| Title: | Sigmoid Functions for Machine Learning | 
| Version: | 1.4.0 | 
| Description: | Several different sigmoid functions are implemented, including a wrapper function, SoftMax preprocessing and inverse functions. | 
| Depends: | R (≥ 3.2.2) | 
| Encoding: | UTF-8 | 
| License: | GPL-3 | 
| RoxygenNote: | 7.2.0 | 
| Suggests: | covr, knitr, rmarkdown, ggplot2, testthat | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | no | 
| Packaged: | 2022-06-18 14:22:15 UTC; bquast | 
| Author: | Bastiaan Quast [aut, cre] | 
| Maintainer: | Bastiaan Quast <bquast@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2022-06-18 14:40:02 UTC | 
Gompertz
Description
maps numeric vector using Gompertz function
Usage
Gompertz(x, a = 1, b = 1, c = 1)
Arguments
| x | input vector | 
| a | see details | 
| b | see details | 
| c | see details | 
SoftMax
Description
SoftMax preprocessing
Usage
SoftMax(x, lambda = 2)
Arguments
| x | input vector | 
| lambda | see details | 
SoftPlus
Description
maps numeric input vector using SoftPlus function
Usage
softplus(x)
Arguments
| x | input vector | 
Inverse Gompertz
Description
maps numeric vector using Gompertz function
Usage
inverse_Gompertz(x)
Arguments
| x | input vector Gompertz values | 
Leaky Rectified Linear Unit
Description
maps numeric vector using leaky ReLU function
Usage
leakyrelu(x)
Arguments
| x | input vector | 
Standard Logistic
Description
maps numeric vector using logistic function
Usage
logistic(x, k = 1, x0 = 0)
Arguments
| x | input vector | 
| k | see details | 
| x0 | see details | 
Logit
Description
maps numeric vector using logit function
Usage
logit(x)
Arguments
| x | input vector | 
Rectified Linear Unit
Description
maps numeric vector using ReLU function
Usage
relu(x)
Arguments
| x | input vector | 
ReLU Derivative
Description
Converts output of ReLU function to its derivative.
Usage
relu_output_to_derivative(x)
Arguments
| x | vector or ReLU values | 
Sigmoid
Description
computes sigmoid nonlinearity
Usage
sigmoid(
  x,
  method = c("logistic", "Gompertz", "tanh", "ReLU", "leakyReLU"),
  inverse = FALSE,
  SoftMax = FALSE,
  ...
)
Arguments
| x | numeric vector | 
| method | type of sigmoid function | 
| inverse | use the inverse of the method (reverses) | 
| SoftMax | use SoftMax preprocessing | 
| ... | arguments to pass on the method | 
Examples
# create input vector
a <- seq(-10,10)
# use sigmoid with default standard logistic
( b <- sigmoid(a) )
# show shape
plot(b)
# inverse
hist( a - sigmoid(b, inverse=TRUE) )
# with SoftMax
( c <- sigmoid(a, SoftMax=TRUE) )
# show difference
hist(b-c)
Sigmoid Derivative
Description
Convert output of sigmoid function to its derivative.
Usage
sigmoid_output_to_derivative(x)
Arguments
| x | vector of sigmoid values | 
SoftPlus Derivative
Description
Convert output of SoftPlus function to its derivative.
Usage
softplus_output_to_derivative(x)
Arguments
| x | vector of SoftPlus values | 
Tanh Derivative
Description
Convert output of tanh function to its derivative.
Usage
tanh_output_to_derivative(x)
Arguments
| x | vector of tanh values |