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extrapol.gev Spatial extrapolation of GEV parameters with the HKEVP

Description

Predictive distributions of the GEV parameters at a set of ungauged sites (targets), given the output
from the MCMC procedures hkevp.fit or latent.fit. See details.

Usage

extrapol.gev(fit, targets, targets.covariates)

Arguments

fit Output from the hkevp.fit procedure.

targets A matrix of real values giving the spatial coordinates of the ungauged positions.
Each row corresponds to an ungauged position.

targets.covariates

A matrix of real values giving the spatial covariates of the ungauged positions.
Must match with the covariates used in hkevp.fit or latent.fit.

Details

Since the GEV parameters are modelled with latent Gaussian processes, spatial extrapolation of the
marginal distributions at target positions (s∗1, ..., s

∗
k) is performed with simple kriging. Estimation

is done at each MCMC step to produce a sample of the predictive distribution.

Value

A named list of three elements: loc, scale, shape. Each one is a matrix with columns correspond-
ing to targets positions.

Author(s)

Quentin Sebille

See Also

extrapol.return.level
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Examples

# Simulation of HKEVP:
sites <- as.matrix(expand.grid(1:3,1:3))
loc <- sites[,1]*10
scale <- 3
shape <- 0
alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, sites, sites, loc, scale, shape, alpha, tau)

# HKEVP fit:
fit <- hkevp.fit(ysim, sites, niter = 1000)

## Extrapolation:
targets <- matrix(1.5, 1, 2)
gev.targets <- extrapol.gev(fit, targets)

## True vs predicted:
predicted <- sapply(gev.targets, median)
sd.predict <- sapply(gev.targets, sd)
true <- c(targets[,1]*10, scale, shape)
# cbind(true, predicted, sd.predict)

extrapol.return.level Spatial extrapolation of a return level.

Description

Predictive distribution of a T-years return level at ungauged positions (targets), given the output
from the MCMC procedures hkevp.fit or latent.fit.

Usage

extrapol.return.level(period, fit, targets, targets.covariates)

Arguments

period An integer indicating the wished return period T.

fit Output from the hkevp.fit procedure.

targets A matrix of real values giving the spatial coordinates of the ungauged positions.
Each row corresponds to an ungauged position.

targets.covariates

A matrix of real values giving the spatial covariates of the ungauged positions.
Must match with the covariates used in hkevp.fit or latent.fit.
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Details

Spatial extrapolation of the return level at target positions (s∗1, ..., s
∗
k) is a two-step procedure:

• Estimation of the predictive distribution for GEV parameters at (s∗1, ..., s
∗
k), by using {extrapol.gev}.

• Computation of the associated return level for each state of the predictive distribution.

Value

A matrix of predictive sample. Each column corresponds to a target position and each row to a
predictive draw.

Author(s)

Quentin Sebille

See Also

extrapol.gev

Examples

# Simulation of HKEVP:
sites <- as.matrix(expand.grid(1:3,1:3))
knots <- sites
loc <- sites[,1]*10
scale <- 1
shape <- .2
alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, sites, knots, loc, scale, shape, alpha, tau)

# HKEVP fit:
fit <- hkevp.fit(ysim, sites, niter = 1000)

## Extrapolation of the 100-years return level (may need more iterations and burn-in/nthin):
targets <- as.matrix(expand.grid(1.5:2.5,1.5:2.5))
pred.sample <- extrapol.return.level(100, fit, targets)
pred.mean <- apply(pred.sample, 2, mean)
pred.sd <- apply(pred.sample, 2, sd)
true <- return.level(100, targets[,1]*10, scale, shape)
# cbind(true, pred.mean, pred.sd)
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hkevp A hierarchical model for spatial extreme values

Description

The HKEVP of Reich and Shaby (2012) is a hierarchical model which can be fitted on point-
referenced block maxima across a region of space. Its acronym stands for Hierarchical Kernel
Extreme Value Model.

This model fits both marginal GEV parameters and a conditional spatial dependence structure in
a Bayesian framework. Estimation of all parameters is performed with a Metropolis-within-Gibbs
algorithm that returns samples of posterior distributions, given prior distributions and data. See
details.

Simulation and fitting procedure for this model are provided along with several other tools such
as spatial extrapolation and conditional simulation, which is used for instance in Shaby and Reich
(2012).

A particular simpler case of the HKEVP, defined in Davison et al. (2012), is also available. This
model, referred as the latent variable model, assumes conditional independence of the block maxima
data (i.e. no dependence structure).

Spatial modelling of extreme values with general max-stable proceses is taken care of in other R
libraries such as RandomFields and SpatialExtremes.

Details

The functions included in hkevp package are listed below:

1. hkevp.fit (resp. latent.fit): fits the HKEVP (resp. the latent variable model) to spatial
block maxima data.

2. hkevp.rand: simulates data from the HKEVP.

3. hkevp.expmeasure: computes the exponent measure of the HKEVP. See details below.

4. mcmc.fun: applies a function to the main Markov chains obtained by hkevp.fit. Useful to
compute the posterior means or quantiles for instance.

5. mcmc.plot: plots the resulting Markov chains, in order to visually assess convergence.

6. extrapol.gev (resp. extrapol.return.level) : computes the predictive distribution of the
GEV parameters (resp. a return level) at ungauged positions.

7. hkevp.predict: predictive distribution of the spatial process at ungauged stes with the HKEVP
given observations.

The HKEVP of Reich and Shaby (2012) is a hierarchical spatial max-stable model for extreme
values. Max-stable models arise as the limiting distribution of renormalized maxima of stochastic
processes and they generalize the Extreme Value Theory (EVT) to the infinite-dimensional case.
For more information about EVT and max-stable processes, see for instance Beirlant et al. (2004),
de Haan and Ferreira (2006) and Coles (2001). For an emphasis on statistical inference on spatial
extremes, see for instance Cooley et al. (2012) and Davison et al. (2012).
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Let Y (·) be the process of block maxima recorded over a spatial region. Assume this process is
max-stable, then all marginal distributions are necessarily GEV, i.e:

Y (s) ∼ GEV {µ(s), σ(s), ξ(s)}

with location, scale and shape parameters µ(s), σ(s) and ξ(s) respectively, indexed by position
s in space. Without loss of generality, one may look at the simple max-stable process Z(·) with
GEV (1, 1, 1) margins, where spatial dependence is contained unconditionally of the marginals.

The HKEVP is thus defined by assuming that there exists α ∈ (0, 1] and a set of knots {v1, ..., vL}
with associated kernels {ω1(·), ..., ωL(·)} such that:

Z(s) = U(s)θ(s)

where U(s) is a spatially-independent process with GEV (1, α, α) margins and

θ(s) =

[
L∑

ℓ=1

Aℓωℓ(s)
1/α

]α

is the residual dependence process, defined with a random variable Aℓ ∼ PS(α), the positive
stable distribution with characteristic exponent α. Note that the kernels must satisfy the condition∑L

ℓ=1 ωℓ(s) = 1, for all s.

Under those assumptions, Reich and Shaby (2012) showed that this model lead to an explicit for-
mula for the distribution of a joint vector of maxima, which is not the case for max-stable processes
since no general parametric representation exists (cf. de Haan and Ferreira (2006) ). The joint dis-
tribution of the vector {Z(s1), . . . , Z(sn)} under the HKEVP assumptions can indeed be written:

P{Z1(s1) < z1, . . . , Zn(sn) < zn} =

L∑
ℓ=1

[
n∑

i=1

(
ωℓ(si)

zi

)1/α
]α

.

The HKEVP can be seen as an approximation of the Smith (1990) model, but with an additional
dependence parameter α which controls the strength of spatial dependence. Low value for α leads
to a strong dependence structure while α = 1 means independence.

In the article of Reich and Shaby (2012), the kernels are chosen to be standardized Gaussian kernels,
i.e:

ωℓ(s) =
K(sℓ|vℓ, τ)∑L
j=1 K(sj |vj , τ)

,

where K(·|v, τ) is the Gaussian kernel centered at vℓ and τ is a bandwidth parameter.

Conditionally on the marginal and the dependence parameters, we obtain independent responses
which allow the computation of the likelihood. Since the model is structured via multiple layers,
Bayesian inference is preferred. Details of the MCMC algorithm can be found in Reich and Shaby
(2012).

Marginal parameters µ(s), σ(s) and ξ(s) are modelled through latent Gaussian processes.

A simpler version of the HKEVP, namely the latent variable model of Davison et al. (2012), is also
available in this package. This model assumes conditional independence and can therefore be seen
as a special case of the HKEVP, with the condition α = 1.
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Note

I would like to thank Brian Reich and Benjamin Shaby for their help regarding the implementation
of the inference procedure of the HKEVP, and Mathieu Ribatet for introducing me to the Bayesian
world. I also acknowledge Electricite de France (EDF) for the financial support and the helpful
discussions around the HKEVP with Anne Dutfoy, Marie Gallois, Thi Thu Huong Hoang and Sylvie
Parey. Finally, I thank my two PhD supervisors Anne-Laure Fougeres and Cecile Mercadier for their
reviews of this package.

Author(s)

Quentin Sebille

References

Beirlant, J., Goegebeur, Y., Segers, J. J. J., & Teugels, J. (2004). Statistics of Extremes: Theory and
Applications. <DOI:10.1002/0470012382>

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Science &
Business Media. <10.1007/978-1-4471-3675-0>

Cooley, D., Cisewski, J., Erhardt, R. J., Jeon, S., Mannshardt, E., Omolo, B. O., & Sun, Y. (2012).
A survey of spatial extremes: Measuring spatial dependence and modeling spatial effects. Revstat,
10(1), 135-165.

Davison, A. C., Padoan, S. A., & Ribatet, M. (2012). Statistical modeling of spatial extremes.
Statistical Science, 27(2), 161-186. <DOI:10.1214/11-STS376>

de Haan, L., & Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer Science &
Business Media. <DOI:10.1007/0-387-34471-3>

Reich, B. J., & Shaby, B. A. (2012). A hierarchical max-stable spatial model for extreme precipita-
tion. The annals of applied statistics, 6(4), 1430. <DOI:10.1214/12-AOAS591>

Shaby, B. A., & Reich, B. J. (2012). Bayesian spatial extreme value analysis to assess the changing
risk of concurrent high temperatures across large portions of European cropland. Environmetrics,
23(8), 638-648. <DOI:10.1002/env.2178>

Smith, R. L. (1990). Max-stable processes and spatial extremes. Unpublished manuscript.

hkevp.expmeasure Exponent measure of the HKEVP

Description

Exponent measure V (z1, ..., zn) of the HKEVP of Reich and Shaby (2012), with given model pa-
rameters or output from hkevp.fit or latent.fit.

Usage

hkevp.expmeasure(z, sites, knots, alpha, tau, fit)
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Arguments

z The vector (z1, ..., zn) where the exponent measure is computed. Can be of
length one and thus corresponds then to (z, ..., z).

sites The coordinates of the sites where the data are observed. Each row correspond
to a site position.

knots The coordinates of the knots in the HKEVP. By default, the positions of the
knots coincide with the positions of the sites.

alpha The dependence parameter α of the HKEVP: a single value in (0,1].

tau The bandwidth parameter τ of the kernel functions in the HKEVP: a positive
value.

fit Output from the hkevp.fit procedure.

Details

The exponent measure describes the spatial dependence structure of a max-stable process, indepen-
dently from the values of the marginal parameters. If Z(·) is a simple max-stable process, i.e. with
unit GEV(1,1,1) margins, recorded at the set of sites (s1, . . . , sn), its joint cumulative probability
density function is given by:

P{Z(s1) ≤ z1, . . . , Z(sn) ≤ zn} = exp(−V (z1, . . . , zn)) ,

where V is the so-called exponent measure. For the HKEVP, the exponent measure is explicit for
any number n of sites:

V (z1, . . . , zn) =

L∑
ℓ=1

[
n∑

i=1

(
ωℓ(si)

zi

)1/α
]α

.

If argument fit is provided, the predictive distribution of

V (z1, . . . , zn)

is computed. If not, the function uses arguments sites, knots, alpha, and tau.

Value

Either a vector if argument fit is provided, or a single value.

Author(s)

Quentin Sebille

References

Reich, B. J., & Shaby, B. A. (2012). A hierarchical max-stable spatial model for extreme precipita-
tion. The annals of applied statistics, 6(4), 1430. <DOI:10.1214/12-AOAS591>
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Examples

sites <- as.matrix(expand.grid(1:3,1:3))
loc <- sites[,1]*10
scale <- 3
shape <- 0
alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, sites, sites, loc, scale, shape, alpha, tau)

# HKEVP fit:
fit <- hkevp.fit(ysim, sites, niter = 1000)

predict.em <- hkevp.expmeasure(1, fit = fit)
true.em <- hkevp.expmeasure(1, sites, sites, alpha, tau)
# plot(predict.em, ylim = range(predict.em, true.em), type = "l")
# abline(h = true.em, col = 2, lwd = 2)

hkevp.fit Fitting procedure of the HKEVP with MCMC algorithm

Description

Metropolis-within-Gibbs algorithm that returns samples from posterior distribution of all the pa-
rameters of the HKEVP.

Most of the input parameters have default values, so that the procedure can be easily handled.
However, convergence of the Markov chains should be assessed by using mcmc.plot for instance.
The experimented user can set initial states, prior hyperparameters along with the magnitude of the
MCMC jumps.

Usage

hkevp.fit(
y,
sites,
knots,
niter,
nburn,
nthin,
quiet,
trace,
fit.margins,
gev.vary,
spatial.covariates,
log.scale,
correlation,
mcmc.init,
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mcmc.prior,
mcmc.jumps

)

Arguments

y A matrix of observed block maxima. Each column corresponds to a site position.

sites The coordinates of the sites where the data are observed. Each row corresponds
to a site position.

knots The coordinates of the knots in the HKEVP. By default, the positions of the
knots coincide with the positions of the sites.

niter The number of MCMC iterations.

nburn The number of first MCMC iterations that are discarded. Zero by default.

nthin The size of the MCMC thinning. One by default (i.e. no thinning).

quiet A logical indicating if the progression of the routine should be displayed. TRUE
by default.

trace If quiet is FALSE, the log-likelihood of the model is displayed each block of
trace MCMC steps to observe fitting progression.

fit.margins A logical that indicates if the GEV parameters should be fitted along with the
dependence structure. TRUE by default.

gev.vary A logical vector of size three indicating if the GEV parameters (respectively the
location, the scale and the shape) are spatially-varying. If not (by default for the
shape), the parameter is the same at each position.

spatial.covariates

A numerical matrix of spatial covariates. Each row corresponds to a site posi-
tion. See details.

log.scale A logical value indicating if the GEV scale parameter σ is modelled by its log.
FALSE by default. See details.

correlation A character string indicating the form of the correlation function associated to
the latent Gaussian processes that describes the marginal parameters. Must be
one of "expo", "gauss", "mat32" (By default) and "mat52", respectively cor-
responding to the exponential, Gaussian, Matern-3/2 and Matern-5/2 correlation
functions.

mcmc.init A named list indicating the initial states of the chains. See details.

mcmc.prior A named list indicating the hyperparameters of the prior distributions. See de-
tails.

mcmc.jumps A named list indicating the amplitude of the jumps to propose the MCMC can-
didates. See details.

Details

Details of the MCMC procedure are presented in Reich and Shaby (2012). This function follows
the indications and the choices of the authors, with the exception of several small changes:
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• The scale parameter σ can be modelled like the two other marginal parameters as in Davison
et al. (2012) or by its logarithm as in Reich and Shaby (2012). For this, use the argument
log.scale, set to FALSE by default.

• The Inverse-Gamma prior distributions defined for the bandwith parameter τ and for the
ranges λ of the latent processes are replaced by a Beta distribution over the interval [0, 2Dmax],
where Dmax stands for the maximum distance between two sites.

The procedure can be used normally with fit.margins = TRUE (default) or by assuming that the
observed process had GEV(1,1,1) margins already and thus ignoring the marginal estimation.

If the margins are estimated and the parameters are assumed spatially-varying, the user can provide
spatial covariates to fit the mean of the latent Gaussian processes. Recall for instance for the GEV
location parameter that:

µ(s) = β0,µ + β1,µc1(s) + ...+ βp,µcp(s) .

The given matrix spatial.covariates that represents the ci(s) elements should have the first
column filled with ones to account for the intercept β0.

The arguments mcmc.init, mcmc.prior and mcmc.jumps are named list that have default values.
The user can make point changes in these arguments, by setting mcmc.init = list(alpha = .5)
for instance, but must respect the constraints of each element:

• mcmc.init. All elements are of length one. The possibilities are:

– loc, scale and shape (GEV parameters).
– range and sill of the correlation functions.
– alpha, tau, A and B, the dependence parameters and conditional variables of the HKEVP.

• mcmc.prior. The possible elements are:

– constant.gev: a 2 × 3 matrix of normal parameters for spatially-constant µ, σ and ξ.
The first row are the means, the second are the standard deviations.

– beta.sd: the normal sd prior of all β parameters (a single value).
– range, alpha and tau: the two Beta parameters.
– sill: the two Inverse-Gamma parameters.

• mcmc.jumps. The possible elements are:

– gev and range: a vector of length 3 (for each GEV parameter).
– tau, alpha, A, B: single values for each.

Value

A named list with following elements:

• GEV: the Markov chains associated to the GEV parameters. The dimensions of the array cor-
respond respectively to the sites positions, the three GEV parameters and the states of the
Markov chains.

• alpha: the Markov chain associated to the dependence parameter α.

• tau: the Markov chain associated to the dependence parameter τ .

• A: the Markov chains associated to the positive stable random effect per site and per block.
The dimensions correspond respectively to the indices of blocks, the knots positions and the
states of the Markov chains.
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• llik: the log-likelihood of the model for each step of the algorithm.

• time: time (in sec) spent for the fit.

• spatial: a named list with four elements linked to the GEV spatially-varying parameters:

– vary: the argument gev.vary.
– beta: the β parameters for each GEV parameter. The dimensions correspond respectively

to the steps of the Markov chains, the p spatial covariates and the GEV parameters
– sills: the Markov chains associated to the sills in the correlation functions of the latent

Gaussian processes.
– ranges: the Markov chains associated to the ranges in the correlation functions of the

latent Gaussian processes.

• data: the data fitted.

• sites: the sites where the data are observed.

• knots: the set of knots.

• spatial.covariates: the spatial covariates.

• correlation: the type of correlation function for the marginal latent processes.

• nstep: the number of steps at the end of the routine after burn-in and thinning.

• log.scale: a boolean indicating if the scale parameter has been modelled via its logarithm.

• fit.type: either "hkevp" or "dep-only" character string to specify the type of fit.

If fit.margins is false, only the dependence-related elements are returned.

Author(s)

Quentin Sebille

References

Reich, B. J., & Shaby, B. A. (2012). A hierarchical max-stable spatial model for extreme precipita-
tion. The annals of applied statistics, 6(4), 1430. <DOI:10.1214/12-AOAS591>

Stephenson, A. G. (2009) High-dimensional parametric modelling of multivariate extreme events.
Aust. N. Z. J Stat, 51, 77-88. <DOI:10.1111/j.1467-842X.2008.00528.x>

Davison, A. C., Padoan, S. A., & Ribatet, M. (2012). Statistical modeling of spatial extremes.
Statistical Science, 27(2), 161-186. <DOI:10.1214/11-STS376>

See Also

latent.fit

Examples

# Simulation of HKEVP:
set.seed(1)
sites <- as.matrix(expand.grid(1:3,1:3))
loc <- sites[,1]*10
scale <- 3
shape <- 0
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alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, sites, sites, loc, scale, shape, alpha, tau)

# HKEVP fit:
fit <- latent.fit(ysim, sites, niter = 1000)

hkevp.predict Predictive distribution of the max-stable process at target positions.

Description

Computes the predictive distribution of Y (·) at a set of ungauged positions (s∗1, ..., s
∗
k), given data

at gauged positions (s1, ..., sn), by using the output of latent.fit or hkevp.fit.

Two types of prediction are available for the HKEVP, as described in Shaby and Reich (2012). See
details.

Usage

hkevp.predict(fit, targets, targets.covariates, predict.type = "kriging")

Arguments

fit Output from the hkevp.fit procedure.

targets A matrix of real values giving the spatial coordinates of the ungauged positions.
Each row corresponds to an ungauged position.

targets.covariates

A matrix of real values giving the spatial covariates of the ungauged positions.
Must match with the covariates used in hkevp.fit or latent.fit.

predict.type Character string specifying the type of prediction. Must be one of "kriging"
(default) or "climat". See details.

Details

The spatial prediction of Yt(s
∗) for a target site s∗ and a realisation t of the process is described in

Shaby and Reich (2012). This method involves a three-step procedure:

1. Computation of the residual dependence process θ(·) at the target positions.

2. Computation of the conditional GEV parameters (µ∗, σ∗, ξ∗) at the target sites. See the defi-
nition of the HKEVP in Reich and Shaby (2012).

3. Generation of Yt(s
∗) from an independent GEV distribution with parameters (µ∗, σ∗, ξ∗).

As sketched in Shaby and Reich (2012), two types of prediction are possible: the kriging-type and
the climatological-type. These two types differ when the residual dependence process θ is computed
(first step of the prediction):
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• The kriging-type takes the actual value of A in the MCMC algorithm to compute the residual
dependence process. The prediction will be the distribution of the maximum recorded at the
specified targets.

• The climatological-type generates A by sampling from the positive stable distribution with
characteristic exponent α, where α is the actual value of the MCMC step. The prediction
in climatological-type will be the distribution of what could happen in the conditions of the
HKEVP dependence structure.

Posterior distribution for each realisation t of the process and each target position s∗ is represented
with a sample where each element corresponds to a step of the MCMC procedure.

Value

A three-dimensional array where:

• Each row corresponds to a different realisation of the process (a block).

• Each column corresponds to a target position.

• Each slice corresponds to a MCMC step.

Author(s)

Quentin Sebille

References

Reich, B. J., & Shaby, B. A. (2012). A hierarchical max-stable spatial model for extreme precipita-
tion. The annals of applied statistics, 6(4), 1430. <DOI:10.1214/12-AOAS591>

Shaby, B. A., & Reich, B. J. (2012). Bayesian spatial extreme value analysis to assess the changing
risk of concurrent high temperatures across large portions of European cropland. Environmetrics,
23(8), 638-648. <DOI:10.1002/env.2178>

Examples

# Simulation of HKEVP:
sites <- as.matrix(expand.grid(1:3,1:3))
targets <- as.matrix(expand.grid(1.5:2.5,1.5:2.5))
all.pos <- rbind(sites, targets)
knots <- sites
loc <- all.pos[,1]*10
scale <- 3
shape <- 0
alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, all.pos, knots, loc, scale, shape, alpha, tau)
yobs <- ysim[,1:9]

# HKEVP fit (omitting first site, used as target):
fit <- hkevp.fit(yobs, sites, niter = 1000)

# Extrapolation:
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ypred <- hkevp.predict(fit, targets, predict.type = "kriging")

# Plot of the density and the true value for 4 first realizations:
# par(mfrow = c(2, 2))
# plot(density(ypred[1,1,]), main = "Target 1 / Year 1")
# abline(v = ysim[1,10], col = 2, lwd = 2)
# plot(density(ypred[2,1,]), main = "Target 1 / Year 2")
# abline(v = ysim[2,10], col = 2, lwd = 2)
# plot(density(ypred[1,2,]), main = "Target 2 / Year 1")
# abline(v = ysim[1,11], col = 2, lwd = 2)
# plot(density(ypred[2,2,]), main = "Target 2 / Year 2")
# abline(v = ysim[2,11], col = 2, lwd = 2)

hkevp.rand Simulation of the HKEVP

Description

Simulation procedure of the HKEVP with given sites and knots positions and marginal and spatial
dependence parameters.

Usage

hkevp.rand(nrep, sites, knots, loc, scale, shape, alpha, tau)

Arguments

nrep A positive integer. Number of realisations of the block mashapema process.
sites The coordinates of the sites where the data are observed. Each row corresponds

to a site position.
knots The coordinates of the knots in the HKEVP. By default, the positions of the

knots coincide with the positions of the sites.
loc A numerical value or a vector of real values for the GEV location parameter. If

a vector, its length must coincide with the number of sites. The value by default
is 1.

scale A numerical value or a vector of real values for the GEV scale parameter. If a
vector, its length must coincide with the number of sites. The value by default
is 1.

shape A numerical value or a vector of real values for the GEV shape parameter. If a
vector, its length must coincide with the number of sites. The value by default
is 1.

alpha The dependence parameter α of the HKEVP: a single value in (0,1].
tau The bandwidth parameter τ of the kernel functions in the HKEVP: a positive

value.
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Details

Simulating one realisation of the block mashapema process Y (·) from the HKEVP involves three
steps:

1. The nugget process U(·) is generated independently at each position, by simulating a random
variable with GEV (1, α, α) distribution.

2. The residual dependence process θ(·) is computed by using the kernel functions centered at
the set of knots, the bandwidth parameter τ and the simulations of the positive stable PS(α)
random effect A.

3. The process Z = Uθ is computed and its margins are transformed to the general GEV distri-
bution with µ(s), σ(s) and ξ(s) parameters.

Value

A numerical matrix of real values. Each column corresponds to a position and each row to a reali-
sation of the process.

Author(s)

Quentin Sebille

Examples

# Simulation of HKEVP:
sites <- as.matrix(expand.grid(1:3,1:3))
loc <- sites[,1]*10
scale <- 3
shape <- 0
alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, sites, sites, loc, scale, shape, alpha, tau)

latent.fit Fitting procedure of the latent variable model

Description

Metropolis-within-Gibbs algorithm that returns posterior distribution (as Markov chains) for the
marginal GEV parameters of an observed spatial process. This function is close to hkevp.fit but
with less parameters since conditional independence is assumed and only the margins are estimated.
In SpatialExtremes library, a similar function can be found under the name latent.
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Usage

latent.fit(
y,
sites,
niter,
nburn,
nthin,
quiet,
trace,
gev.vary,
spatial.covariates,
log.scale,
correlation,
mcmc.init,
mcmc.prior,
mcmc.jumps

)

Arguments

y A matrix of observed block maxima. Each column corresponds to a site position.

sites The coordinates of the sites where the data are observed. Each row corresponds
to a site position.

niter The number of MCMC iterations.

nburn The number of first MCMC iterations that are discarded. Zero by default.

nthin The size of the MCMC thinning. One by default (i.e. no thinning).

quiet A logical indicating if the progression of the routine should be displayed. TRUE
by default.

trace If quiet is FALSE, the log-likelihood of the model is displayed each block of
trace MCMC steps to observe fitting progression.

gev.vary A logical vector of size three indicating if the GEV parameters (respectively the
location, the scale and the shape) are spatially-varying. If not (by default for the
shape), the parameter is the same at each position.

spatial.covariates

A numerical matrix of spatial covariates. Each row corresponds to a site posi-
tion. See details.

log.scale A logical value indicating if the GEV scale parameter σ is modelled by its log.
FALSE by default. See details.

correlation A character string indicating the form of the correlation function associated to
the latent Gaussian processes that describes the marginal parameters. Must be
one of "expo", "gauss", "mat32" (By default) and "mat52", respectively cor-
responding to the exponential, Gaussian, Matern-3/2 and Matern-5/2 correlation
functions.

mcmc.init A named list indicating the initial states of the chains. See details.
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mcmc.prior A named list indicating the hyperparameters of the prior distributions. See de-
tails.

mcmc.jumps A named list indicating the amplitude of the jumps to propose the MCMC can-
didates. See details.

Details

Details of the MCMC procedure are presented in Davison et al. (2012). This function follows the
indications and the choices of the authors, with the exception of several small changes:

• The scale parameter σ can be modelled like the two other marginal parameters as in Davison
et al. (2012) or by its logarithm as in Reich and Shaby (2012). For this, use the argument
log.scale, set to FALSE by default.

• The Inverse-Gamma prior distributions defined for the bandwith parameter τ and for the
ranges λ of the latent processes are replaced by a Beta distribution over the interval [0, 2Dmax],
where Dmax stands for the maximum distance between two sites.

If the the parameters are assumed spatially-varying, the user can provide spatial covariates to fit the
mean of the latent Gaussian processes. Recall for instance for the GEV location parameter that:

µ(s) = β0,µ + β1,µc1(s) + ...+ βp,µcp(s) .

The given matrix spatial.covariates that represents the ci(s) elements should have the first
column filled with ones to account for the intercept β0.

The arguments mcmc.init, mcmc.prior and mcmc.jumps are named list that have default values.
The user can make point changes in these arguments, by setting mcmc.init = list(loc = .5) for
instance, but must respect the constraints of each element:

• mcmc.init: all elements are of length one. The possible elements are:

– loc, scale and shape (GEV parameters).
– range and sill of the correlation functions.

• mcmc.prior: the possible elements are:

– constant.gev: a 2 × 3 matrix of normal parameters for spatially-constant µ, σ and ξ.
The first row are the means, the second are the standard deviations.

– beta.sd: the normal sd prior of all β parameters (a single value).
– range: the two Beta parameters.
– sill: the two Inverse-Gamma parameters.

• mcmc.jumps: the possible elements are gev and range, vectors of length 3 (for each GEV
parameter).

Value

A named list with following elements (less elements if fit.margins is FALSE):

• GEV: the Markov chains associated to the GEV parameters. The dimensions of the array cor-
respond respectively to the sites positions, the three GEV parameters and the states of the
Markov chains.

• llik: the log-likelihood of the model for each step of the algorithm.
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• time: time (in sec) spent for the fit.

• spatial: a named list with four elements linked to the GEV spatially-varying parameters:

– vary: the argument gev.vary.
– beta: the β parameters for each GEV parameter. The dimensions correspond respectively

to the steps of the Markov chains, the p spatial covariates and the GEV parameters
– sills: the Markov chains associated to the sills in the correlation functions of the latent

Gaussian processes.
– ranges: the Markov chains associated to the ranges in the correlation functions of the

latent Gaussian processes.

• data: the data fitted.

• sites: the sites where the data are observed.

• spatial.covariates: the spatial covariates.

• correlation: the type of correlation function for the marginal latent processes.

• nstep: the number of steps at the end of the routine after burn-in and thinning.

• log.scale: a boolean indicating if the scale parameter has been modelled via its logarithm.

• fit.type: "latent" character string to specify the type of fit.

Author(s)

Quentin Sebille

References

Reich, B. J., & Shaby, B. A. (2012). A hierarchical max-stable spatial model for extreme precipita-
tion. The annals of applied statistics, 6(4), 1430. <DOI:10.1214/12-AOAS591>

Davison, A. C., Padoan, S. A., & Ribatet, M. (2012). Statistical modeling of spatial extremes.
Statistical Science, 27(2), 161-186. <DOI:10.1214/11-STS376>

See Also

hkevp.fit

Examples

# Simulation of HKEVP:
sites <- as.matrix(expand.grid(1:4,1:4))
loc <- sites[,1]*10
scale <- 3
shape <- .2
alpha <- 1
tau <- 2
ysim <- hkevp.rand(15, sites, sites, loc, scale, shape, alpha, tau)

# Latent Variable Model fit:
set.seed(1)
fit <- latent.fit(ysim, sites, niter = 10000, nburn = 5000, nthin = 5)
mcmc.plot(fit, TRUE)
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par(mfrow = c(2,2))
apply(fit$GEV[,1,], 1, acf)

mcmc.fun Point estimates of HKEVP fit

Description

Application of a function to the main Markov chains resulting from the procedure hkevp.fit. May
be used to obtain point estimates of the posterior distribution (e.g., the mean or the median). See
details.

Usage

mcmc.fun(fit, FUN, ...)

Arguments

fit A named list. Output from the hkevp.fit procedure.

FUN The function applied to the Markov chains in fit. The median by default. The
output from FUN must be a single value.

... Optional arguments of the function to be applied on the Markov chains (e.g.
na.rm = FALSE).

Details

A function is applied to the main Markov chains resulting from the MCMC procedures hkevp.fit
or latent.fit. These chains correspond to the three GEV parameters, the dependence parameter
α and the bandwidth τ .

The value returned by FUN must be a single value.

Value

If fitted model is the HKEVP, a named list with three elements:

• GEV: A numerical matrix. Result of the function FUN for each GEV parameter (columns) and
each site position (rows).

• alpha: A numerical value. Result of the function FUN on the Markov chain associated to the
dependence parameter α.

• tau: A numerical value. Result of the function FUN on the Markov chain associated to the
bandwidth parameter τ .

If fitted model is the latent variable model, the functions returns the GEV matrix only.
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Author(s)

Quentin Sebille

Examples

# Simulation of HKEVP:

sites <- as.matrix(expand.grid(1:3,1:3))
knots <- sites
loc <- sites[,1]*10
scale <- 3
shape <- .2
alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, sites, knots, loc, scale, shape, alpha, tau)

# HKEVP fit:
fit <- hkevp.fit(ysim, sites, niter = 1000)

# Posterior median and standard deviation:
# mcmc.fun(fit, median)
# mcmc.fun(fit, sd)

mcmc.plot Markov chains plotting

Description

Plots of the resulting Markov chains obtained by the MCMC procedures hkevp.fit or latent.fit.
May be used to assess graphically convergence of the chains.

Usage

mcmc.plot(fit, plot.spatial, mfrow)

Arguments

fit Output from the hkevp.fit procedure.

plot.spatial Logical indicating if the Markov chains of the sills and ranges hyperparameters
should be plotted. FALSE by default.

mfrow Optional vector of two numerical values indicating the parameter of the window
plotting called by the plot(...) function.

Author(s)

Quentin Sebille
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Examples

# Simulation of HKEVP:
sites <- as.matrix(expand.grid(1:3,1:3))
knots <- sites
loc <- sites[,1]*10
scale <- 3
shape <- .2
alpha <- .4
tau <- 1
ysim <- hkevp.rand(10, sites, knots, loc, scale, shape, alpha, tau)

# HKEVP fit:
fit <- hkevp.fit(ysim, sites, niter = 1000)

# Markov chains plot:
mcmc.plot(fit, TRUE)

return.level The associated return level

Description

Computation of the associated return level with given period and GEV parameters.

Usage

return.level(period, loc, scale, shape)

Arguments

period An integer indicating the wished return period T.

loc A numerical value or vector for the GEV location parameter. Must be of length
one or same length as scale and/or shape.

scale A numerical value or vector for the GEV scale parameter. Must be of length one
or same length as loc and/or shape.

shape A numerical value or vector for the GEV shape parameter. Must be of length
one or same length as loc and/or scale.

Details

The T -year return level is a common value of risk in Extreme Value Theory. It represents the value
that is expected to be exceeded once over T years by the annual maxima. Given the parameters µ,
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σ and ξ of the GEV distribution associated to the yearly maxima, we can compute the associated
T -return level yT by:

yT := µ+
σ

ξ

[
log

(
T

T − 1

)−ξ

− 1

]
.

Value

A numerical value or a numerical vector, depending on the input arguments loc, scale, shape

Author(s)

Quentin Sebille

Examples

return.level(period = 100, loc = 1, scale = 1, shape = 1)
return.level(period = 200, loc = 1:10, scale = 1, shape = 0)
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