| Type: | Package | 
| Title: | The Self-Consistent, Competing Risks (SC-CR) Algorithms | 
| Version: | 2.1 | 
| Date: | 2020-12-11 | 
| Author: | Peter Adamic, Alicja Wolny-Dominiak | 
| Maintainer: | Alicja Wolny-Dominiak<woali@ue.katowice.pl> | 
| Description: | The SC-SR Algorithm is used to calculate fully non-parametric and self-consistent estimators of the cause-specific failure probabilities in the presence of interval-censoring and possible making of the failure cause in a competing risks environment. In the version 2.0 the function creating the probability matrix from double-censored data is added. | 
| Imports: | dplyr | 
| License: | GPL-2 | 
| NeedsCompilation: | no | 
| Packaged: | 2020-12-11 11:29:20 UTC; woali | 
| Depends: | R (≥ 3.5.0) | 
| Repository: | CRAN | 
| Date/Publication: | 2020-12-11 12:10:03 UTC | 
The Self-Consistent, Competing Risks (SC-CR) Algorithms
Description
The SC-SR Algorithm is used to calculate the cause-deleted life expectancy improvement for left and right censored data. In the version 2.0 the function creating the probability matrix from double-censored data is added.
Author(s)
Peter Adamic, Alicja Wolny-Dominiak Maintainer: <alicja.wolny-dominiak@ue.katowice.pl>
References
1. Adamic, P., Caron, S. (2014),
"SC-CR Algorithms with Informative Masking", 
Scandinavian Actuarial Journal, 2014(4), 339-351. 
2. Adamic, P., Dixon, S., Gillis, D. (2010), 
"Multiple Decrement Modeling in the Presence of Interval
Censoring and Masking", Scandinavian Actuarial Journal, 2010(4), 312-327. 
3. Adamic, P., Ouadah, S. (2009), 
"A Kernel Method for Modeling Interval Censored Competing
Risks", South African Statistical Journal, 43(1), 1-20. 
4. Turnbull, B. (1976). The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data, Journal of the Royal Statistical Society. Series B (Methodological), 38(3), 290-295.
The alpha matrix
Description
The matrix corresponding I_(ijy) function
Usage
alpha(data, tau)
Arguments
| data | input matrix of probabilities | 
| tau | the vector of time points corresponding to columns in input matrix | 
References
Adamic, P., Caron, S. (2014), "SC-CR Algorithms with Informative Masking", Scandinavian Actuarial Journal, 2014(4), 339-351.
Examples
data(censoredMatrix)
res <- inputM(censoredMatrix)
alpha(res$input, res$tau)
The double-censored data
Description
A data frame with 8 observations on the following 5 variables.
Format
- L
- a numeric vector 
- R
- a numeric vector 
- C1
- a numeric vector 
- C2
- a numeric vector 
- C3
- a numeric vector 
Examples
data(censoredMatrix)
str(censoredMatrix)
The probability matrix creator
Description
The function creating the probability matrix and tau time vector from the double-censored data.
Arguments
| data | censored data | 
Value
| input | the probability matrix | 
| tau | time tau | 
Author(s)
Alicja Wolny-Dominiak, Peter Adamic
Examples
data(censoredMatrix)
res <- inputM(censoredMatrix)
res$input
res$tau
Self-Consistent, Competing Risks (SC-CR) Algorithms
Description
This package describes an algorithm for producing fully non-parametric and self-consistent estimators of the cause-specific failure probabilities in the presence of interval-censoring and possible masking of the failure cause in a competing risks environment. It is a generalization of Turnbull's (1976) classic univariate algorithm. The algorithm was published in Adamic et al. (2010) and Adamic & Caron (2014).
Usage
survCompeting(data, tau, n, nc, epsilon)
Arguments
| data | input matrix of probabilities | 
| tau | the vector of time points corresponding to columns in input matrix | 
| n | the number of intervals in the dataset corresponding to rows in input matrix | 
| nc | the number of causes (competing risks) | 
| epsilon | small predermined value > 0 | 
Value
| Yj | estimated number at risk at time tau_j | 
| djc | estimated number of events occuring at time tau_j by cause c | 
| pjc | estimated probability for risk at time tau_j by cause c | 
| djList | the list of d_j for every cause c | 
| pjList | the list of p_j for every cause c | 
| pjListold | the list of p_j for every cause c in the (iter - 1) iteration | 
| iter | the number of iterations in the algorithm | 
Author(s)
Peter Adamic, Alicja Wolny-Dominiak
References
1. Adamic, P., Caron, S. (2014),
"SC-CR Algorithms with Informative Masking", 
Scandinavian Actuarial Journal, 2014(4), 339-351. 
2. Adamic, P., Dixon, S., Gillis, D. (2010), 
"Multiple Decrement Modeling in the Presence of Interval
Censoring and Masking", Scandinavian Actuarial Journal, 2010(4), 312-327. 
3. Adamic, P., Ouadah, S. (2009), 
"A Kernel Method for Modeling Interval Censored Competing
Risks", South African Statistical Journal, 43(1), 1-20. 
4. Turnbull, B. (1976). The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data, Journal of the Royal Statistical Society. Series B (Methodological), 38(3), 290-295.
Examples
data(censoredMatrix)
df <- inputM(censoredMatrix)
res <- survCompeting(df$input, df$tau, 8, 3, 0.01)
res
#summary
round(res$Yj, 2)
round(res$djc, 2)
round(res$pjc, 2)
res$iter
sum(unlist(res$pjList))
sum(unlist(res$pjListold))