
Package ‘ic.infer’
July 22, 2025

Title Inequality Constrained Inference in Linear Normal Situations

Version 1.1-7

Depends R(>= 2.5.0)

Imports quadprog, mvtnorm, boot, kappalab

Suggests relaimpo

Date 2023-10-04

Author Ulrike Groemping

Maintainer Ulrike Groemping <ulrike.groemping@bht-berlin.de>

Description Implements inequality constrained inference. This includes parameter estimation in nor-
mal (linear) models under linear equality and inequality constraints, as well as normal likeli-
hood ratio tests involving inequality-constrained hypotheses. For inequality-constrained lin-
ear models, averaging over R-squared for different orderings of regressors is also included.

License GPL (>= 2)

LazyLoad yes

URL https://prof.bht-berlin.de/groemping/

NeedsCompilation no

Repository CRAN

Date/Publication 2023-10-04 17:10:02 UTC

Contents
bodyfat . 2
contr.diff . 3
grades . 4
ic.est . 5
ic.infer . 7
ic.test . 9
ic.weights . 13
internal.functions . 15
make.mon.ui . 16
or.relimp . 18
orlm . 20

1

https://prof.bht-berlin.de/groemping/

2 bodyfat

Index 25

bodyfat Body fat data from Kutner et al. 2004

Description

Data set with three explanatory variables and response variable body fat for 20 healthy females aged
35-44

Usage

bodyfat

Format

A data frame with four columns:

Triceps triceps skinfold thickness

Thigh thigh circumference

Midarm midarm circumference

BodyFat body fat

Details

The data set contains three explanatory variables and the response variable body fat for 20 healthy
females aged 35-44. As the variable body fat is very expensive to obtain, predicting it with the
cheaper dimensional measurements is desirable. There is substantial multicollinearity among the
explanatory variables.

Author(s)

Ulrike Groemping, BHT Berlin

Source

Kutner,M., Nachtsheim,C., Neter J., Li, W. (2005, 5th Ed.). Applied Linear Statistical Models.
McGraw-Hill, New York.

Kutner,M., Nachtsheim,C., Neter J. (2004, 4th Ed.). Applied Linear Regression Models. McGraw-
Hill, New York.

The data are published on the accompanying CD-Roms of those books (Table 1 in Chapter 7) and
are also available online on the books homepages or from the UCLA website linked below. (Note
that earlier editions of the bood had Neter as first author and included Wasserman as author, but the
earlier editions do not have these data.)

contr.diff 3

References

UCLA: Statistical Consulting Group (without year). Applied Linear Statistical Models by Neter,
Kutner, et. al. Chapter 7: Multiple Regression II | SAS Textbook Examples. https://stats.
oarc.ucla.edu/sas/examples/alsm/applied-linear-statistical-models-by-neter-kutner-et-al-chapter-7-multiple-regression-ii/
(accessed October 04, 2023).

contr.diff Contrast function for factors with ordered values that yields increment
coefficients

Description

Function contr.diff is a contrast function for factors with ordered values. Coefficients for factors
formatted with contr.diff are the increments from the current level to the neighbouring lower
level.

Usage

contr.diff(n, contrasts = TRUE)

Arguments

n vector of levels or integer number of levels

contrasts logical indicating whether contrasts should be computed

Details

The design matrix for an ordered factor formatted with contr.diff consists of ones for the current
level itself and all lower levels. Thus, the estimated coefficients for each level are the estimated
differences to the next lower level.

With this coding, the matrix ui in functions of package ic.infer can be chosen as the identity matrix
for monotonicity constraints on the factor.

Value

a matrix with a row for each level and a column for each dummy variable (when applied to a factor
in a linear model).

Author(s)

Ulrike Groemping, BHT Berlin

See Also

See also ic.test, ic.est, orlm, contrasts for other contrast functions

https://stats.oarc.ucla.edu/sas/examples/alsm/applied-linear-statistical-models-by-neter-kutner-et-al-chapter-7-multiple-regression-ii/
https://stats.oarc.ucla.edu/sas/examples/alsm/applied-linear-statistical-models-by-neter-kutner-et-al-chapter-7-multiple-regression-ii/

4 grades

Examples

mu, Sigma and covariance matrix
means <- c(3,5,2,7)
contrast matrix
contr.diff(4)
design matrix
X <- cbind(rep(1,4),contr.diff(4))
estimated coefficients
solve(t(X)%*%X,t(X)%*%means)

grades Data set grades: Grade point averages by HSR and ACTC

Description

The data set contains first-year grade point averages (GPAs) from 2397 Iowa university first-years
who entered the university of Iowa as freshmen in the fall of 1978. The GPAs are separated out by
two ordinal variables with 9 categories each, High-School-Ranking percentiles and ACT Classifi-
cation.

Usage

grades

Format

A data frame with four columns:

HSR high-school-ranking percentiles

ACTC ACT classification (ACT is an organization that offers, among other things, college entrance
exams in the US; up to 1996, ACT stood for “American College Testing”.)

meanGPA grade point average for the HSR/ACTC combination

n sample size for the HSR/ACTC combination

Author(s)

Ulrike Groemping, BHT Berlin

Source

Robertson T, Wright F, Dykstra R (1988). Order-Restricted Inference. Wiley, New York. Table
1.3.1, p.13.

Thanks go to Wiley for granting a complimentary license for embedding the data into the package.

ic.est 5

ic.est Functions for order-restricted estimates and printing thereof

Description

Function ic.est estimates a mean vector under linear inequality constraints, functions print.orest and
summary.orest provide printed results in different degrees of detail.

Usage

ic.est(x, Sigma, ui, ci = NULL, index = 1:nrow(Sigma), meq = 0,
tol = sqrt(.Machine$double.eps))

S3 method for class 'orest'
print(x, digits = max(3, getOption("digits") - 3), scientific = FALSE, ...)
S3 method for class 'orest'
summary(object, display.unrestr = FALSE, brief = FALSE,

digits = max(3, getOption("digits") - 3), scientific = FALSE, ...)

Arguments

x for ic.est: unrestricted vector (e.g. mean of a sample of random vectors),
from which the expected value under linear inequality (and perhaps equality)
restrictions is to be estimated
for print.orest: object of class orest (normally produced by ic.est or orlm)

object for summary.orest: object of class orest (normally produced by ic.est or
orlm)

Sigma covariance or correlation matrix (or any multiple thereof) of x

ui matrix (or vector in case of one single restriction only) defining the left-hand
side of the restriction
ui%*%mu >= ci,
where mu is the expectation vector of x; the first few of these restrictions can be
declared equality- instead of inequality restrictions (cf. argument meq); if only
part of the elements of mu are subject to restrictions, the columns of ui can be
restricted to these elements, if their index numbers are provided in index

Rows of ui must be linearly independent; in case of linearly dependent rows
the function gives an error message with a hint which subset of rows is indepen-
dent. Note that the restrictions must define a (possibly translated) cone, i.e. e.g.
interval restrictions on a parameter are not permitted.
See contr.diff for examples of how to comfortably define various types of
restriction.

ci vector on the right-hand side of the restriction (cf. ui), defaults to a vector of
zeroes

index index numbers of the components of mu, which are subject to the specified
constraints as ui%*%mu[index] >= ci

6 ic.est

meq integer number (default 0) giving the number of rows of ui that are used for
equality restrictions instead of inequality restrictions.

tol numerical tolerance value; estimates closer to 0 than tol are set to exactly 0

digits number of digits to be used in printing

scientific if FALSE, suppresses scientific representation of numbers (default: FALSE)

... further arguments to print

display.unrestr

if TRUE, unrestricted estimate (i.e. object) is also displayed

brief if TRUE, suppress printing of restrictions; default: FALSE

Details

Function ic.est heavily relies on package quadprog for determining the optimizer. It is a conve-
nience wrapper for solve.QP from that package. The function is guaranteed to work appropriately
if the specified restrictions determine a (translated) cone. In that case, the estimate is the projection
along matrix Sigma onto one of the faces of that cone (including the interior as the face of the highest
dimension); this means that it minimizes the quadratic form t(x-b)%*%solve(Sigma,x-b) among
all b that satisfy the restrictions ui%*%b>=ci (or, if specified by meq, with the first meq restrictions
equality instead of inequality restrictions).

Value

Function ic.est outputs a list with the following elements:

b.unrestr x

b.restr restricted estimate

Sigma as input

ui as input

ci as input

restr.index index of components of mu, which are subject to the specified constraints as in
input index

meq as input

iact active restrictions, i.e. restrictions that are satisfied with equality in the solution,
as output by solve.QP

Author(s)

Ulrike Groemping, BHT Berlin

See Also

See also ic.test, ic.weights, orlm, solve.QP

ic.infer 7

Examples

different correlation structures
corr.plus <- matrix(c(1,0.9,0.9,1),2,2)
corr.null <- matrix(c(1,0,0,1),2,2)
corr.minus <- matrix(c(1,-0.9,-0.9,1),2,2)
unrestricted vectors
x1 <- c(1, -1)
x2 <- c(-1, -1)
x3 <- c(10, -1)
estimation under restriction non-negative orthant
or first element equal to 0, second non-negative
ice <- ic.est(x1, corr.plus, ui=diag(c(1,1)), ci=c(0,0))
ice
summary(ice)
ice2 <-ic.est(x1, corr.plus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
summary(ice2)
ic.est(x2, corr.plus, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x2, corr.plus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x3, corr.plus, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x3, corr.plus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x1, corr.null, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x1, corr.null, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x2, corr.null, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x2, corr.null, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x3, corr.null, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x3, corr.null, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x1, corr.minus, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x1, corr.minus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x2, corr.minus, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x2, corr.minus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
ic.est(x3, corr.minus, ui=diag(c(1,1)), ci=c(0,0))
ic.est(x3, corr.minus, ui=diag(c(1,1)), ci=c(0,0), meq=1)
estimation under one element restricted to being non-negative
ic.est(x3, corr.plus, ui=1, ci=0, index=1)
ic.est(x3, corr.plus, ui=1, ci=0, index=2)

ic.infer Package for inequality-constrained estimation and testing

Description

Package ic.infer implements estimation and testing for multivariate normal expectations with
linear equality- and inequality constraints. This also includes inference on linear models with linear
equality- and inequality constraints on the parameters. Decomposition of R-squared is also included
for these models.

Details

Function ic.est estimates the constrained expectation of a multivariate normal random vector,
function ic.test conducts related tests.

8 ic.infer

Function orlm estimates constrained parameters in normal linear models based on a linear model
object or a covariance matrix. The function offers the possibility of bootstrapping the estimates.
Tests and confidence intervals are provided by a summary function.

Function or.relimp decomposes the R^2-values analogously to metric lmg in package relaimpo
for unconstrained linear models. However, or.relimp is far less comfortable to use und subject to
severe limitations, since automatic selection of restrictions for sub models is not in all cases trivial.

The package makes use of various other R packages: quadprog is used for constrained estimation,
mvtnorm in calculation of weights for null distributions of test statistics, kappalab for averaging
over orderings in function or.relimp, and boot for bootstrapping.

The theory behind inequality-constrained estimation and testing as well as functionality of the
package are explained in a vignette (Link from within dynamic help: ../doc/ic.infer.pdf)
that is based on Groemping (2010). The vignette can also be opened from the command line by
vignette("ic.infer").

Value

The output of function ic.est belongs to S3 class orest.

The output of function ic.test belongs to S3 class ict.

The output of function orlm belongs to S3 classes orlm and orest.

All these classes offer print and summary methods.

The output of function or.relimp is a named vector.

Acknowledgements

This package uses as an internal function the function nchoosek from vsn, authored by Wolfgang
Huber, available under LGPL.

It also uses modifications of numerical routines that were provided by John Fox in R-help.

Thanks go to Wiley for permission of incorporating the grades data from Table 1.3.1 of Robertson,
Wright and Dykstra (1988) into the package.

Author(s)

Ulrike Groemping, BHT Berlin

References

Groemping, U. (2010). Inference With Linear Equality And Inequality Constraints Using R: The
Package ic.infer. Journal of Statistical Software, Forthcoming.

Kudo, A. (1963). A multivariate analogue of the one-sided test. Biometrika 50, 403–418

Robertson T, Wright F, Dykstra R (1988). Order-Restricted Inference. Wiley, New York.

Sasabuchi, S. (1980) A test of a multivariate normal mean with composite hypotheses determined
by linear inequalities. Biometrika 67, 429–429

Shapiro, A. (1988). Towards a unified theory of inequality-constrained testing in multivariate anal-
ysis. International Statistical Review 56, 49–62

Silvapulle, M.J. and Sen, P.K. (2004). Constrained Statistical Inference. Wiley, New York

../doc/ic.infer.pdf

ic.test 9

See Also

See also ic.est, ic.test, orlm, or.relimp, packages boot, kappalab, mvtnorm, quadprog,
and relaimpo

Examples

unrestricted linear model for grade point averages
limo <- lm(meanGPA~.-n, weights=n, data=grades)
summary(limo)
restricted linear model with restrictions that better HSR ranking
cannot deteriorate meanGPA
orlimo <- orlm(lm(meanGPA~.-n, weights=n, data=grades), index=2:9,

ui=make.mon.ui(grades$HSR))
summary(orlimo, brief=TRUE)

ic.test Function for testing inequality-related hypotheses for multivariate
normal random variables

Description

ic.test tests linear inequality hypotheses for multivariate normal means by likelihood ratio tests.
print and summary functions display results in different degrees of detail.

Usage

ic.test(obj, TP = 1, s2 = 1, df.error = Inf,
ui0.11 = diag(rep(1, length(obj$b.restr))),
ci0.11 = NULL, meq.alt = 0,
df = NULL, wt = NULL, tol=sqrt(.Machine$double.eps), ...)

S3 method for class 'ict'
print(x, digits = max(3, getOption("digits") - 3), scientific = FALSE, ...)
S3 method for class 'ict'
summary(object, brief = TRUE, digits = max(3, getOption("digits") - 3),

scientific = FALSE, tol=sqrt(.Machine$double.eps), ...)

Arguments

obj Object of class orest that contains unrestricted and restricted estimate, covari-
ance structure, and restriction;
for objects of class orlm (that inherit from class orest) information on s2 and
df.error is taken from obj (i.e. specifications of s2 and df.error in the call
to ic.test are ignored)

TP type of test problem, cf. details
s2 multiplier that modifies the matrix obj$Sigma into the (estimated) covariance

matrix of the unrestricted estimate; obj$Sigma may be a covariance matrix
(s2=1, default), a correlation matrix or an otherwise rescaled covariance ma-
trix (e.g. cov.unscaled from a linear model)

10 ic.test

df.error error degrees of freedom connected with estimation of s2 (e.g. residual df
from linear model); if df.error < Inf, the test is based on a mixture of beta-
distributions with parameters df/2 and df.error/2, otherwise the test is based
on a mixture of chi-square distributions with degrees of freedom in df.

ui0.11 matrix (or vector in case of one restriction only) for defining (additional) equal-
ity restrictions for TP 11 (in addition to restrictions in obj);
note that there must be as many columns as there are elements of vector b.restr
(no extra index vector taken);
if there is overlap between restrictions in ui0.11 and restrictions already present
in obj, restrictions already present in obj are projected out for ui0.11: for exam-
ple, the default choice for ui0.11 means that all elements of the expectation are
0; some of these restrictions may already be present in obj and are projected out
of ui0.11 by ic.test

ci0.11 right-hand-side vector for equality restrictions defined by ui0.11; so far, these
should be 0!

meq.alt number of equality restrictions (from beginning) that are maintained under the
alternative hypothesis (for TP21)

df optional vector of degrees of freedom for mixed chibar- or beta- distributions;
if omitted, degrees of freedom and weights are calculated; if given, must be
accompanied by corresponding wt

wt optional vector of weights for mixed chibar- or beta- distributions; if omitted,
weights are calculated using function ic.weights; if given, must be accompa-
nied by corresponding df (can be obtained from call to ic.weights or from
previous runs of ic.test

x output object from ict.test (of class ict)

tol numerical tolerance value; estimates closer to 0 than tol are set to exactly 0

... Further options, e.g. algorithm for ic.weights

digits number of digits to display

scientific if FALSE, suppresses scientific format; default: FALSE

object output object from ict.test (of class ict)

brief if TRUE, requests brief output without restrictions (default), otherwise restric-
tions are shown with indication, which are active

Details

The following test problems are implemented:

TP=1: H0: restrictions valid with equality vs. H1: at least one inequality

TP=2: H0: all restrictions true vs. H1: at least one restriction false

TP=3: H0: restrictions false vs. H1: restrictions true (with inequality)

TP=11: H0: restriction valid with equality and further linear equalities vs. H1: at least one equality
from H0 violated, restriction valid

TP=21: H0: restrictions valid (including some equality restrictions) vs. H1: at least one restriction
from H0 violated, some equality restrictions are maintained

ic.test 11

Note that TPs 1 and 11 can reject H0 even if H1 is violated by the data. Rejection of H0 does not
provide evidence for H1 (but only against H0) in these TPs because H1 is not the opposite of H0.
The tests concentrate their power in H1, but are only guaranteed to observe their level for the stated
H0.

Also note that TP 3 does not make sense if obj involves equality restrictions (obj$meq>0).

Under TPs 1, 2, 11, and 21, the distributions of test statistics are mixtures of chi-square distri-
butions (df.error=Inf) or beta-distributions (df.error finite) with different degrees of freedom
(chi-square) or parameter combinations (beta). Shapiro (1988) gives detailed information on the
mixing weights for the different scenarios. Basically, there are two different situations:

If meq=0, the weights are probabilities that a random variable with covariance matrix ui%*%cov%*%t(ui)
is realized in the positive orthant or its lower-dimensional faces, respectively (if ui has too few
columns, blow up by columns of 0s in appropriate positions) (Shapiro, formulae (5.5) or (5.10),
respectively).

If meq > 0 (but not all restrictions are equality restrictions), the weights are probabilities that a ran-
dom variable with covariance matrix the inverse of the lower right corner of solve(ui%*%cov%*%t(ui))
is realized in the positive orthant or its lower-dimensional faces, respectively (Shapiro, formula
(5.9)).

These weights must then be combined with the appropriate degrees of freedom - these can be
worked out by realizing that either the null hypothesis or the alternative hypothesis has fixed di-
mension and the respective mixing degrees of freedom are obtained by taking the difference to the
dimension of the respective other hypothesis, which is correct because - given a certain dimension
of the inequality-restricted estimate, the inequality-restricted estimate is a projection onto a linear
space of that dimension.

The test for TP 3 (cf. e.g. Sasabuchi 1980) is based on the intersection-union principle and simply
obtains its p-value as the maximum p-value from testing the individual restrictions.

Value

object of class ict, which is a list containing elements

TP test problem identifier (cf. argument TP)

b.unrestr unrestricted estimate

b.restr restricted estimate

ui restriction matrix, LHS

ci restriction vector, RHS

restr.index elements of mean referred to by ui and ci

meq number of equality restrictions (first meq rows of ui), meq must not exceed
nrow(ui)-1

iact row numbers of active restrictions (all equality restrictions plus inequality re-
strictions that are met with equality by the solution b.restr)

ui.extra additional restrictions for TP=11, calculated from input parameter ui0.11 by
projecting out restrictions present in ui and - if necessary - omitting linearly
dependent rows

b.eqrestr equality-restrected estimate for TP=1

12 ic.test

b.extra.restr estimate for null hypothesis of TP=11

T test statistic

p.value p-value

s2 input parameter

cov matrix with s2*cov equal to covariance matrix of unrestricted estimate

df.error input parameter

df.bar vector of degrees of freedom for test statistic distribution, cf. also input param-
eter df

wt.bar vector of weights for test statistic distribution, cf. also input parameter wt

Note

Package versions up to 1.1-4 had a bug that caused p-values for TP=11 to be too large.

Author(s)

Ulrike Groemping, BHT Berlin

References

Sasabuchi, S. (1980) A test of a multivariate normal mean with composite hypotheses determined
by linear inequalities. Biometrika 67, 429–429

Shapiro, A. (1988) Towards a unified theory of inequality-constrained testing in multivariate analy-
sis. International Statistical Review 56, 49–62

See Also

See also ic.est, ic.weights

Examples

corr.plus <- matrix(c(1,0.5,0.5,1),2,2)
corr.null <- matrix(c(1,0,0,1),2,2)
corr.minus <- matrix(c(1,-0.5,-0.5,1),2,2)
unrestricted vectors
x1 <- c(1, 1)
x2 <- c(-1, 1)
ict1 <- ic.test(ic.est(x1, corr.plus, ui=diag(c(1,1)), ci=c(0,0)))
ict1
summary(ict1)
ic.test(ic.est(x1, corr.plus, ui=diag(c(1,1)), ci=c(0,0)), s2=1, df.error=10)
ic.test(ic.est(x1, corr.minus, ui=diag(c(1,1)), ci=c(0,0)))
ic.test(ic.est(x1, corr.minus, ui=diag(c(1,1)), ci=c(0,0)), s2=1, df.error=10)
ic.test(ic.est(x2, corr.plus, ui=diag(c(1,1)), ci=c(0,0)))
ic.test(ic.est(x2, corr.plus, ui=diag(c(1,1)), ci=c(0,0)), s2=1, df.error=10)
ic.test(ic.est(x2, corr.minus, ui=diag(c(1,1)), ci=c(0,0)))
ic.test(ic.est(x2, corr.minus, ui=diag(c(1,1)), ci=c(0,0)), s2=1, df.error=10)

ict2 <- ic.test(ic.est(x2, corr.plus, ui=diag(c(1,1)), ci=c(0,0)),TP=2)

ic.weights 13

summary(ict2)
ict3 <- ic.test(ic.est(x1, corr.plus, ui=diag(c(1,1)), ci=c(0,0)),TP=3)
summary(ict3)

ict11 <- ic.test(ic.est(x1, corr.plus, ui=c(1,1), ci=0),TP=11, ui0.11 =c(1,0))
summary(ict11)

larger example
corr.plus <- diag(1,8)
for (i in 1:7)

for (j in (i+1):8)
corr.plus[i,j] <- corr.plus[j,i] <- 0.5

u <- rbind(rep(1,6), c(-1,-1,-1,1,1,1), c(-1,0,1,0,0,0), c(0,0,0,-1,0,1))
ice <- ic.est(c(rep(1,4),rep(4,4)), corr.plus, ui=u, ci=rep(0,4), index=2:7, meq = 1)
ict1 <- ic.test(ice,TP=1)
summary(ict1)
ict2 <- ic.test(ice,TP=2)
summary(ict2)
ict11 <- ic.test(ice,TP=11)
summary(ict11,digits=3)
ice <- ic.est(c(rep(1,4),rep(4,4)), corr.plus, ui=u, ci=rep(0,4), index=2:7)
ict3 <- ic.test(ice, TP=3)
summary(ict3)

ic.weights functions for calculating the distributions of normal distribution
order-related likelihood ratio tests

Description

Test statistics of normal distribution-based order-related likelihood ratio tests are often distributed
as mixtures of chi-square or beta-distributions with different parameters. These functions determine
the mixing weights and the cumulative distribution functions based on these. They can be directly
used and are called by function ic.test.

Usage

ic.weights(corr, ...)
pchibar(x, df, wt)
pbetabar(x, df1, df2, wt)

Arguments

corr corr is the correlation or covariance matrix (or any multiple thereof) of the data
or coefficients for which weights are to be calculated

... . . . contains further arguments to be given to function pmvnorm of package mvtnorm
for calculating multivariate normal rectangle probabilities; it is possible to select
an algorithm (default in current version of mvtnorm: algorithm = GenzBretz())
and to tune weight accuracy by modifying including additional parameters into
the algorithm specification, cf. help for GenzBretz

14 ic.weights

x x is the quantile for which the distribution function is to be calculated

df is the vector of the degrees of freedom for the chi-square distributions that are
mixed into the chibar-square-distribution with the proportions given in wt

wt each element of wt is the mixing weight of the chi-square distribution with df as
in the corresponding element of df; such weights can be calculated with function
ic.weights

df1 vector of first parameters of the beta-distributions to be mixed into the betabar-
distribution

df2 second parameter of the beta-distributions to be mixed into the betabar-distribution;
error degrees of freedom in the tests implemented for linear models in sum-
mary.orlm;
NOTE: see details for the (perhaps unexpected) constancy of df2

Details

Function ic.weights uses results by Kudo (1963) regarding the calculation of the weights. The
weights are the probabilities that the projection along its covariance onto the non-negative orthant of
a multivariate normal random vector with expectation 0 and correlation corr lies in faces of dimen-
sions nrow(corr):1 (in this order). It is known that these probabilities coincide with various other
useful probabilities related to order-related hypothesis testing, cf. e.g. Shapiro (1988). Calculation
of the weights involves various calls to function pmvnorm from package mvtnorm.

Functions pchibar (taken from package ibdreg) and pbetabar calculate cumulative probabilities
from mixtures of chi-square and beta-distributions, respectively.
IMPORTANT: Contrary to likelihood ratio theory in linear models, the beta distributions mixed
always use the error sum of squares from the unrestricted model, i.e. the smallest possible error sum
of squares with a fixed no. of df. Therefore, the second df entry is not increased when decreasing the
first! This is appropriate for the test statistics calculated by functions ic.test or summary.orlm,
but not necessarily for test statistics obtained elsewhere.

Value

ic.weights returns the vector of weights, pchibar and pchibar return the cumulative probability
of the respective distribution. Function ic.weights relies on package mvtnorm for determining
multivariate normal rectangle probabilities. Note that these calculations involve Monte Carlo steps
so that these weights are not completely repeatable.

Author(s)

Ulrike Groemping, BHT Berlin

References

Kudo, A. (1963) A multivariate analogue of the one-sided test. Biometrika 50, 403–418

Shapiro, A. (1988) Towards a unified theory of inequality-constrained testing in multivariate analy-
sis. International Statistical Review 56, 49–62

Silvapulle, M.J. and Sen, P.K. (2004) Constrained Statistical Inference. Wiley, New York

internal.functions 15

See Also

ic.test, orlm, pmvnorm, GenzBretz

Examples

z <- 0.5
corr <- matrix(c(1,0.9,0.9,1),2,2)
print(wt.plus <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.plus)
1-pbetabar(T/(T+10),2:0,10,wt.plus)
corr <- matrix(c(1,0,0,1),2,2)
print(wt.0 <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.0)
1-pbetabar(T/(T+10),2:0,10,wt.0)
corr <- matrix(c(1,-0.9,-0.9,1),2,2)
print(wt.minus <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.minus)
1-pbetabar(T/(T+10),2:0,10,wt.minus)

internal.functions internal functions not intended for the user

Description

nchoosek is originally taken from package vsn by Wolfgang Huber, GaussianElimination and RREF
have been provided by John Fox in R-help and have been modified by the author to provide more
output

Usage

nchoosek(n, k) ## not exported, calculates all combinations
GaussianElimination(A, B, tol=sqrt(.Machine$double.eps),

verbose=FALSE) ## not exported
RREF(X, ...) ## not exported, calculates reduced Echelon form

Arguments

n number of elements to choose from
k number of elements to choose
A argument to GaussianElimination

B argument to GaussianElimination

tol argument to GaussianElimination

verbose argument to GaussianElimination

X matrix to be reduced to reduced Echelon form
... further arguments to GaussianElimination

16 make.mon.ui

Value

nchoosek returns all subsets of size k, for GaussianElimination and RREF cf. comments in code.
The latter are used for reducing a matrix with less than full row rank to a set of linearly independent
rows.

Author(s)

Ulrike Groemping, BHT Berlin, based on code by John Fox and Wolfgang Huber

See Also

ic.test, orlm

Examples

z <- 0.5
corr <- matrix(c(1,0.9,0.9,1),2,2)
print(wt.plus <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.plus)
1-pbetabar(T/(T+10),2:0,10,wt.plus)
corr <- matrix(c(1,0,0,1),2,2)
print(wt.0 <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.0)
1-pbetabar(T/(T+10),2:0,10,wt.0)
corr <- matrix(c(1,-0.9,-0.9,1),2,2)
print(wt.minus <- ic.weights(corr))
T <- c(z,z)%*%solve(corr,c(z,z))
1-pchibar(T,2:0,wt.minus)
1-pbetabar(T/(T+10),2:0,10,wt.minus)

make.mon.ui Function for creating the matrix ui for monotonicity (in)equality re-
strictions

Description

Function make.mon.ui creates the matrix ui for a factor, depending on its coding.

Usage

make.mon.ui(x, type = "coeff", contr = NULL)

make.mon.ui 17

Arguments

x an R factor (in case of type = "coeff") or the dimension of the multivariate
normal distribution (in case of type = "mean")

type the situation for which ui is needed: can be coeff for coefficients in a linear
model or mean for the expectation vector of a multivariate normal distribution

contr relevant in case of type = "coeff" only, ignored otherwise;
the contrast with which x is coded;
if the contrasts attribute of x is a character string, contr = NULL uses this char-
acter string, otherwise contr = NULL is identical to contr = "contr.treatment".
Explicit choices for contr can be any of contr.treatment, contr.SAS, contr.diff
and contr.sum) (must be given in quotes).
The other generally-available codings (contr.helmert and contr.poly) do not
easily permit conclusions about monotonicity.
If the value for contr is not compatible with the factors coding, an error is
thrown.

Details

The function determines the matrix ui as needed for the functions in packge ic.infer, when a
monotone increase from first to last level of the x is under investigation (type = "coeff") or
when a monotone increase among the components of the expectation vector is investigated (type =
"mean"). The respective monotone decrease can be accomodated by -make.mon.ui().

If the coding of the factor x is explicitly given, the function throws an error if the actual coding does
not correspond to the specified value of contr.

Care is needed when using make.mon.ui with a linear model: It is the users responsibility to make
sure that the coding used in the model corresponds to the coding used in make.mon.ui.

Value

a square matrix with as many rows and columns as there are dummy variables for the factor

Author(s)

Ulrike Groemping, BHT Berlin

See Also

See also contrasts for how to apply contrasts, contrast for the available contrasts in package
stats, contr.diff for the specific monotonicity contrast function from this package.

Examples

gifte <- boot::poisons ## gifte is German for poisons
default: contr.treatment (with default base 1)
linmod <- lm(1/time~poison+treat, gifte)
summary(orlm(linmod, ui=make.mon.ui(gifte$poison), index=2:3))

next: contr.diff

18 or.relimp

contrasts(gifte$poison) <- "contr.diff"
linmod <- lm(1/time~poison+treat, gifte)
summary(orlm(linmod, ui=make.mon.ui(gifte$poison), index=2:3))

next: contr.SAS
contrasts(gifte$poison) <- "contr.SAS"
linmod <- lm(1/time~poison+treat, gifte)
summary(orlm(linmod, ui=make.mon.ui(gifte$poison), index=2:3))

next: contr.sum
contrasts(gifte$poison) <- "contr.sum"
linmod <- lm(1/time~poison+treat, gifte)
summary(orlm(linmod, ui=make.mon.ui(gifte$poison), index=2:3))

or.relimp Function to calculate relative importance for order-restricted linear
models

Description

The function calculates relative importance by averaging over the variables R-squared contributions
from all orderings of variables for linear models with inequality restrictions on the parameters.
NOTE: only useful if each restriction refers to exactly one variable, or if it is adequate to reduce
multi-variable restrictions by omitting the affected variables but leaving the restriction otherwise
intact.

Usage

or.relimp(model, ui, ci = NULL, ...)
S3 method for class 'lm'
or.relimp(model, ui, ci = NULL, index = 2:length(coef(model)), meq = 0,

tol = sqrt(.Machine$double.eps), ...)

Default S3 method:
or.relimp(model, ui, ci = NULL, index = 2:ncol(model), meq = 0,

tol = sqrt(.Machine$double.eps), ...)

all.R2(covmat, ui, ci = NULL, index = 2:ncol(covmat), meq = 0,
tol = sqrt(.Machine$double.eps), ...)
user does not need to call this function

Arguments

model a linear model object of class lm with data included; for function or.relimp, all
explanatory variables must be numeric (i.e. no factors), and higher-order terms
(e.g. interactions) are not permitted.

or.relimp 19

OR
the covariance matrix of the response (first position) and all regressors

covmat the covariance matrix of the response (first position) and all regressors

ui cf. explanation in link{orlm}; cf. also details below

ci cf. explanation in link{orlm}

index cf. explanation in link{orlm}

meq cf. explanation in link{orlm}

tol cf. explanation in link{orlm}

... Further options

Details

Function or.relimp uses function all.R2 for calculating the R-squared values of all subsets that
are subsequently handed to function Shapley.value (from package kappalab), which takes care
of the averaging over ordering.

WARNING: In models with subsets of the regressors, the columns of the matrix ui referring to
regressors outside the current subset are simply deleted for the sub model. This is only reasonable
if either the individual constraints refer to individual parameters only (e.g. all parameters restricted
to be non-negative) or if the constraints are still reasonable in the sub model with some variables
deleted, e.g. perhaps (depending on the application) sum of all parameters less or equal to 1.

WARNING: If the number of regressors (p) is large, the functions quickly becomes unmanageable
(a vector of size 2^p is returned or handled in the process.

Value

all.R2 returns a vector (2^p elements) with all R-squared values (p is the number of regressors,
vector is ordered from empty to full model in natural order (cf. ic.infer:::nchoosek for the
order within one model size).

or.relimp returns a vector (p elements) with average R-squared contributions from all models with
respective subset of restrictions ui %*% beta >= ci enforced.

Author(s)

Ulrike Groemping, BHT Berlin

See Also

See also orlm for order-restricted linear models and calc.relimp from R-package relaimpo for a
much more comfortable and much faster routine for unrestricted linear models

Examples

covswiss <- cov(swiss)
all R2-values for restricted linear model with restrictions that
Catholic and Infant.Mortality have non-negative coefficients
R2s <- all.R2(covswiss, ui=rbind(c(0,0,0,1,0),c(0,0,0,0,1)))
R2s

20 orlm

require(kappalab) ## directly using package kappalab
Shapley.value(set.func(R2s))

with convenience wrapper from this package
or.relimp(covswiss, ui=rbind(c(0,0,0,1,0),c(0,0,0,0,1)))

also works on linear models
limo <- lm(swiss)
#or.relimp(limo, ui=rbind(c(0,0,0,1,0),c(0,0,0,0,1)))

same model using index vector
or.relimp(limo, ui=rbind(c(1,0),c(0,1)), index=5:6)

orlm Functions for order restricted linear regression estimation and testing

Description

Function orlm calculates order-restricted linear models (linear equality and inequality constraints).
It uses the internal function boot.orlm for bootstrapping, which in turn uses the internal functions
orlm_forboot... . The remaining functions extract coefficients, provide a residual plot, give a short
printout or a more extensive summary.

Usage

orlm(model, ui, ci, ...)
S3 method for class 'lm'
orlm(model, ui, ci, index = 2:length(coef(model)), meq = 0,

orig.out = FALSE, boot = FALSE, B = 1000, fixed = FALSE,
tol = sqrt(.Machine$double.eps), ...)

Default S3 method:
orlm(model, ui, ci, index = NULL, meq = 0,

tol = sqrt(.Machine$double.eps), df.error = NULL, ...)
boot.orlm(model, B = 1000, fixed = FALSE, ui, ci, index, meq)
orlm_forboot.fixed(data, indices, ...)
orlm_forboot(data, indices, index = index, ...)
S3 method for class 'orlm'
coef(object, ...)
S3 method for class 'orlm'
plot(x, caption = "Residuals vs Fitted",

panel = if (add.smooth) panel.smooth else points, sub.caption = NULL,
main = "", ..., id.n = 3, labels.id = names(x$residuals), cex.id = 0.75,
add.smooth = getOption("add.smooth"), label.pos = c(4, 2),
cex.caption = 1)

S3 method for class 'orlm'
print(x, digits = max(3, getOption("digits") - 3), ...)

orlm 21

S3 method for class 'orlm'
summary(object, display.unrestr = FALSE, brief = FALSE,

digits = max(3, getOption("digits") - 3),
scientific = FALSE, overall.tests = TRUE,
bootCIs = TRUE, bty = "perc", level = 0.95, ...)

Arguments

model a linear model object (class lm) with data included
OR
a covariance matrix of Y and all regressors (in this order)

ui matrix (or vector in case of one single restriction only) defining the left-hand
side of the restriction
ui%*%beta >= ci,
where beta is the parameter vector; the first few of these restrictions can be
declared equality- instead of inequality restrictions (cf. argument meq); if only
part of the elements of beta are subject to restrictions, the columns of ui can
be restricted to these elements, if their index numbers are provided in index;
by default, index excludes the intercept, i.e. the columns of ui refer to the
non-intercept elements of coef(model)
Rows of ui must be linearly independent; in case of linearly dependent rows
the function gives an error message with a hint which subset of rows is indepen-
dent. Note that the restrictions must define a (possibly translated) cone, i.e. e.g.
interval restrictions on a parameter are not permitted.
See contr.diff for examples of how to comfortably define various types of
restriction.

ci vector on the right-hand side of the restriction (cf. ui)

index index numbers of the components of beta, which are subject to the specified con-
straints as ui%*%beta[index] >= ci, default is index = 2:length(coef(model)),
i.e. ui is supposed to have columns for all coefficients except the intercept;
CAUTIONs:
- index refers to the position of the coefficient in the model. The first coef-
ficient is usually the intercept (which is therefore per default excluded from
restrictions).
- If the intercept is included into restrictions (model with intercept, index con-
taining the element 1, intercept-related column of ui not consisting of zeroes
only), R-squared values may become unreasonable, if the restriction on the in-
tercept is active.

meq integer number (default 0) giving the number of rows of ui that are used for
equality restrictions instead of inequality restrictions.

orig.out should the original model be included in the output list ? (default: FALSE)

boot should bootstrapping be conducted ? (default: FALSE)

B number of bootstrap samples (default: 1000)

fixed should bootstrapping consider the sample as fixed and bootstrap residuals ? (de-
fault: FALSE)

22 orlm

data data handed to bootstrap sampling routine

indices indices for sampling

tol numerical tolerance value; estimates closer to 0 than tol are set to exactly 0

df.error error degrees of freedom (number of observations minus number of colummns
of covariance matrix) for orlm.default; required in order to calculate adequate
covariance matrix and tests; valid coefficient estimates can also be obtained for
arbitrary values of df.error

... Further options

object object of class orlm (created by function orlm)

x object of class orlm (created by function orlm)

caption like in function plot.lm

panel like in function plot.lm

sub.caption like in function plot.lm

main like in function plot.lm

id.n like in function plot.lm

labels.id like in function plot.lm

cex.id like in function plot.lm

add.smooth like in function plot.lm

label.pos like in function plot.lm

cex.caption like in function plot.lm

digits number of digits to display
display.unrestr

if TRUE, also display unrestricted model; default: FALSE

brief if TRUE, suppress printing of restrictions; default: FALSE

scientific if FALSE, suppresses scientific format; default: FALSE

overall.tests if FALSE, suppresses output of overall model tests; default: TRUE; for models
with large sets of restrictions, tests can take up substantial time because of
weight calculation

bootCIs if FALSE, suppresses bootstrap confidence intervals, even though the obj con-
tains a bootout element; default: TRUE

bty type of bootstrap confidence interval; any of "perc", "bca", "norm" or "basic",
cf. function boot.ci from package boot, default: "perc"

level confidence level for bootstrap confidence intervals, default: 0.95

Details

Function orlm performs order restricted linear model analysis. Functions coef.orlm, plot.orlm,
print.orlm, and summary.orlm provide methods for reporting the results on an object of S3 class
orlm. The functions directly referring to bootstrapping are internal and should not be called by the
user but are called from within function orlm if option boot is set to TRUE.

orlm 23

Of course, bootstrapping is not possible, if function orlm is applied to a covariance matrix, since the
raw data are not available in this case. Also note that the intercept is not estimated in this case but
can easily be estimated from the resulting estimate if the variable means are known (cf. example).

The output from summary.orlm provides information about the restrictions, a comparison of R^2-
values for unrestricted and restricted model, restricted estimates, and

- if requested (option boot set to TRUE in function orlm and option bootCIs set to TRUE in the
summary function) with bootstrap confidence intervals,

- if requested (option overall.tests set to TRUE) several restriction-related tests (implemented by
calls to ic.test): The analogue to the overall F-Test in the ordinary linear model is the test of all
coefficients but intercept equal to 0 within the restricted parameter space. In addition, three tests
related to the restriction are reported:

Test 1: H0: Restriction valid with equality vs. H1: at least one inequality

Test 2: H0: Restriction valid vs. H1: restriction violated

Test 3: H0: Restriction violated or valid with equality vs. H1: all restrictions valid with inequality

Test 3 is conducted in case of no equality-restrictions only.

Value

The output of function orlm belongs to S3 classes orlm and orest. It is a list with the following
items:

b.restr restricted estimate

b.unrestr unrestricted estimate

R2 R-squared

residuals residuals of restricted model

fitted.values fitted values of restricted model

weights observation weights

orig.R2 R-squared of unrestricted model

df.error error degrees of freedom of unrestricted model

s2 MSE of unrestricted model

Sigma variance covariance matrix of beta-hat in unrestricted model

origmodel unrestricted model itself (NULL, if orig.out=FALSE)

ui as input

ci as input

restr.index the input vector index

meq as input

iact active restrictions, i.e. restrictions that are satisfied with equality in the solution,
as output by solve.QP

bootout object of class boot obtained by bootstrapping, will be used by summary.orlm
for calculating bootstrap confidence intervals; NULL if boot=FALSE

24 orlm

Note

Package versions up to 1.1-4 had a bug in function ic.test that caused the p-value of the overall
model test to be too large.

Author(s)

Ulrike Groemping, BHT Berlin

References

Shapiro, A. (1988) Towards a unified theory of inequality-constrained testing in multivariate analy-
sis. International Statistical Review 56, 49–62

See Also

See also ic.est, ic.test, or.relimp, solve.QP

Examples

limo <- lm(swiss)
restricted linear model with restrictions that
- Education and Examination have same coefficient
- Catholic and Infant.Mortality have non-negative coefficients
orlimo <- orlm(limo, ui=rbind(c(0,1,-1,0,0),c(0,0,0,1,0),c(0,0,0,0,1)), meq=1)
orlimo
plot(orlimo)
summary(orlimo)
same model using index vector
orlimo <- orlm(limo, ui=rbind(c(1,-1,0,0),c(0,0,1,0),c(0,0,0,1)), index=3:6, meq=1)

reduced number of bootstrap samples below reasonable size for example run time
orlimo <- orlm(limo, ui=rbind(c(1,-1,0,0),c(0,0,1,0),c(0,0,0,1)),

index=3:6, meq=1, boot=TRUE, B=100)
summary(orlimo)

bootstrap considering data as fixed
orlimof <- orlm(limo, ui=rbind(c(1,-1,0,0),c(0,0,1,0),c(0,0,0,1)),

index=3:6, meq=1, boot=TRUE, B=100, fixed=TRUE)
summary(orlimof, brief=TRUE)

Index

∗ datasets
bodyfat, 2
grades, 4

∗ htest
ic.infer, 7
ic.test, 9
orlm, 20

∗ models
ic.infer, 7
or.relimp, 18
orlm, 20

∗ multivariate
contr.diff, 3
ic.est, 5
ic.infer, 7
ic.test, 9
ic.weights, 13
internal.functions, 15
make.mon.ui, 16
or.relimp, 18
orlm, 20

∗ optimize
contr.diff, 3
ic.est, 5
make.mon.ui, 16

∗ regression
ic.infer, 7
or.relimp, 18
orlm, 20

all.R2 (or.relimp), 18

bodyfat, 2
boot.orlm (orlm), 20

coef.orlm (orlm), 20
contr.diff, 3, 5, 17, 21
contrast, 17
contrasts, 3, 17

GaussianElimination
(internal.functions), 15

grades, 4

ic.est, 3, 5, 9, 12, 24
ic.infer, 7
ic.infer-package (ic.infer), 7
ic.test, 3, 6, 9, 9, 15, 16, 24
ic.weights, 6, 10, 12, 13
internal.functions, 15

make.mon.ui, 16

nchoosek (internal.functions), 15

or.relimp, 9, 18, 24
orlm, 3, 6, 9, 15, 16, 19, 20
orlm_forboot (orlm), 20

pbetabar (ic.weights), 13
pchibar (ic.weights), 13
plot.lm, 22
plot.orlm (orlm), 20
print.ict (ic.test), 9
print.orest (ic.est), 5
print.orlm (orlm), 20

RREF (internal.functions), 15

summary.ict (ic.test), 9
summary.orest (ic.est), 5
summary.orlm (orlm), 20

25

	bodyfat
	contr.diff
	grades
	ic.est
	ic.infer
	ic.test
	ic.weights
	internal.functions
	make.mon.ui
	or.relimp
	orlm
	Index

