| Type: | Package | 
| Title: | Translation of Logit Regression Coefficients into Percentages | 
| Version: | 1.0.2 | 
| Imports: | nleqslv, nnet | 
| Description: | Translation of logit models coefficients into percentages, following Deauvieau (2010) <doi:10.1177/0759106309352586>. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| NeedsCompilation: | no | 
| Packaged: | 2025-09-05 07:59:44 UTC; nicolas | 
| Author: | Nicolas Robette [aut, cre] | 
| Maintainer: | Nicolas Robette <nicolas.robette@uvsq.fr> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-09-07 17:30:02 UTC | 
Music (data)
Description
The data concerns tastes for music of a set of 500 individuals. It contains 5 variables of likes for music genres (french pop, rap, rock, jazz and classical), 2 about music listening and 2 additional variables (gender and age).
Usage
data(Music)Format
A data frame with 500 observations and the following 7 variables:
- FrenchPop
- is a factor with levels - No,- Yes,- NA
- Rap
- is a factor with levels - No,- Yes,- NA
- Rock
- is a factor with levels - No,- Yes,- NA
- Jazz
- is a factor with levels - No,- Yes,- NA
- Classical
- is a factor with levels - No,- Yes,- NA
- Gender
- is a factor with levels - Men,- Women
- Age
- is a factor with levels - 15-24,- 25-49,- 50+
- OnlyMus
- is a factor with levels - Daily,- Often,- Rare,- Never, indicating how often one only listens to music.
- Daily
- is a factor with levels - No,- Yesindicating if one listens to music every day.
Details
'NA' stands for 'not available'
Examples
data(Music)
str(Music)
Translates logit regression coefficients into percentages
Description
Performs a logit regression and then computes the effects of covariates expressed in percentages (through two methods: 'pure' effects and 'experimental' effects; see Deauvieau, 2010)
Usage
translate.logit(formula,data,nit=0)Arguments
| formula | an object of class  | 
| data | a data frame containing the variables in the model. Every variables have to be factors. | 
| nit | number of bootstrap iterations for confidence interval computation. Default is 0, i.e. no confidence interval is computed. | 
Details
This function works with binomial as well as multinomial regression models. If the dependent variable has two factors, glm is used ; if it has more than two factors multinom function (from nnet package) is used.
The function expresses the regression coefficients as percentages through three distinct methods: raw percentages, 'pure effects' percentages and 'experimental effects' percentages (see Deauvieau, 2010).
Bootstrap confidence interval are available only for binomial regressions.
Value
The function returns a list:
| glm | An object of class  | 
| summary | The results of  | 
| percents | A matrix or a list of matrices (depending on the number of factors of the dependent variable) with regression coefficients expressed as percentages | 
| boot.ci | A matrix or a list of matrices (depending on the number of factors of the dependent variable) with confidence intervals computed with bootstrap | 
Author(s)
Nicolas Robette
References
Deauvieau, J. (2010), 'Comment traduire sous forme de probabilites les resultats d'une modelisation logit ?', Bulletin of Sociological Methodology / Bulletin de Methodologie Sociologique 105(1), 5-23.
Deauvieau, J. (2011), 'Est-il possible et souhaitable traduire sous forme de probabilites un coefficient logit ? Reponse aux remarques formulees par Marion Selz a propos de mon article paru dans le BMS en 2010', Bulletin of Sociological Methodology / Bulletin de Methodologie Sociologique 112(1), 32-42.
Deauvieau, J. (2019), 'Comparer les resultats d’un modele logit dichotomique ou polytomique entre plusieurs groupes a partir des probabilites estimees', Bulletin of Sociological Methodology / Bulletin de Methodologie Sociologique 142(1), 7-31.
See Also
Examples
  ## An example for binomial logit regression
  data(Music)
  translate.logit(Daily ~ Gender + Age, Music)
  ## An example for multinomial logit regression
  translate.logit(OnlyMus ~ Gender + Age, Music)