Package 'hydra'

July 22, 2025

Type Package
Title Hyperbolic Embedding
Version 0.1.0
Author Martin Keller-Ressel
Maintainer Martin Keller-Ressel <martin.keller-ressel@tu-dresden.de>
Description Calculate an optimal embedding of a set of data points into low-dimensional hyperbolic space. This uses the strain-minimizing hyperbolic embedding of Keller-Ressel and Nargang (2019), see <doi:10.48550/arXiv.1903.08977>.
Suggests igraph, igraphdata, Matrix, RSpectra
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN

Date/Publication 2019-04-04 16:10:07 UTC

Contents

Index

hydra	. 2
hydraPlus	. 4
karate	. 6
plot.hydra	. 6
	8

hydra

Description

Implements the HYDRA (hyperbolic distance recovery and approximation) method for embedding high-dimensional data points (represented by their distance matrix D) into low-dimensional hyperbolic space.

Usage

```
hydra(D, dim = 2, curvature = 1, alpha = 1.1, equi.adj = 0.5,
    control = list())
```

Arguments

D	a square symmetric matrix of distances (or dissimiliarities) to be embdedded, can also be a dist object
dim	embedding dimension
curvature	embedding curvature; if this argument is NULL, hydra tries to find the optimal curvature
alpha	real number greater one; adjusts the hyperbolic curvature. Values larger than one yield a more distorted embedding where points are pushed to the outer boundary (i.e. the ideal points) of hyperblic space. The interaction between curvature and alpha is non-linear.
equi.adj	equi-angular adjustment; must be a real number between zero and one; only used if dim is 2. Value 0 means no ajustment, 1 adjusts embedded data points such that their angular coordinates in the Poincare disc are uniformly distributed. Other values interpolate between the two extremes. Setting the parameter to non-zero values can make the embedding result look more harmoniuous in plots.
control	a list which may contain the following boolean flags:
	• polar - return polar coordinates in dimension 2 (default: TRUE if dim is 2. This flag is ignored in higher dimension)
	• isotropic.adj - perform isotropic adjustment, ignoring Eigenvalues (default: TRUE if dim is 2, FALSE else)
	• return.lorentz - return raw Lorentz coordinates (before projection to hyper- bolic space) (default: FALSE)
	• return.stress - return embedding stress (default: TRUE)
	• return.dist - return hyperbolic distance matrix of embedded points (default: FALSE)
	• use.eigs - use eigs function from RSpectra and norm function from Ma - trix to speed up computation (default: FALSE)

hydra

Details

See https://arxiv.org/abs/1903.08977 for more details.

Value

A 'hydra' object, which is a list with all or some of the following components:

- r a vector containing the radial coordinates of the embedded points
- directional a matrix with dim columns containing as rows the directional coordinates of the embedded points
- **theta** a vector containing the angular coordinates of the embedded points (only returned if dim is 2 and polar flag is TRUE)
- curvature the curvature used for the returned embedding
- dim the dimension used for the returned embedding
- **stress** the stress (i.e. the mean-square difference) between distances supplied in D and the hyperbolic distance matrix of the returned embedding
- **dist** the hyperbolic distance matrix of the returned embedding (only returned if flag return.dist is true. Computation may be time- and memory-intensive.)
- **x0** a vector containing the 'time-like' coordinate of the raw Lorentz embedding (only returned if flag return.lorentz is true)
- X a matrix with dim columns containing as rows the 'space-like' coordinate of the raw Lorentz embedding (only returned if flag return.lorentz is true)

Author(s)

Martin Keller-Ressel <martin.keller-ressel@tu-dresden.de>

Examples

```
data(karate)
embedding <- hydra(karate$distance)
plot(embedding,labels=karate$label,lab.col=karate$group,graph.adj=karate$adjacency)</pre>
```

```
## Compare with Multidimensional scaling (MDS):
mds <- cmdscale(karate$distance) # Compute Euclidean embedding with MDS
mds.stress <- sqrt(sum((as.matrix(dist(mds)) - karate$distance)^2)) # Calculate embedding stress
c(embedding$stress,mds.stress) # Compare hyperbolic with Euclidean stress</pre>
```

```
hydraPlus
```

Description

Runs the hydra method and then performs a further optimization step by minimizing the stress of the embedding and optimizing hyperbolic curvature

Usage

```
hydraPlus(D, dim = 2, curvature = 1, alpha = 1.1, equi.adj = 0.5,
control = list(), curvature.bias = 1, curvature.freeze = TRUE,
curvature.max = NULL, maxit = 1000, ...)
```

Arguments

D	a square symmetric matrix of distances (or dissimiliarities) to be embdedded, can also be a dist object
dim	embedding dimension
curvature	embedding curvature; if this argument is NULL, hydra tries to find the optimal curvature
alpha	real number greater one; adjusts the hyperbolic curvature. Values larger than one yield a more distorted embedding where points are pushed to the outer boundary (i.e. the ideal points) of hyperblic space. The interaction between curvature and alpha is non-linear.
equi.adj	equi-angular adjustment; must be a real number between zero and one; only used if dim is 2. Value 0 means no ajustment, 1 adjusts embedded data points such that their angular coordinates in the Poincare disc are uniformly distributed. Other values interpolate between the two extremes. Setting the parameter to non-zero values can make the embedding result look more harmoniuous in plots.
control	a list which may contain the following boolean flags:
	• polar - return polar coordinates in dimension 2 (default: TRUE if dim is 2. This flag is ignored in higher dimension)
	• isotropic.adj - perform isotropic adjustment, ignoring Eigenvalues (default: TRUE if dim is 2, FALSE else)
	• return.lorentz - return raw Lorentz coordinates (before projection to hyper- bolic space) (default: FALSE)
	• return.stress - return embedding stress (default: TRUE)
	• return.dist - return hyperbolic distance matrix of embedded points (default: FALSE)
	• use.eigs - use eigs function from RSpectra and norm function from Ma- trix to speed up computation (default: FALSE)

curvature.bias Modify curvature before stress minimization by multiplying with curvature.bias

hydraPlus

curvature.freeze		
	Freeze the curvature returned by hydra. If TRUE then no optimization of curva- ture is attempted in the second stage of the algorithm. If FALSE then curvature is optimized in the second stage	
curvature.max	Upper bound for the curvature. If NULL, a defulat bound is used	
maxit	Maximal number of iterations. This parameter is passed to the optimization routine \ensuremath{optim}	
	Additional parameters are passed to ${\tt optim}, {\tt which}$ performs the underlying stress minimization	

Details

See https://arxiv.org/abs/1903.08977 for more details.

Value

A 'hydra' object, which is a list with all or some of the following components:

- **r** a vector containing the radial coordinates of the embedded points
- directional a matrix with dim columns containing as rows the directional coordinates of the embedded points
- **theta** a vector containing the angular coordinates of the embedded points (only returned if dim is 2 and polar flag is TRUE)
- curvature the curvature used for the returned embedding
- dim the dimension used for the returned embedding
- **stress** the stress (i.e. the mean-square difference) between distances supplied in D and the hyperbolic distance matrix of the returned embedding
- **dist** the hyperbolic distance matrix of the returned embedding (only returned if flag return.dist is true. Computation may be time- and memory-intensive.)
- **x0** a vector containing the 'time-like' coordinate of the raw Lorentz embedding (only returned if flag return.lorentz is true)
- X a matrix with dim columns containing as rows the 'space-like' coordinate of the raw Lorentz embedding (only returned if flag return.lorentz is true)

Author(s)

Martin Keller-Ressel <martin.keller-ressel@tu-dresden.de>

Examples

```
data(karate)
embedding <- hydraPlus(karate$distance)
plot(embedding,labels=karate$label,node.col=karate$group,graph.adj=karate$adjacency)</pre>
```

karate

Description

The social network of a university karate club described in the paper "An Information Flow Model for Conflict and Fission in Small Groups" by Wayne W. Zachary.

Edges indicate social interactions between members

Usage

data(karate)

Format

A list with the elements:

adjacency The adjacency matrix of the karate club network

distances The shortest-path distance between nodes

labels Node labels. 'A' and 'H' are John A. and Mr. Hi, who led the two groups after the split of the club

group The two groups after the split

plot.hydra

Plot a hyperbolic embedding

Description

Plot a two-dimensional hyperbolic embedding as returned by hydra in the Poincare disc

Usage

```
## S3 method for class 'hydra'
plot(x, labels = NULL, node.col = 1, pch = NULL,
graph.adj = NULL, crop.disc = TRUE, shrink.disc = FALSE,
disc.col = "grey90", rotation = 0, mark.center = 0,
mark.angles = 0, mildify = 3, cex = 1, ...)
```

plot.hydra

Arguments

х	a hydra object as returned by hydra with dimension dim equal 2
labels	character labels for the embedded points, supplied as a vector. NULL triggers default values
node.col	colors for the labels and/or points, supplied as a vector. NULL triggers default values. See 'Color Specification' in par for details
pch	plotting 'characters' for the embedded points. supplied as a vector. NULL trig- gers default values. See points for details
graph.adj	a graph adjacency matrix that is used to plot links between the embedded points (links are drawn for all non-zero elements of graph.adj)
crop.disc	should the Poincare disc be cropped or fully shown? Defaults to TRUE
shrink.disc	if true, the Poincare disc is shrunk to tightly fit all plotted points. Defaults to FALSE
disc.col	color of the Poincare disc. Set to "white" to hide disc
rotation	rotate points by this angle (specified in degrees) around the center of the Poincare disc
mark.center	Should a cross be placed at the center of the disc? If 0, nothing is drawn. Other values specify the relative size of the cross mark.
mark.angles	Should the angular coordinates of points be marked at the boundary of the disc? If 0, nothing is drawn. Other values specify the relative size of the angle marks.
mildify	large values reduce the curvature of links. Values around 3 are visually most appealing. Setting mildify to 1 shows the true hyperbolic curvature
cex	character expansion for labels and points, supplied as a numerical vector. See also ${\tt points}$
	all other parameters are passed on as additional graphical parameters (see par)

Author(s)

Martin Keller-Ressel <martin.keller-ressel@tu-dresden.de>

Examples

Index

dist, 2, 4 eigs, 2, 4 hydra, 2, 4–7 hydraPlus, 4 karate, 6 norm, 2, 4 optim, 5 par, 7 plot.hydra, 6 points, 7