| Title: | Information-Theoretic Measures for Spatial Association | 
| Version: | 0.1.0 | 
| Description: | Leveraging information-theoretic measures like mutual information and v-measure to quantify spatial associations between patterns (Nowosad and Stepinski (2018) <doi:10.1080/13658816.2018.1511794>; Bai, H. et al. (2023) <doi:10.1080/24694452.2023.2223700>). | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.2 | 
| URL: | https://stscl.github.io/itmsa/, https://github.com/stscl/itmsa | 
| BugReports: | https://github.com/stscl/itmsa/issues | 
| Depends: | R (≥ 4.1.0) | 
| LinkingTo: | Rcpp, RcppThread | 
| Imports: | dplyr, purrr, sdsfun (≥ 0.6.0), sf | 
| Suggests: | knitr, Rcpp, RcppThread, readr, rmarkdown, tibble | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | yes | 
| Packaged: | 2024-12-22 14:12:03 UTC; dell | 
| Author: | Wenbo Lv | 
| Maintainer: | Wenbo Lv <lyu.geosocial@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-12-23 11:30:01 UTC | 
Information-Theoretic Measures for Spatial Association
Description
Information-Theoretic Measures for Spatial Association
Usage
itm(
  formula,
  data,
  method = c("vm", "icm"),
  beta = 1,
  unit = c("e", "2", "10"),
  seed = 42,
  permutation_number = 999
)
Arguments
| formula | A formula. | 
| data | A  | 
| method | (optional) whether  | 
| beta | (optional) The  | 
| unit | (optional) Logarithm base, default is  | 
| seed | (optional) Random number seed, default is  | 
| permutation_number | (optional) Number of Random Permutations, default is  | 
Value
A tibble.
Examples
sim = readr::read_csv(system.file('extdata/sim.csv',package = 'itmsa'))
# Information-theoretical V-measure
itm(z1 ~ z2, data = sim, method = 'vm')
# Information Consistency-Based Measures
itm(z1 ~ z2, data = sim, method = 'icm')