Package 'nbconv'

July 22, 2025

Title Evaluate Arbitrary Negative Binomial Convolutions
Version 1.0.1
<pre>URL https://github.com/gbedwell/nbconv</pre>
<pre>BugReports https://github.com/gbedwell/nbconv/issues</pre>
Imports parallel, matrixStats, stats
Description Three distinct methods are implemented for evaluating the sums of arbitrary negative binomial distributions. These methods are: Furman's exact probability mass function (Furman (2007) <doi:10.1016 j.spl.2006.06.007="">), saddlepoint approximation, and a method of moments approximation. Functions are provided to calculate the density function, the distribution function and the quantile function of the convolutions in question given said evaluation methods. Functions for generating random deviates from negative binomial convolutions and for directly calculating the mean, variance, skewness, and excess kurtosis of said convolutions are also provided.</doi:10.1016>
Encoding UTF-8
RoxygenNote 7.2.0
License GPL (>= 3)
NeedsCompilation no
Author Gregory Bedwell [aut, cre, cph] (ORCID: https://orcid.org/0000-0003-0456-0032)
Maintainer Gregory Bedwell < gregoryjbedwell@gmail.com>
Repository CRAN
Date/Publication 2023-07-06 18:20:02 UTC
Contents
dnbconv 2 nbconv_params 3 nb_sum_exact 3 nb_sum_moments 4 nb_sum_saddlepoint 5 pnbconv 5

2 dnbconv

	qnbconv rnbconv																					
Index																						9
dnbc	onv		Pr	oba	ıbil	lity	m	as	s fi	ınc	ctio	on										

Description

Calculates the PMF for the convolution of arbitrary negative binomial random variables.

Usage

```
dnbconv(
  counts,
  mus,
  ps,
  phis,
  method = c("exact", "moments", "saddlepoint"),
  n.terms = 1000,
  n.cores = 1,
  tolerance = 0.001,
  normalize = TRUE
)
```

Arguments

counts	The counts over which the convolution is evaluated. Should be a vector.
mus	Vector of individual mean values
ps	Vector of individual probabilities of success.
phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
method	The method by which to evaluate the PMF. One of "exact", "moments", or "saddlepoint".
n.terms	The number of terms to include in the series for evaluating the PMF at a given number of counts. Defaults to 1000.
n.cores	The number of CPU cores to use in the evaluation. Allows parallelization.
tolerance	The acceptable difference between the sum of the K distribution and 1.
normalize	Boolean. If TRUE, the PMF is normalized to sum to 1.

Value

A numeric vector of probability densities.

```
dnbconv(counts = 0:500, mus = c(100, 10), phis = c(5, 8), method = "exact")
```

nbconv_params 3

nbconv_params

Summary statistics

Description

Calculates distribution parameters for the convolution of arbitrary negative binomial random variables.

Usage

```
nbconv_params(mus, phis, ps)
```

Arguments

mus Vector of individual mean values

phis Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.

ps Vector of individual probabilities of success.

Value

A named numeric vector of distribution parameters.

Examples

```
nbconv_params(mus = c(100, 10), phis = c(5, 8))
```

nb_sum_exact

Furman's PMF

Description

Implements Furman's exact PMF for the evaluation of the sum of arbitrary NB random variables. Called by other functions. Not intended to be run alone.

Usage

```
nb_sum_exact(phis, ps, n.terms = 1000, counts, n.cores = 1, tolerance = 0.001)
```

nb_sum_moments

Arguments

phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
ps	Vector of individual probabilities of success.
n.terms	The number of terms to include in the series for evaluating the PMF at a given number of counts. Defaults to 1000.
counts	The vector of counts over which the PMF is evaluated.

n. cores The number of CPU cores to use in the evaluation. Allows parallelization. tolerance The acceptable difference between the sum of the K distribution and 1.

Value

A numeric vector of probability densities.

Examples

```
nb_sum_exact(ps = c(0.05, 0.44), phis = c(5, 8), counts = 0:500)
```

Description

Implements the method of moments approximation for the sum of arbitrary NB random variables. Called by other functions. Not intended to be run alone.

Usage

```
nb_sum_moments(mus, phis, counts)
```

Arguments

mus Vector of individual mean values.

phis Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.

counts The vector of counts over which the PMF is evaluated.

Value

A numeric vector of probability densities.

```
nb_sum_moments(mus = c(100, 10), phis = c(5, 8), counts = 0:500)
```

nb_sum_saddlepoint 5

nb_sum_saddlepoint	Saddlepoint approximation

Description

Implements the saddlepoint approximation for the sum of arbitrary NB random variables. Called by other functions. Not intended to be run alone.

Usage

```
nb_sum_saddlepoint(mus, phis, counts, normalize = TRUE, n.cores = 1)
```

Arguments

mus	Vector of individual mean values.
phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
counts	The vector of counts over which the PMF is evaluated.
normalize	Boolean. If TRUE, the PMF is normalized to sum to 1.
n.cores	The number of CPU cores to use in the evaluation. Allows parallelization.

Details

Inspired by https://www.martinmodrak.cz/2019/06/20/approximate-densities-for-sums-of-variables-negative-binomials-and-saddlepoint/

Value

A numeric vector of probability densities.

Examples

```
nb_sum_saddlepoint(mus = c(100, 10), phis = c(5, 8), counts = 0:500)
```

pnbconv	Cumulative distribution function	

Description

Calculates the CDF for the convolution of arbitrary negative binomial random variables.

6 qnbconv

Usage

```
pnbconv(
  quants,
  mus,
  ps,
  phis,
  method = c("exact", "moments", "saddlepoint"),
  n.terms = 1000,
  n.cores = 1,
  tolerance = 0.001,
  normalize = TRUE
)
```

Arguments

quants	Vector of quantiles.
mus	Vector of individual mean values
ps	Vector of individual probabilities of success.
phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
method	The method by which to evaluate the PMF. One of "exact", "moments", or "saddlepoint".
n.terms	The number of terms to include in the series for evaluating the PMF at a given number of counts. Defaults to 1000.
n.cores	The number of CPU cores to use in the evaluation. Allows parallelization.
tolerance	The acceptable difference between the sum of the K distribution and 1.
normalize	Boolean. If TRUE, the PMF is normalized to sum to 1.

Value

A numeric vector of cumulative probability densities.

Examples

```
pnbconv(quants = 200, mus = c(100, 10), phis = c(5, 8), method = "exact")
```

Description

Calculates the quantile function for the convolution of arbitrary negative binomial random variables.

qnbconv 7

Usage

```
qnbconv(
  probs,
  counts,
  mus,
  ps,
  phis,
  method = c("exact", "moments", "saddlepoint"),
  n.terms = 1000,
  n.cores = 1,
  tolerance = 0.001,
  normalize = TRUE
)
```

Arguments

probs	Vector of target (cumulative) probabilities.
counts	Vector of counts over which the PMF is evaluated.
mus	Vector of individual mean values
ps	Vector of individual probabilities of success.
phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
method	The method by which to evaluate the PMF. One of "exact", "moments", or "saddlepoint".
n.terms	The number of terms to include in the series for evaluating the PMF at a given number of counts. Defaults to 1000 .
n.cores	The number of CPU cores to use in the evaluation. Allows parallelization.
tolerance	The acceptable difference between the sum of the K distribution and 1.
normalize	Boolean. If TRUE, the PMF is normalized to sum to 1.

Value

A numeric vector of quantiles.

```
qnbconv(probs = c(0.05, 0.25, 0.5, 0.75, 0.95), counts = 0:500, mus = c(100, 10), phis = c(5, 8), method = "exact")
```

8 rnbconv

rnbconv Random deviates	
-------------------------	--

Description

Generates random samples from the convolution of arbitrary negative binomial random variables.

Usage

```
rnbconv(mus, phis, ps, n.samp, n.cores = 1)
```

Arguments

mus	Vector of individual mean values
phis	Vector of individual dispersion parameters. Equivalent to 'size' in dnbinom.
ps	Vector of individual probabilities of success.
n.samp	The number of samples per distribution
n.cores	The number of CPU cores to use in the evaluation. Allows parallelization.

Value

A numeric vector of random deviates.

```
rnbconv(mus = c(100, 10), phis = c(5, 8), n.samp = 10)
```

Index

```
dnbconv, 2

nb_sum_exact, 3
nb_sum_moments, 4
nb_sum_saddlepoint, 5
nbconv_params, 3

pnbconv, 5

qnbconv, 6

rnbconv, 8
```