_predictions

Rescale predictions to original scale.

Description

This function rescales the predicted values (prediction, prediction_lower, prediction_upper). The scaling is reversed using the means and standard deviations that were saved from the training data. It is the inverse function to scale_data() and should be used only in combination.

Usage

```
rescale_predictions(scale_result, dt_predictions)
```

retrend_predictions 15

Arguments

scale_result A list object returned by scale_data(), containing the means and standard deviations used for scaling.

dt_predictions A data frame containing the predictions, including columns prediction, prediction_lower, prediction_upper.

Value

A data frame with the predictions and numeric columns rescaled back to their original scale.

Examples

```
data(mock_env_data)
scale_res <- scale_data(
    train_data = mock_env_data[1:80, ],
    apply_data = mock_env_data[81:100, ]
)
params <- load_params()
res <- run_lightgbm(
    train = scale_res$train, test = scale_res$apply,
    params$lightgbm, alpha = 0.9, calc_shaps = FALSE
)
dt_predictions <- res$dt_predictions
rescaled_predictions <- rescale_predictions(scale_res, dt_predictions)</pre>
```

retrend_predictions

Restors the trend in the prediction

Description

Takes a dataframe of predictions as returned by any of the 'run_model' functions and restores a trend which was previously removed via detrend(). This is necessary for the predictions and the true values to have the same units. The function is basically the inverse function to detrend() and should only be used in combination with it.

Usage

```
retrend_predictions(dt_predictions, trend, log_transform = FALSE)
```

Arguments

 ${\tt dt_predictions} \ \ Data frame of predictions \ with \ columns \ value, \ prediction, \ prediction_lower,$

prediction_upper

trend lm object generated by detrend()

log_transform Returns values to solution space, if they have been log transformed during de-

trending. Use only in combination with log_transform parameter in detrend

function.

run_counterfactual

Value

Retrended dataframe with same structure as dt_predictions which is returned by any of the run_model() functions.

Examples

```
data(mock_env_data)
split_data <- list(</pre>
  train = mock_env_data[1:80, ],
  apply = mock_env_data[81:100, ]
params <- load_params()</pre>
detrended_list <- detrend(split_data,</pre>
  mode = "linear"
trend <- detrended_list$model</pre>
detrended_train <- detrended_list$train</pre>
detrended_apply <- detrended_list$apply</pre>
result <- run_lightgbm(</pre>
  train = detrended_train,
  test = detrended_apply,
  model_params = params$lightgbm,
  alpha = 0.9,
  calc\_shaps = FALSE
retrended_predictions <- retrend_predictions(result$dt_predictions, trend)</pre>
```

run_counterfactual

Full counterfactual simulation run

Description

Chains detrending, training of a selected model, prediction and retrending together for ease of use. See documentation of individual functions for details.

Usage

```
run_counterfactual(
   split_data,
   params,
   detrending_function = "none",
   model_type = "rf",
   alpha = 0.9,
   log_transform = FALSE,
   calc_shaps = FALSE
)
```

Arguments

split_data List of two named dataframes called train and apply params A list of parameters that define the following:

meteo_variables A character vector specifying the names of the meteorological variables used as inputs.

model A list of hyperparameters for training the chosen model. Name of this

list and its parameters depend on the chosen models. See run_dynamic_regression(),

run_lightgbm(), run_rf() and run_fnn() functions for details

detrending_function

String which defines type of trend to remove. Options are "linear", "quadratic", "exponential", "spline", "none". See detrend() and retrend_predictions()

for details.

model_type String to decide which model to use. Current options random forest "rf", gra-

dient boosted decision trees "lightgbm", "dynamic_regression" and feedforward

neural network "fnn"

alpha Confidence level of the prediction interval between 0 and 1.

log_transform If TRUE, uses log transformation during detrending and retrending. For details

see detrend() documentation

calc_shaps Boolean value. If TRUE, calculate SHAP values for the method used and format

them so they can be visualised with shapviz:sv_importance() and shapviz:sv_dependence().

The SHAP values are generated for a subset (or all, depending on the size of the

dataset) of the test data.

Value

Data frame of predictions, model and importance

Examples

```
data(mock_env_data)
split_data <- list(
    train = mock_env_data[1:80, ],
    apply = mock_env_data[81:100, ]
)
params <- load_params()
res <- run_counterfactual(split_data, params, detrending_function = "linear")
prediction <- res$retrended_predictions
random_forest_model <- res$model</pre>
```

run_dynamic_regression

Run the dynamic regression model

18 run_fnn

Description

This function trains a dynamic regression model with fourier transformed temporal features and meteorological variables as external regressors on the specified training dataset and makes predictions on the test dataset in a counterfactual scenario. This is referred to as a dynamic regression model in Forecasting: Principles and Practise, Chapter 10 - Dynamic regression models

Usage

```
run_dynamic_regression(train, test, params, alpha, calc_shaps)
```

Arguments

train	Dataframe of train data as returned by the split_data_counterfactual() function.
test	Dataframe of test data as returned by the split_data_counterfactual() function.
params	list of hyperparameters to use in dynamic_regression call. Only uses ntrain to specify the number of data points to use for training. Default is 8760 which results in 1 year of hourly data
alpha	Confidence level of the prediction interval between 0 and 1.
calc_shaps	Boolean value. If TRUE, calculate SHAP values for the method used and format them so they can be visualised with shapviz:sv_importance() and shapviz:sv_dependence(). The SHAP values are generated for a subset (or all, depending on the size of the dataset) of the test data.

Details

Note: Runs the dynamic regression model for individualised use with own data pipeline. Otherwise use run_counterfactual() to call this function.

Value

Data frame of predictions and model

run_fnn	Train a Feedforward Neural Network (FNN) in a Counterfactual Scenario.
	nario.

Description

Trains a feedforward neural network (FNN) model on the specified training dataset and makes predictions on the test dataset in a counterfactual scenario. The model uses meteorological variables and sin/cosine-transformed features. Scales the data before training and rescales predictions, as the model does not converge with unscaled data.

run_fnn 19

Usage

```
run_fnn(train, test, params, calc_shaps)
```

Arguments

train A data frame or tibble containing the training dataset, including the target vari-

able (value) and meteorological variables specified in params\$meteo_variables.

test A data frame or tibble containing the test dataset on which predictions will be

made, using the same meteorological variables as in the training dataset.

params A list of parameters that define the following:

meteo_variables A character vector specifying the names of the meteorological variables used as inputs.

fnn A list of hyperparameters for training the feedforward neural network, including:

- activation_fun: The activation function for the hidden layers (e.g., "sigmoid", "tanh").
- momentum: The momentum factor for training.
- learningrate_scale: Factor for adjusting learning rate.
- output_fun: The activation function for the output layer
- batchsize: The size of the batches during training.
- hidden_dropout: Dropout rate for the hidden layers to prevent overfitting.
- visible_dropout: Dropout rate for the input layer.
- hidden_layers: A vector specifying the number of neurons in each hidden layer.
- num_epochs: Number of epochs (iterations) for training.
- learning_rate: Initial learning rate.

calc_shaps

Boolean value. If TRUE, calculate SHAP values for the method used and format them so they can be visualised with shapviz:sv_importance() and shapviz:sv_dependence(). The SHAP values are generated for a subset (or all, depending on the size of the dataset) of the test data.

Details

This function provides flexibility for users with their own data pipelines or workflows. For a simplified pipeline, consider using run_counterfactual().

Experiment with hyperparameters such as learning_rate, batchsize, hidden_layers, and num_epochs to improve performance.

Warning: Using many or large hidden layers in combination with a high number of epochs can lead to long training times.

Value

A list with three elements:

dt_predictions A data frame containing the test data along with the predicted values:

20 run_lightgbm

```
prediction The predicted values from the FNN model.
```

prediction_lower The same predicted values, as no quantile model is available yet for FNN.

prediction_upper The same predicted values, as no quantile model is available yet for FNN

model The trained FNN model object from the deepnet::nn.train() function.

importance SHAP importance values (if calc_shaps = TRUE). Otherwise, NULL.

Examples

```
data(mock_env_data)
params <- load_params()
res <- run_fnn(
  train = mock_env_data[1:80, ],
  test = mock_env_data[81:100, ], params,
  calc_shaps = FALSE
)</pre>
```

run_lightgbm

Run gradient boosting model with lightgbm

Description

This function trains a gradient boosting model (lightgbm) on the specified training dataset and makes predictions on the test dataset in a counterfactual scenario. The model uses meteorological variables and temporal features.

Usage

```
run_lightgbm(train, test, model_params, alpha, calc_shaps)
```

Arguments

train	Dataframe of train data as returned by the split_data_counterfactual()
	function

test Dataframe of test data as returned by the split_data_counterfactual() func-

tion.

model_params list of hyperparameters to use in lgb.train call. See lightgbm:lgb.train()

params argument for details.

alpha Confidence level of the prediction interval between 0 and 1.

calc_shaps Boolean value. If TRUE, calculate SHAP values for the method used and format

them so they can be visualised with shapviz:sv_importance() and shapviz:sv_dependence().

The SHAP values are generated for a subset (or all, depending on the size of the

dataset) of the test data.

run_rf 21

Details

Note: Runs the gradient boosting model for individualised use with own data pipeline. Otherwise use run_counterfactual() to call this function.

Value

List with data frame of predictions and model

Examples

```
data(mock_env_data)
split_data <- list(
    train = mock_env_data[1:80, ],
    apply = mock_env_data[81:100, ]
)
params <- load_params()
variables <- c("day_julian", "weekday", "hour", params$meteo_variables)
res <- run_lightgbm(
    train = mock_env_data[1:80, ],
    test = mock_env_data[81:100, ], params$lightgbm, alpha = 0.9,
    calc_shaps = FALSE
)
prediction <- res$dt_predictions
model <- res$model</pre>
```

run_rf

Run random forest model with ranger

Description

This function trains a random forest model (ranger) on the specified training dataset and makes predictions on the test dataset in a counterfactual scenario. The model uses meteorological variables and temporal features.

Usage

```
run_rf(train, test, model_params, alpha, calc_shaps)
```

Arguments

train	Dataframe of train data as returned by the split_data_counterfactual() function.
test	Dataframe of test data as returned by the split_data_counterfactual() function.
model_params	list of hyperparameters to use in ranger call. See ranger: ranger() for options.
alpha	Confidence level of the prediction interval between 0 and 1.

calc_shaps

Boolean value. If TRUE, calculate SHAP values for the method used and format them so they can be visualised with shapviz:sv_importance() and shapviz:sv_dependence(). The SHAP values are generated for a subset (or all, depending on the size of the dataset) of the test data.

Details

Note: Runs the random forest model for individualised use with own data pipeline. Otherwise use run_counterfactual() to call this function.

Value

List with data frame of predictions and model

sample_data_DESN025 Environmental Data for Modelling from station DESN025 in Leipzig-Mitte.

Description

This dataset contains environmental measurements from the Leipzig Mitte station provided by the Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG). Alterations in the data: Codes for incorrect values have been removed.

Usage

sample_data_DESN025

Format

A data table with the following columns:

Station Station identifier where the data was collected.

Komponente The environmental component being measured (e.g., temperature, NO2).

Wert The measured value of the component.

date The timestamp for the observation, formatted as a Date-Time object in the format "YYYY-MM-DD HH: MM: SS" (e.g., "2010-01-01 07:00:00").

Komponente_txt A textual description or label for the component.

The dataset is structured in a long format and is prepared for further transformation into a wide format for modelling.

scale_data 23

Details

The dataset is licensed under the "Data Licence Germany – attribution – version 2.0 (DL-DE-BY-2.0)". (1) Any use will be permitted provided it fulfils the requirements of this "Data licence Germany – attribution – Version 2.0".

The data and meta-data provided may, for commercial and non-commercial use, in particular

- be copied, printed, presented, altered, processed and transmitted to third parties;
- be merged with own data and with the data of others and be combined to form new and independent datasets;
- be integrated in internal and external business processes, products and applications in public and non-public electronic networks.
- (2) The user must ensure that the source note contains the following information:
 - the name of the provider,
 - the annotation "Data licence Germany attribution Version 2.0" or "dl-de/by-2-0" referring to the licence text available at www.govdata.de/dl-de/by-2-0, and
 - a reference to the dataset (URI).

This applies only if the entity keeping the data provides the pieces of information 1-3 for the source note.

(3) Changes, editing, new designs or other amendments must be marked as such in the source note. For more information on the license, visit https://www.govdata.de/dl-de/by-2-0.

Source

Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG).

Examples

```
data(sample_data_DESN025)
params <- load_params()
dt_prepared <- prepare_data_for_modelling(sample_data_DESN025, params)</pre>
```

scale_data

Standardize Training and Application Data

Description

This function standardizes numeric columns of the train_data and applies the same scaling (mean and standard deviation) to the corresponding columns in apply_data. It returns the standardized data along with the scaling parameters (means and standard deviations). This is particularly important for neural network approaches as they tend to be numerically unstable and deteriorate otherwise.

Usage

```
scale_data(train_data, apply_data)
```

Arguments

train_data A data frame containing the training dataset to be standardized. It must contain

numeric columns.

apply_data A data frame containing the dataset to which the scaling from train_data will

be applied.

Value

A list containing the following elements:

train The standardized training data.

apply The apply_data scaled using the means and standard deviations from the train_data.

means The means of the numeric columns in train_data.

sds The standard deviations of the numeric columns in train_data.

Examples

```
data(mock_env_data)
detrended_list <- list(
    train = mock_env_data[1:80, ],
    apply = mock_env_data[81:100, ]
)
scale_result <- scale_data(
    train_data = detrended_list$train,
    apply_data = detrended_list$apply
)
scaled_train <- scale_result$train
scaled_apply <- scale_result$apply</pre>
```

split_data_counterfactual

Split Data into Training and Application Datasets

Description

Splits prepared data into training and application datasets based on specified date ranges for a business-as-usual scenario. Data before application_start and after application_end is used as training data, while data within the date range is used for application.

Usage

```
split_data_counterfactual(dt_prepared, application_start, application_end)
```

Arguments

```
dt_prepared The prepared data table. application_start
```

The start date(date object) for the application period of the business-as-usual simulation. This coincides with the start of the reference window. Can be created by e.g. lubridate::ymd("20191201")

application_end

The end date(date object) for the application period of the business-as-usual simulation. This coincides with the end of the effect window. Can be created by e.g. lubridate::ymd("20191201")

Value

A list with two elements:

train Data outside the application period.

apply Data within the application period.

Examples

```
dt_prepared <- data.table::data.table(
   date = as.Date(c("2023-01-01", "2023-01-05", "2023-01-10")),
   value = c(50, 60, 70)
)
result <- split_data_counterfactual(
   dt_prepared,
   application_start = as.Date("2023-01-03"),
   application_end = as.Date("2023-01-08")
)
print(result$train)
print(result$apply)</pre>
```

Index

```
* datasets
    mock_env_data, 10
    sample_data_DESN025, 22
calc_performance_metrics, 2
calc_performance_metrics(), 6
calc_summary_statistics, 3
clean_data, 4
copy_default_params, 5
detrend, 6
detrend(), 15, 17
estimate_effect_size, 7
get_meteo_available, 8
lightgbm:lgb.train(), 20
load_params, 8
load_params(), 5
load_uba_data_from_dir, 9
mock_env_data, 10
plot_counterfactual, 11
plot_station_measurements, 12
prepare_data_for_modelling, 13
ranger:ranger(), 21
rescale_predictions, 14
retrend_predictions, 15
retrend_predictions(), 6, 17
run_counterfactual, 16
run_counterfactual(), 12, 18, 19, 21, 22
run_dynamic_regression, 17
run_dynamic_regression(), 17
run_fnn, 18
run_fnn(), 17
run\_lightgbm, 20
run_lightgbm(), 17
run_rf, 21
```