Package that provides the biggest amount of statistical measures in the whole R world!
Includes measures of regression, (multiclass) classification, clustering, survival and multilabel classification.
It is based on measures of mlr.
The development version
devtools::install_github("mlr-org/measures")The available measures can be looked up by
listAllMeasures()| function_name | description | task | 
|---|---|---|
| SSE | Sum of squared errors | regression | 
| MSE | Mean of squared errors | regression | 
| RMSE | Root mean squared error | regression | 
| MEDSE | Median of squared errors | regression | 
| SAE | Sum of absolute errors | regression | 
| MAE | Mean of absolute errors | regression | 
| MEDAE | Median of absolute errors | regression | 
| RSQ | Coefficient of determination | regression | 
| EXPVAR | Explained variance | regression | 
| ARSQ | Adjusted coefficient of determination | regression | 
| RRSE | Root relative squared error | regression | 
| RAE | Relative absolute error | regression | 
| MAPE | Mean absolute percentage error | regression | 
| MSLE | Mean squared logarithmic error | regression | 
| RMSLE | Root mean squared logarithmic error | regression | 
| KendallTau | Kendall’s tau | regression | 
| SpearmanRho | Spearman’s rho | regression | 
| AUC | Area under the curve | binary classification | 
| Brier | Brier score | binary classification | 
| BrierScaled | Brier scaled | binary classification | 
| BAC | Balanced accuracy | binary classification | 
| TP | True positives | binary classification | 
| TN | True negatives | binary classification | 
| FP | False positives | binary classification | 
| FN | False negatives | binary classification | 
| TPR | True positive rate | binary classification | 
| TNR | True negative rate | binary classification | 
| FPR | False positive rate | binary classification | 
| FNR | False negative rate | binary classification | 
| PPV | Positive predictive value | binary classification | 
| NPV | Negative predictive value | binary classification | 
| FDR | False discovery rate | binary classification | 
| MCC | Matthews correlation coefficient | binary classification | 
| F1 | F1 measure | binary classification | 
| GMEAN | G-mean | binary classification | 
| GPR | Geometric mean of precision and recall. | binary classification | 
| MMCE | Mean misclassification error | multiclass classification | 
| ACC | Accuracy | multiclass classification | 
| BER | Balanced error rate | multiclass classification | 
| multiclass.AUNU | Average 1 vs. rest multiclass AUC | multiclass classification | 
| multiclass.AUNP | Weighted average 1 vs. rest multiclass AUC | multiclass classification | 
| multiclass.AU1U | Average 1 vs. 1 multiclass AUC | multiclass classification | 
| multiclass.AU1P | Weighted average 1 vs. 1 multiclass AUC | multiclass classification | 
| multiclass.Brier | Multiclass Brier score | multiclass classification | 
| Logloss | Logarithmic loss | multiclass classification | 
| SSR | Spherical Scoring Rule | multiclass classification | 
| QSR | Quadratic Scoring Rule | multiclass classification | 
| LSR | Logarithmic Scoring Rule | multiclass classification | 
| KAPPA | Cohen’s kappa | multiclass classification | 
| WKAPPA | Mean quadratic weighted kappa | multiclass classification | 
| MultilabelHamloss | Hamming loss | multilabel | 
| MultilabelSubset01 | Subset-0-1 loss | multilabel | 
| MultilabelF1 | F1 measure (multilabel) | multilabel | 
| MultilabelACC | Accuracy (multilabel) | multilabel | 
| MultilabelPPV | Positive predictive value (multilabel) | multilabel | 
| MultilabelTPR | TPR (multilabel) | multilabel |