Package 'hetsurr'

July 22, 2025

Type Package
Title Assessing Heterogeneity in the Utility of a Surrogate Marker
Version 1.0
Date 2021-11-10
Author Layla Parast
Maintainer Layla Parast <parast@austin.utexas.edu></parast@austin.utexas.edu>
Description Provides a function to assess and test for heterogeneity in the utility of a surro- gate marker with respect to a baseline covariate. The main function can be used for either a con- tinuous or discrete baseline covariate. More details will be available in the fu- ture in: Parast, L., Cai, T., Tian L (2021). ``Testing for Heterogeneity in the Utility of a Surro- gate Marker." Biometrics, In press.
License GPL
Imports stats, Rsurrogate, graphics
NeedsCompilation no
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2021-11-10 16:10:02 UTC

Contents

example.data		•		•												•	•	•			1	2
hetsurr.fun		•		•												•	•	•			1	2
hetsurr.plot .																		•			:	5
																					1	7

Index

example.data

Description

Example data

Usage

data("example.data")

Format

A list with 6 elements representing 2000 observations from a treatment group and 1500 observations from a control group:

- y1 the primary outcome in the treatment group
- y0 the primary outcome in the control group
- s1 the surrogate marker in the treatment group
- s0 the surrogate marker in the control group
- w1 the baseline covariate of interest in the treatment group
- w0 the baseline covariate of interest in the control group

Examples

data(example.data)
names(example.data)

hetsurr.fun

Assess and test for heterogeneity in the utility of a surrogate

Description

This function assesses and tests for heterogeneity in the utility of a surrogate with respect to a continuous or discrete baseline covariate. The method is nonparametric and focuses on estimation of the proportion of the treatment effect that is explained by the surrogate marker. Inference information is provided including a confidence band for the proportion and results from formal testing for heterogeneity. When the baseline covariate is continuous, two tests are performed - an omnibus test and a trend test; when the baseline covariate is discrete, only one test is performed - an omnibus test.

Usage

```
hetsurr.fun(y1, y0, s1, s0, w1, w0, wf.grd = NULL, h0 = NULL, h1 = NULL, h2 = NULL,
h3 = NULL, h4 = NULL, var.want = FALSE, type = "cont", test.want = FALSE, c.adj = 1)
```

hetsurr.fun

Arguments

y1	the primary outcome in the treatment group
y0	the primary outcome in the control group
s1	the surrogate marker in the treatment group
s0	the surrogate marker in the control group
w1	the baseline covariate of interest in the treatment group
w0	the baseline covariate of interest in the control group
wf.grd	the grid of the baseline covariate where estimates are wanted; if this is not spec- ified, this will bet set equal to 50 equally spaced points between the 10th and 90th percentile of the union of w1 and w0 values (if continuous) or the set of unique categories (if discrete)
h0	bandwidth; if not specific, this is set to a value of appropriate order
h1	bandwidth; if not specific, this is set to a value of appropriate order
h2	bandwidth; if not specific, this is set to a value of appropriate order
h3	bandwidth; if not specific, this is set to a value of appropriate order
h4	bandwidth; if not specific, this is set to a value of appropriate order
var.want	TRUE or FALSE; indicates whether variance estimate are wanted, default is \ensuremath{FALSE}
type	"cont" or "discrete"; indicates the form of the baseline covariate w, default is "cont"
test.want	TRUE or FALSE; indicates whether testing results are wanted, default is FALSE
c.adj	a multiplicative adjustment for the bandwidth; default is 1

Details

This function calculates the treatment effect, Delta, the residual treatment effect, Delta_S, and the proportion of treatment effect explained R_S, as a function of the baseline covariate (if continuous) or stratified by category (if discrete). The estimation approach is nonparametric. Variance estimates can be requested including a confidence band for R_S. Results from formal testing for heterogeneity can also be requested. When the baseline covariate is continuous, two tests are performed - an omnibus test and a trend test; when the baseline covariate is discrete, only one test is performed - an omnibus test.

Value

w.values	values of the baseline covariate at which estimates are provided
delta.w	estimated treatment effect, Delta, at each w value
delta.w.s	estimated residual treatment effect, Delta_S, at each w value
R.w.s	estimated proportion of treatment effect explained, R_S, at each w value
se.delta.w	estimated standard error of Delta
se.delta.w.s	estimated standard error of Delta.S
se.R.w.s	estimated standard error of R.S

hetsurr.fun

<pre>conf.delta.w.lc</pre>	wer										
	lower bound of the confidence intervals for Delta										
conf.delta.w.upper											
	upper bound of the confidence intervals for Delta										
conf.delta.w.s.lower											
	lower bound of the confidence intervals for Delta.S										
conf.delta.w.s.upper											
	upper bound of the confidence intervals for Delta.S										
conf.R.w.s.lowe	conf.R.w.s.lower										
	lower bound of the confidence intervals for R.S										
conf.R.w.s.uppe	r										
	upper bound of the confidence intervals for R.S										
<pre>band.R.w.s.lowe</pre>	r										
	lower bound of the confidence band for R.S										
<pre>band.R.w.s.uppe</pre>	r										
	upper bound of the confidence band for R.S										
omnibus.test.st	atistic										
	test statistic from omnibus test; for a continuous baseline covariate only										
omnibus.p.value	2										
	p-value from omnibus test, testing for evidence of heterogeneity; for a continu- ous baseline covariate only										
trend.test.stat	istic										
	test statistic from the trend test; for a continuous baseline covariate only										
trend.p.value	p-value from trend test, testing for evidence of heterogeneity; for a continuous baseline covariate only										
test.statistic	p-value from the test testing for evidence of heterogeneity; for a discrete baseline covariate only										
p.value	p-value from the test testing for evidence of heterogeneity; for a discrete baseline covariate only										

Author(s)

Layla Parast

References

Parast, L., Cai, T., Tian L (2021). Testing for Heterogeneity in the Utility of a Surrogate Marker. Biometrics, In press.

Examples

```
data(example.data)
names(example.data)
#computationally intensive
```

het.ob = hetsurr.fun(y1=example.data\$y1, y0=example.data\$y0, s1=example.data\$s1, s0=example.data\$s0, w1=example.data\$w1, w0=example.data\$w0, wf.grd = seq(0.25, 1.75,

hetsurr.plot

```
length=50), var.want =FALSE, type = "cont")
het.ob = hetsurr.fun(y1=example.data$y1, y0=example.data$y0, s1=example.data$s1,
s0=example.data$s0, w1=example.data$w1, w0=example.data$w0, wf.grd = seq(0.25, 1.75,
length=50), var.want =TRUE, test.want = TRUE, type = "cont")
#reducing dimension of example data to provide a computationally faster example
het.ob = hetsurr.fun(y1=example.data$y1[1:500], y0=example.data$y0[1:500],
s1=example.data$s1[1:500], s0=example.data$s0[1:500], w1=example.data$w1[1:500],
w0=example.data$w0[1:500], wf.grd = seq(0.25, 1.75, length=5), var.want =FALSE,
type = "cont")
```

Constructs plots of the treatment effect, residual treatment effect, and
proportion explained as a function of the continuous baseline covari-
ate

Description

Constructs plots of the treatment effect, residual treatment effect, and proportion explained as a function of the continuous baseline covariate

Usage

```
hetsurr.plot(hetsurr.results, xlab.name = "Baseline Covariate", placement = "bottomleft")
```

Arguments

hetsurr.result	S
	This is a list produced by the hetsurr.fun function.
xlab.name	This is the label for the x-axis; default is "Baseline Covariate".
placement	This is the placement for the legend; default is "bottomleft".

Value

Produces a plot with 3 panels.

Author(s)

Layla Parast

References

Parast, L., Cai, T., Tian L (2021). Testing for Heterogeneity in the Utility of a Surrogate Marker. Biometrics, In press.

Examples

```
data(example.data)
names(example.data)
#computationally intensive
```

```
het.ob = hetsurr.fun(y1=example.data$y1, y0=example.data$y0, s1=example.data$s1,
s0=example.data$s0, w1=example.data$w1, w0=example.data$w0, wf.grd = seq(0.25, 1.75,
length=50), var.want =TRUE, test.want = TRUE, type = "cont")
hetsurr.plot(het.ob)
```

```
#reducing dimension of example data to provide a computationally faster example
het.ob = hetsurr.fun(y1=example.data$y1[1:300], y0=example.data$y0[1:300],
s1=example.data$s1[1:300], s0=example.data$s0[1:300], w1=example.data$w1[1:300],
w0=example.data$w0[1:300], wf.grd = seq(0.25, 1.75, length=5), var.want =TRUE,
test.want = TRUE, type = "cont")
hetsurr.plot(het.ob)
```

6

Index

example.data, 2

hetsurr.fun,2
hetsurr.plot,5