Title: | Pool Literature-Based and Individual Participant Data Based Spline Estimates |
Version: | 0.1.0 |
Author: | Tommi Härkänen [aut, cre] |
Maintainer: | Tommi Härkänen <tommi.harkanen@thl.fi> |
Depends: | R (≥ 4.2.0) |
Description: | Pooling estimates reported in meta-analyses (literature-based, LB) and estimates based on individual participant data (IPD) is not straight-forward as the details of the LB nonlinear function estimate are not usually reported. This package pools the nonlinear IPD dose-response estimates based on a natural cubic spline from lm or glm with the pointwise LB estimates and their estimated variances. Details will be presented in Härkänen, Tapanainen, Sares-Jäske, Männistö, Kaartinen and Paalanen (2025) "Novel pooling method for nonlinear cohort analysis and meta-analysis estimates: Predicting health outcomes based on climate-friendly diets" (under revision) https://journals.lww.com/epidem/pages/default.aspx. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Imports: | rlang, dplyr, tidyr, tibble, stringr, meta, optimization |
Suggests: | knitr, rmarkdown, splines2 |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2025-07-17 05:14:38 UTC; thah |
Repository: | CRAN |
Date/Publication: | 2025-07-21 08:50:02 UTC |
Title Pool meta-analysis estimates and estimates from a regression model.
Description
Title Pool meta-analysis estimates and estimates from a regression model.
Usage
pool_all_splines(v, meta.df, glm.res)
Arguments
v |
Name of the covariate, which is modeled using an nsk spline. |
meta.df |
Meta-analysis estimates: dataframe with columns variable (covariate name), est (log HR estimate), est.var (estimated variance) and cov.value (covariate values where est and est.var were reported). |
glm.res |
Regression analysis result object. |
Value
List containing pooled estimates of the spline parameters.
Examples
# Estimate a linear regression model using an individual participant data (IPD):
library(metasplines)
library(splines2)
res <- lm(
Petal.Width ~
Species +
nsk(Sepal.Length, Boundary.knots = c(4.5, 7.5), knots = c(5, 6, 6.5)),
data=iris)
# "Literature-based" (LB) estimates:
lb.df <- read.table(text=
"variable, cov.value, est, est.var
Sepal.Length, 4.5, 0, 0
Sepal.Length, 5, 0.15, 0.01
Sepal.Length, 5.5, 0.25, 0.01
Sepal.Length, 6, 0.4, 0.01
Sepal.Length, 6.5, 0.5, 0.01
Sepal.Length, 8, 0.25, 0.04
", sep=",", header=TRUE)
# Output table with the point estimates and the estimated variances:
pool_splines(v="Sepal.Length", meta.df=lb.df, glm.res=res)
Title Pool meta-analysis estimates and estimates from a regression model.
Description
Title Pool meta-analysis estimates and estimates from a regression model.
Usage
pool_splines(
v,
meta.df,
glm.res,
cor.m = NULL,
x.range = NULL,
full.output = FALSE
)
Arguments
v |
Name of the covariate, which is modeled using an |
meta.df |
Meta-analysis estimates: dataframe with columns |
glm.res |
Regression analysis result object. |
cor.m |
Assumed correlation matrix. If NULL (default) or NA then use correlation matrix from |
x.range |
If NULL (default), then take the range from |
full.output |
If TRUE then output also the log HR values and 95% confidence intervals over a grid of covariate values. |
Value
List containing pooled estimates of the spline parameters.