
Package ‘ironseed’
July 22, 2025

Title Improved Random Number Generator Seeding

Version 0.1.0

Description A procedure for seeding R's built in random number
generators using a variable-length sequence of values.
Accumulates input entropy into a 256-bit hash digest or ``ironseed''
and is able to generate a variable-length sequence of output seeds
from an ironseed.

License MIT + file LICENSE

Language en-US

Encoding UTF-8

RoxygenNote 7.3.2

Biarch TRUE

NeedsCompilation yes

URL https://github.com/reedacartwright/ironseed

BugReports https://github.com/reedacartwright/ironseed/issues

Suggests tinytest

Author Reed Cartwright [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0837-9380>)

Maintainer Reed Cartwright <racartwright@gmail.com>

Repository CRAN

Date/Publication 2025-07-11 08:40:02 UTC

Contents

ironseed . 2

Index 5

1

https://github.com/reedacartwright/ironseed
https://github.com/reedacartwright/ironseed/issues
https://orcid.org/0000-0002-0837-9380

2 ironseed

ironseed Ironseed: Improved Random Number Generator Seeding

Description

An ironseed is a 256-bit hash digest constructed from a variable-length input sequence and can
be used to generate a variable-length output sequence of seeds, including initializing R’s built-in
random number generator.

• ironseed() creates an ironseed from user supplied objects or automatically from multiple
sources of entropy on the local system. It also initializes R’s built-in random number generator
from an ironseed.

• create_seqseq() uses an ironseed to generate a sequence of 32-bit seeds.

• is_ironseed() tests whether an object is an ironseed, and is_ironseed_str() tests if it is
a string representing and ironseed.

• as_ironseed() casts an object to an ironseed, and parse_ironseed_str() parses a string
to an ironseed.

Usage

ironseed(..., set_seed = !has_random_seed(), quiet = FALSE)

create_seedseq(fe, n)

is_ironseed(x)

is_ironseed_str(x)

as_ironseed(x)

parse_ironseed_str(x)

Arguments

... objects

set_seed a logical indicating whether to initialize .Random.seed.

quiet a logical indicating whether to silence messages.

fe an ironseed

n a scalar integer specifying the number of seeds to generate

x a string, ironseed, or other object

ironseed 3

Details

Ironseeds have a specific string representation, e.g. "rBQSjhjYv1d-z8dfMATEicf-sw1NSWAvVDi-
bQaKSKKQmz1", where each element is a 64-bit number encoded in little-endian base58 format.

Parameter set_seed defaults to TRUE if .Random.seed does not already exist and FALSE otherwise.

Ironseed behaves differently depending on the number of arguments passed as

• 0 arguments: If initialization is enabled, ironseed() generates an automatic ironseed. Other-
wise, ironseed() returns the last ironseed used to initialize .Random.seed.

• 1 argument: ironseed(NULL) generates an automatic ironseed. For ironseed(x), if x is an
ironseed object, it is used as is. If x, is a scalar character that matches an ironseed string, it is
parsed to an ironseed. Otherwise, x hashed to create an ironseed.

• 2+ arguments: ironseed(x,y,...) hashes the arguments to create an ironseed.

An ironseed is a finite-entropy (or fixed-entropy) hash digest that can be used to generate an unlim-
ited sequence of seeds for initializing the state of a random number generator. It is inspired by the
work of M.E. O’Neill and others.

An ironseed is a 256-bit hash digest constructed from a variable-length sequence of 32-bit inputs.
Each ironseed consists of eight 32-bit sub-digests. The sub-digests are 32-bit multilinear hashes
that accumulate entropy from the input sequence. Each input is included in every sub-digest. The
coefficients for the multilinear hashes are generated by a Weyl sequence.

Multilinear hashes are also used to generate an output seed sequence from an ironseed. Each 32-bit
output value is generated by uniquely hashing the sub-digests. The coefficients for the output are
generated by a second Weyl sequence.

Value

An ironseed. If .Random.seed was initialized, the ironseed used will be returned invisibly.

References

• O’Neill (2015) Developing a seed_seq Alternative. https://www.pcg-random.org/posts/
developing-a-seed_seq-alternative.html

• O’Neill (2015) Simple Portable C++ Seed Entropy. https://www.pcg-random.org/posts/
simple-portable-cpp-seed-entropy.html

• O’Neill (2015) Random-Number Utilities. https://gist.github.com/imneme/540829265469e673d045

• Lemire and Kaser (2018) Strongly universal string hashing is fast. http://arxiv.org/pdf/
1202.4961

• Weyl Sequence https://en.wikipedia.org/wiki/Weyl_sequence

See Also

.Random.seed

https://www.pcg-random.org/posts/developing-a-seed_seq-alternative.html
https://www.pcg-random.org/posts/developing-a-seed_seq-alternative.html
https://www.pcg-random.org/posts/simple-portable-cpp-seed-entropy.html
https://www.pcg-random.org/posts/simple-portable-cpp-seed-entropy.html
https://gist.github.com/imneme/540829265469e673d045
http://arxiv.org/pdf/1202.4961
http://arxiv.org/pdf/1202.4961
https://en.wikipedia.org/wiki/Weyl_sequence

4 ironseed

Examples

Generate an ironseed with user supplied data
ironseed::ironseed("Experiment", 20251031, 1)

Generate an ironseed automatically and initialize `.Random.seed` with it
ironseed::ironseed(set_seed = TRUE)

Index

.Random.seed, 3

as_ironseed (ironseed), 2

create_seedseq (ironseed), 2

ironseed, 2
is_ironseed (ironseed), 2
is_ironseed_str (ironseed), 2

parse_ironseed_str (ironseed), 2

5

	ironseed
	Index

