Informally test our various CV functions on the ISLR::Auto dataset using SRS-CV, clustered-CV, and stratified-CV.
(We are arbitrarily using year as either clusterID or stratumID.)
Just run the functions on a somewhat arbitrary dataset to ensure that the output format is what we’re looking for, and that the output is roughly consistent across the different functions that are doing the same thing.
tests directory, not a vignette.surveyCV appropriately on a real complex-survey dataset?library(surveyCV)
library(survey)
library(ISLR)data(Auto)
with(Auto, plot(horsepower, mpg, pch = '.'))cv.svy()# Test the general cv.svy() function
# The first line's results are usually around:
# linear lm:      mean=24.3, se=1.45
# quadratic lm:   mean=19.3, se=1.38
cv.svy(Auto, c("mpg~poly(horsepower,1, raw = TRUE)",
               "mpg~poly(horsepower,2, raw = TRUE)"),
       nfolds = 10)##            mean     SE
## .Model_1 24.071 1.8454
## .Model_2 19.173 1.7553cv.svy(Auto, c("mpg~poly(horsepower,1,raw=TRUE)",
               "mpg~poly(horsepower,2,raw=TRUE)"),
       nfolds = 10, clusterID = "year")##            mean     SE
## .Model_1 27.271 4.6104
## .Model_2 21.184 3.8695cv.svy(Auto, c("mpg~poly(horsepower,1, raw = TRUE)",
               "mpg~poly(horsepower,2, raw = TRUE)"),
       nfolds = 10, strataID = "year")##            mean     SE
## .Model_1 24.110 1.7364
## .Model_2 19.114 1.6673cv.svydesign()# Test the cv.svydesign() function, which takes a svydesign object and formulas
auto.srs.svy <- svydesign(ids = ~0,
                          data = Auto)## Warning in svydesign.default(ids = ~0, data = Auto): No weights or probabilities
## supplied, assuming equal probabilityauto.clus.svy <- svydesign(ids = ~year,
                           data = Auto)## Warning in svydesign.default(ids = ~year, data = Auto): No weights or
## probabilities supplied, assuming equal probabilityauto.strat.svy <- svydesign(ids = ~0,
                            strata = ~year,
                            data = Auto)## Warning in svydesign.default(ids = ~0, strata = ~year, data = Auto): No weights
## or probabilities supplied, assuming equal probabilitycv.svydesign(formulae = c("mpg~poly(horsepower,1, raw = TRUE)",
                          "mpg~poly(horsepower,2, raw = TRUE)",
                          "mpg~poly(horsepower,3, raw = TRUE)"),
             design_object = auto.srs.svy, nfolds = 10)##            mean     SE
## .Model_1 24.272 1.8579
## .Model_2 19.276 1.7724
## .Model_3 19.378 1.8126cv.svydesign(formulae = c("mpg~poly(horsepower,1, raw = TRUE)",
                          "mpg~poly(horsepower,2, raw = TRUE)",
                          "mpg~poly(horsepower,3, raw = TRUE)"),
             design_object = auto.clus.svy, nfolds = 10)##            mean     SE
## .Model_1 26.963 4.6224
## .Model_2 20.740 3.8867
## .Model_3 20.789 3.8934cv.svydesign(formulae = c("mpg~poly(horsepower,1, raw = TRUE)", 
                          "mpg~poly(horsepower,2, raw = TRUE)",
                          "mpg~poly(horsepower,3, raw = TRUE)"), 
             design_object = auto.strat.svy, nfolds = 10)##            mean     SE
## .Model_1 24.041 1.7297
## .Model_2 19.108 1.6763
## .Model_3 19.130 1.7104cv.svyglm()# Test the cv.svyglm() function, which takes one svyglm object
srs.model <- svyglm(mpg~horsepower+I(horsepower^2)+I(horsepower^3), design = auto.srs.svy)
clus.model <- svyglm(mpg~horsepower+I(horsepower^2)+I(horsepower^3), design = auto.clus.svy)
strat.model <- svyglm(mpg~horsepower+I(horsepower^2)+I(horsepower^3), design = auto.strat.svy)
cv.svyglm(glm = srs.model, nfolds = 10)##           mean     SE
## .Model_1 19.43 1.8208cv.svyglm(glm = clus.model, nfolds = 10)##            mean     SE
## .Model_1 20.625 3.8178cv.svyglm(glm = strat.model, nfolds = 10)##            mean     SE
## .Model_1 19.279 1.7197seed = 20210708
set.seed(seed)
cv.svy(Auto, "mpg~horsepower+I(horsepower^2)+I(horsepower^3)",
       nfolds = 10)##            mean     SE
## .Model_1 19.466 1.8254set.seed(seed)
cv.svydesign(formulae = "mpg~horsepower+I(horsepower^2)+I(horsepower^3)",
             design_object = auto.srs.svy, nfolds = 10)##            mean     SE
## .Model_1 19.466 1.8254srs.model <- svyglm(mpg~horsepower+I(horsepower^2)+I(horsepower^3), design = auto.srs.svy)
set.seed(seed)
cv.svyglm(glm = srs.model, nfolds = 10)##            mean     SE
## .Model_1 19.466 1.8254Auto$isAmerican <- Auto$origin == 1
with(Auto, plot(horsepower, isAmerican))cv.svy(Auto, c("isAmerican~horsepower",
               "isAmerican~horsepower+I(horsepower^2)",
               "isAmerican~horsepower+I(horsepower^2)+I(horsepower^3)"),
       nfolds = 10, method = "logistic")##             mean     SE
## .Model_1 0.50118 0.0231
## .Model_2 0.50184 0.0233
## .Model_3 0.49620 0.0245# Should stop early because method isn't linear or logistic
try(cv.svy(Auto, "mpg~horsepower+I(horsepower^2)+I(horsepower^3)",
           nfolds = 10,
           method = "abcde"))## Error in match.arg(method) : 'arg' should be one of "linear", "logistic"# Should try to run but crash because response variable isn't 0/1
try(cv.svy(Auto, "mpg~horsepower+I(horsepower^2)+I(horsepower^3)",
           nfolds = 10,
           method = "logistic"))## Error in eval(family$initialize) : y values must be 0 <= y <= 1