
Package ‘dtrackr’
July 22, 2025

Title Track your Data Pipelines

Version 0.4.6

Description Track and
document 'dplyr' data pipelines. As you filter, mutate, and join your
way through a data set, 'dtrackr' seamlessly keeps track of your data
flow and makes publication ready documentation of a data pipeline simple.

License MIT + file LICENSE

Language en-GB

Imports dplyr (>= 1.1.0), glue, htmltools, magrittr, rlang, rsvg,
stringr, tibble, tidyr, utils, V8, fs, purrr, base64enc,
pdftools, png, lifecycle

Suggests spelling, here, knitr, rmarkdown, tidyselect, devtools,
testthat (>= 2.1.0), rstudioapi, survival, ggplot2, covr

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.3.2.9003

Depends R (>= 2.10)

URL https://terminological.github.io/dtrackr/index.html,

https://github.com/terminological/dtrackr

BugReports https://github.com/terminological/dtrackr/issues

NeedsCompilation no

Author Robert Challen [aut, cre] (ORCID:
<https://orcid.org/0000-0002-5504-7768>)

Maintainer Robert Challen <rob.challen@bristol.ac.uk>

Repository CRAN

Date/Publication 2024-10-21 09:20:02 UTC

1

https://terminological.github.io/dtrackr/index.html
https://github.com/terminological/dtrackr
https://github.com/terminological/dtrackr/issues
https://orcid.org/0000-0002-5504-7768

2 Contents

Contents
add_count.trackr_df . 4
add_tally . 6
anti_join.trackr_df . 8
arrange.trackr_df . 9
bind_cols . 11
bind_rows . 13
capture_exclusions . 14
comment . 15
count_subgroup . 16
distinct.trackr_df . 17
dot2svg . 19
excluded . 19
exclude_all . 20
filter.trackr_df . 22
flowchart . 23
full_join.trackr_df . 24
group_by.trackr_df . 27
group_modify.trackr_df . 29
history . 30
include_any . 31
inner_join.trackr_df . 33
intersect.trackr_df . 36
left_join.trackr_df . 38
mutate.trackr_df . 41
nest_join.trackr_df . 43
pause . 45
pivot_longer.trackr_df . 46
pivot_wider.trackr_df . 48
plot.trackr_graph . 50
print.trackr_graph . 51
p_add_count . 51
p_add_tally . 53
p_anti_join . 54
p_arrange . 56
p_bind_cols . 58
p_bind_rows . 60
p_capture_exclusions . 61
p_clear . 62
p_comment . 63
p_copy . 64
p_count_if . 64
p_count_subgroup . 65
p_distinct . 66
p_excluded . 67
p_exclude_all . 68
p_filter . 70

Contents 3

p_flowchart . 71
p_full_join . 72
p_get . 75
p_get_as_dot . 76
p_group_by . 77
p_group_modify . 78
p_include_any . 80
p_inner_join . 81
p_intersect . 84
p_left_join . 86
p_mutate . 89
p_nest_join . 91
p_pause . 93
p_pivot_longer . 94
p_pivot_wider . 96
p_reframe . 98
p_relocate . 99
p_rename . 101
p_rename_with . 102
p_resume . 104
p_right_join . 105
p_select . 108
p_semi_join . 109
p_set . 111
p_setdiff . 112
p_slice . 113
p_slice_head . 115
p_slice_max . 117
p_slice_min . 119
p_slice_sample . 121
p_slice_tail . 123
p_status . 125
p_summarise . 126
p_tagged . 127
p_track . 128
p_transmute . 129
p_ungroup . 131
p_union . 132
p_union_all . 134
p_untrack . 136
reframe.trackr_df . 136
relocate.trackr_df . 137
rename.trackr_df . 139
rename_with.trackr_df . 141
resume . 142
right_join.trackr_df . 143
save_dot . 146
select.trackr_df . 147

4 add_count.trackr_df

semi_join.trackr_df . 149
setdiff.trackr_df . 151
slice.trackr_df . 152
slice_head.trackr_df . 154
slice_max.trackr_df . 156
slice_min.trackr_df . 158
slice_sample.trackr_df . 160
slice_tail.trackr_df . 162
status . 164
std_size . 165
summarise.trackr_df . 166
tagged . 167
track . 168
transmute.trackr_df . 169
ungroup.trackr_df . 170
union.trackr_df . 171
union_all.trackr_df . 173
untrack . 175

Index 177

add_count.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
add_count(x, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by. Named arguments passed on to dplyr::add_count

wt <data-masking> Frequency weights. Can be NULL or a variable:
• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

add_count.trackr_df 5

sort If TRUE, will show the largest groups at the top.
name The name of the new column in the output.

If omitted, it will default to n. If there’s already a column called n, it will
use nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding
ns until it gets a new name.

.drop Handling of factor levels that don’t appear in the data, passed on to
group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels
of factors that don’t exist in the data).
[Deprecated] For add_count(): deprecated since it can’t actually affect
the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::add_count()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

add_count
adding in a count or tally column as a new column
iris %>%

track() %>%
add_count(Species, name="new_count_total",

.messages="{.new_cols}",
.messages="{.cols}",
.headline="New columns from add_count:") %>%

history()

add_tally
iris %>%

track() %>%

6 add_tally

group_by(Species) %>%
dtrackr::add_tally(wt=Petal.Length, name="new_tally_total",

.messages="{.new_cols}",

.headline="New columns from add_tally:") %>%
history()

add_tally dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

add_tally(x, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by. Named arguments passed on to dplyr::add_tally

wt <data-masking> Frequency weights. Can be NULL or a variable:
• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.
name The name of the new column in the output.

If omitted, it will default to n. If there’s already a column called n, it will
use nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding
ns until it gets a new name.

.drop Handling of factor levels that don’t appear in the data, passed on to
group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels
of factors that don’t exist in the data).
[Deprecated] For add_count(): deprecated since it can’t actually affect
the output.

add_tally 7

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::add_tally()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

add_count
adding in a count or tally column as a new column
iris %>%

track() %>%
add_count(Species, name="new_count_total",

.messages="{.new_cols}",
.messages="{.cols}",
.headline="New columns from add_count:") %>%

history()

add_tally
iris %>%

track() %>%
group_by(Species) %>%
dtrackr::add_tally(wt=Petal.Length, name="new_tally_total",

.messages="{.new_cols}",

.headline="New columns from add_tally:") %>%
history()

8 anti_join.trackr_df

anti_join.trackr_df Anti join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::anti_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
anti_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS", "{.count.out} not matched"),
.headline = "Semi join by {.keys}"

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::anti_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data

arrange.trackr_df 9

people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Anti join
join = lhs %>% anti_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

arrange.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
arrange(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::arrange

10 arrange.trackr_df

.by_group If TRUE, will sort first by grouping variable. Applies to grouped data
frames only.

.locale The locale to sort character vectors in.
• If NULL, the default, uses the "C" locale unless the dplyr.legacy_locale

global option escape hatch is active. See the dplyr-locale help page for
more details.

• If a single string from stringi::stri_locale_list() is supplied,
then this will be used as the locale to sort with. For example, "en"
will sort with the American English locale. This requires the stringi
package.

• If "C" is supplied, then character vectors will always be sorted in the
C locale. This does not require stringi and is often much faster than
supplying a locale identifier.

The C locale is not the same as English locales, such as "en", particu-
larly when it comes to data containing a mix of upper and lower case let-
ters. This is explained in more detail on the locale help page under the
Default locale section.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::arrange()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

arrange
In this case we sort the data descending and show the first value
is the same as the maximum value.
iris %>%

track() %>%
arrange(

bind_cols 11

desc(Petal.Width),
.messages="{.count} items, columns: {.cols}",
.headline="Reordered dataframe:") %>%

history()

bind_cols Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

bind_cols(
...,
.messages = "{.count.out} in combined set",
.headline = "Bind columns"

)

Arguments

... a collection of tracked data frames to combine Named arguments passed on to
dplyr::bind_cols

.name_repair One of "unique", "universal", or "check_unique". See vctrs::vec_as_names()
for the meaning of these options.

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::bind_cols()

12 bind_cols

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")

bind_rows 13

display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

bind_rows Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

bind_rows(..., .messages = "{.count.out} in union", .headline = "Union")

Arguments

... a collection of tracked data frames to combine Named arguments passed on to
dplyr::bind_rows

.id The name of an optional identifier column. Provide a string to create an
output column that identifies each input. The column will use names if
available, otherwise it will use positions.

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::bind_rows()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

14 capture_exclusions

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

capture_exclusions Start capturing exclusions on a tracked dataframe.

comment 15

Description

Start capturing exclusions on a tracked dataframe.

Usage

capture_exclusions(.data, .capture = TRUE)

Arguments

.data a tracked dataframe

.capture Should we capture exclusions (things removed from the data set). This is useful
for debugging data issues but comes at a significant cost. Defaults to the value
of getOption("dtrackr.exclusions") or FALSE.

Value

the .data dataframe with the exclusions flag set (or cleared if .capture=FALSE).

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% filter(Species!="versicolor") %>% history()

comment Add a generic comment to the dtrackr history graph

Description

A comment can be any kind of note and is added once for every current grouping as defined by the
.message field. It can be made context specific by including variables such as {.count} and {.total}
in .message which refer to the grouped and ungrouped counts at this current stage of the pipeline
respectively. It can also pull in any global variable.

Usage

comment(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = (.type == "exclusion"),
.tag = NULL

)

16 count_subgroup

Arguments

.data a dataframe which may be grouped

.messages a character vector of glue specifications. A glue specification can refer to any
grouping variables of .data, or any variables defined in the calling environment,
the {.total} of all rows, the {.count} variable which is the count in each group
and {.strata} a description of the group

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment, or the {.total} variable (which is nrow(.data))
and {.strata} which is a description of the grouping

.type one of "info","...,"exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the same .data dataframe with the history graph updated with the comment

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% comment("hello {.total} rows") %>% history()

count_subgroup Add a subgroup count to the dtrackr history graph

Description

A frequent use case for more detailed description is to have a subgroup count within a flowchart.
This works best for factor subgroup columns but other data will be converted to a factor automati-
cally. The count of the items in each subgroup is added as a new stage in the flowchart.

Usage

count_subgroup(
.data,
.subgroup,
...,
.messages = .defaultCountSubgroup(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL,
.maxsubgroups = .defaultMaxSupportedGroupings()

)

distinct.trackr_df 17

Arguments

.data a dataframe which may be grouped

.subgroup a column with a small number of levels (e.g. a factor)

... passed to base::factor(subgroup values, ...) to allow reordering of lev-
els etc.

.messages a character vector of glue specifications. A glue specification can refer to any-
thing from the calling environment, {.subgroup} for the subgroup column name
and {.name} for the subgroup column value, {.count} for the subgroup column
count, {.subtotal} for the current stratification grouping count and {.total} for
the whole dataset count

.headline a glue specification which can refer to grouping variables of .data, {.subtotal} for
the current grouping count, or any variables defined in the calling environment

.type one of "info","exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want to use the summary data from this step in the future then give it a
name with .tag.

.maxsubgroups the maximum number of discrete values allowed in .subgroup is configurable
with options("dtrackr.max_supported_groupings"=XX). The default is 16.
Large values produce unwieldy flow charts.

Value

the same .data dataframe with the history graph updated with a subgroup count as a new stage

Examples

library(dplyr)
library(dtrackr)
survival::cgd %>% track() %>% group_by(treat) %>%

count_subgroup(center) %>% history()

distinct.trackr_df Distinct values of data

Description

Distinct acts in the same way as in dplyr::distinct. Prior to the operation the size of the group
is calculated {.count.in} and after the operation the output size {.count.out} The group {.strata} is
also available (if grouped) for reporting. See dplyr::distinct().

18 distinct.trackr_df

Usage

S3 method for class 'trackr_df'
distinct(
.data,
...,
.messages = "removing {.count.in-.count.out} duplicates",
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row
will be preserved. If omitted, will use all variables in the data frame. Named
arguments passed on to dplyr::distinct

.keep_all If TRUE, keep all variables in .data. If a combination of ... is not
distinct, this keeps the first row of values.

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with distinct values and history graph updated.

See Also

dplyr::distinct()

Examples

library(dplyr)
library(dtrackr)

tmp = bind_rows(iris %>% track(), iris %>% track() %>% filter(Petal.Length > 5))
tmp %>% group_by(Species) %>% distinct() %>% history()

dot2svg 19

dot2svg Convert Graphviz dot content to a SVG

Description

Convert a graphviz dot digraph as string to SVG as string

Usage

dot2svg(dot)

Arguments

dot a graphviz dot string

Value

the SVG as a string

Examples

dot2svg("digraph { A->B }")

excluded Get the dtrackr excluded data record

Description

Get the dtrackr excluded data record

Usage

excluded(.data, simplify = TRUE)

Arguments

.data a dataframe which may be grouped

simplify return a single summary dataframe of all exclusions.

Value

a new dataframe of the excluded data up to this point in the workflow. This dataframe is by default
flattened, but if .simplify=FALSE has a nested structure containing records excluded at each part
of the pipeline.

20 exclude_all

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% exclude_all(

Petal.Length > 5.8 ~ "{.excluded} long ones",
Petal.Length < 1.3 ~ "{.excluded} short ones",
.stage = "petal length exclusion"

) %>% excluded()

exclude_all Exclude all items matching one or more criteria

Description

Apply a set of filters and summarise the actions of the filter to the dtrackr history graph. Because
of the ... filter specification, all parameters MUST BE NAMED. The filters work in an combinatorial
manner, i.e. the results EXCLUDE ALL rows that match any of the criteria. If na.rm = TRUE they
also remove anything that cannot be evaluated by any criteria.

Usage

exclude_all(
.data,
...,
.headline = .defaultHeadline(),
na.rm = FALSE,
.type = "exclusion",
.asOffshoot = TRUE,
.stage = (if (is.null(.tag)) "" else .tag),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

... a dplyr filter specification as a set of formulae where the LHS are predicates to
test the data set against, items that match any of the predicates will be excluded.
The RHS is a glue specification, defining the message, to be entered in the his-
tory graph for each predicate. This can refer to grouping variables variables
from the environment and {.excluded} and {.matched} or {.missing} (excluded
= matched+missing), {.count} and {.total} - group and overall counts respec-
tively, e.g. "excluding {.matched} items and {.missing} with missing values".

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

na.rm (default FALSE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

exclude_all 21

.type default "exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = TRUE).

.stage a name for this step in the pathway

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with the history graph updated with the summary of excluded items as
a new offshoot stage

Examples

library(dplyr)
library(dtrackr)

iris %>% track() %>% capture_exclusions() %>% exclude_all(
Petal.Length > 5 ~ "{.excluded} long ones",
Petal.Length < 2 ~ "{.excluded} short ones"

) %>% history()

simultaneous evaluation of criteria:
data.frame(a = 1:10) %>%

track() %>%
exclude_all(

These two criteria identify the same value and one item is excluded
a > 9 ~ "{.excluded} value > 9",
a == max(a) ~ "{.excluded} max value",

) %>%
status() %>%
history()

the behaviour is equivalent to the inverse of dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a <= 9, a != max(a)) %>%
nrow()

step-wise evaluation of criteria results in a different output
data.frame(a = 1:10) %>%

track() %>%
Performing the same exclusion sequentially results in 2 items
being excluded as the criteria no longer identify the same
item.
exclude_all(a > 9 ~ "{.excluded} value > 9") %>%
exclude_all(a == max(a) ~ "{.excluded} max value") %>%
status() %>%
history()

the behaviour is equivalent to the inverse of dplyr's filter function:
data.frame(a=1:10) %>%

22 filter.trackr_df

dplyr::filter(a <= 9) %>%
dplyr::filter(a != max(a)) %>%
nrow()

filter.trackr_df Filtering data

Description

Filter acts in the same way as in dplyr where predicates which evaluate to TRUE act to select items
to include, and items for which the predicate cannot be evaluated are excluded. For tracking prior to
the filter operation the size of each group is calculated {.count.in} and after the operation the output
size of each group {.count.out}. The grouping {.strata} is also available (if grouped) for reporting.
See dplyr::filter().

Usage

S3 method for class 'trackr_df'
filter(
.data,
...,
.messages = "excluded {.excluded} items",
.headline = .defaultHeadline(),
.type = "exclusion",
.asOffshoot = (.type == "exclusion"),
.stage = (if (is.null(.tag)) "" else .tag),
.tag = NULL

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept. Named arguments passed on to dplyr::filter

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

flowchart 23

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type the format type of the action typically an exclusion

.asOffshoot if the type is exclusion, .asOffshoot places the information box outside of the
main flow, as an exclusion.

.stage a name for this step in the pathway

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with history graph updated

See Also

dplyr::filter()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% group_by(Species)
tmp %>% filter(Petal.Length > 5) %>% history()

flowchart Flowchart output

Description

Generate a flowchart of the history of the dataframe(s), with all the tracked data pipeline as stages
in the flowchart. Multiple dataframes can be plotted together in which case an attempt is made to
determine which parts are common.

Usage

flowchart(
.data,
filename = NULL,
size = std_size$full,
maxWidth = size$width,
maxHeight = size$height,
formats = c("dot", "png", "pdf", "svg"),
defaultToHTML = TRUE,
landscape = size$rot != 0,
...

)

24 full_join.trackr_df

Arguments

.data the tracked dataframe(s) either as a single dataframe or as a list of dataframes.

filename a file name which will be where the formatted flowcharts are saved. If no exten-
sion is specified the output formats are determined by the formats parameter.

size a named list with 3 elements, length and width in inches and rotation. A prede-
fined set of standard sizes are available in the std_size object.

maxWidth a width (on the paper) in inches if size is not defined

maxHeight a height (on the paper) in inches if size is not defined

formats some of pdf,dot,svg,png,ps

defaultToHTML if the correct output format is not easy to determine from the context, default
providing HTML (TRUE) or to embedding the PNG (FALSE)

landscape rotate the output by 270 degrees into a landscape format. maxWidth and maxHeight
still apply and refer to the paper width to fit the flowchart into after rotation. (you
might need to flip width and height)

... other parameters passed onto either p_get_as_dot(), notable ones are fill
(background colour e.g. lightgrey), fontsize (in points), colour (font colour)

Value

the nature of the flowchart output depends on the context in which the function is called. It will be
some form of browse-able html output if called from an interactive session or a PNG/PDF link if in
knitr and knitting latex or word type outputs, if file name is specified the output will also be saved
at the given location.

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% comment(.tag = "step1") %>% filter(Species!="versicolor")
tmp %>% group_by(Species) %>% comment(.tag="step2") %>% flowchart()

full_join.trackr_df Full join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::full_join()
for more details on the underlying functions.

full_join.trackr_df 25

Usage

S3 method for class 'trackr_df'
full_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Full join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::full_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged

26 full_join.trackr_df

into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

group_by.trackr_df 27

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::full_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Full join
join = lhs %>% full_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

group_by.trackr_df Stratifying your analysis

28 group_by.trackr_df

Description

Grouping a data set acts in the normal way. When tracking a dataframe sometimes a group_by()
operation will create a lot of groups. This happens for example if you are doing a group_by(),
summarise() step that is aggregating data on a fine scale, e.g. by day in a time-series. This is
generally a terrible idea when tracking a dataframe as the resulting flowchart will have many many
branches and be illegible. dtrackr will detect this issue and pause tracking the dataframe with a
warning. It is up to the user to the resume() tracking when the large number of groups have been re-
solved e.g. using a dplyr::ungroup(). This limit is configurable with options("dtrackr.max_supported_groupings"=XX).
The default is 16. See dplyr::group_by().

Usage

S3 method for class 'trackr_df'
group_by(
.data,
...,
.messages = "stratify by {.cols}",
.headline = NULL,
.tag = NULL,
.maxgroups = .defaultMaxSupportedGroupings()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... In group_by(), variables or computations to group by. Computations are always
done on the ungrouped data frame. To perform computations on the grouped
data, you need to use a separate mutate() step before the group_by(). Compu-
tations are not allowed in nest_by(). In ungroup(), variables to remove from
the grouping. Named arguments passed on to dplyr::group_by

.add When FALSE, the default, group_by() will override existing groups. To
add to the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.

.drop Drop groups formed by factor levels that don’t appear in the data? The
default is TRUE except when .data has been previously grouped with .drop
= FALSE. See group_by_drop_default() for details.

x A tbl()

.messages a set of glue specs. The glue code can use any global variable, or {.cols} which
is the columns that are being grouped by.

.headline a headline glue spec. The glue code can use any global variable, or {.cols}.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

.maxgroups the maximum number of subgroups allowed before the tracking is paused.

group_modify.trackr_df 29

Value

the .data but grouped.

See Also

dplyr::group_by()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% group_by(Species, .messages="stratify by {.cols}")
tmp %>% comment("{.strata}") %>% history()

group_modify.trackr_df

Group-wise modification of data and complex operations

Description

Group modifying a data set acts in the normal way. The internal mechanics of the modify func-
tion are opaque to the history. This means these can be used to wrap any unsupported opera-
tion without losing the history (e.g. df %>% track() %>% group_modify(function(d,...) { d
%>% unsupported_operation() })) Prior to the operation the size of the group is calculated
{.count.in} and after the operation the output size {.count.out} The group {.strata} is also avail-
able (if grouped) for reporting See dplyr::group_modify().

Usage

S3 method for class 'trackr_df'
group_modify(
.data,
...,
.messages = NULL,
.headline = .defaultHeadline(),
.type = "modify",
.tag = NULL

)

Arguments

.data A grouped tibble

... Additional arguments passed on to .f Named arguments passed on to dplyr::group_modify

.f A function or formula to apply to each group.
If a function, it is used as is. It should have at least 2 formal arguments.
If a formula, e.g. ~ head(.x), it is converted to a function.
In the formula, you can use

30 history

• . or .x to refer to the subset of rows of .tbl for the given group
• .y to refer to the key, a one row tibble with one column per grouping

variable that identifies the group
.keep are the grouping variables kept in .x

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type default "modify": used to define formatting

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the transformed .data dataframe with the history graph updated.

See Also

dplyr::group_modify()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% group_by(Species)
tmp %>% group_modify(

function(d,g,...) { return(tibble::tibble(x=runif(10))) },
.messages="{.count.in} in, {.count.out} out"

) %>% history()

history Get the dtrackr history graph

Description

This provides the raw history graph and is not really intended for mainstream use. The internal
structure of the graph is explained below. print and plot S3 methods exist for the dtrackr history
graph.

Usage

history(.data)

Arguments

.data a dataframe which may be grouped

include_any 31

Value

the history graph. This is a list, of class trackr_graph, containing the following named items:

• excluded - the data items that have been excluded thus far as a nested dataframe

• tags - a dataframe of tag-value pairs containing the summary of the data at named points in
the data flow (see tagged())

• nodes - a dataframe of the nodes of the flow chart

• edges - an edge list (as a dataframe) of the relationships between the nodes in the flow chart

• head - the current most recent nodes added into the graph as a dataframe.

The format of this data may grow over time but these fields are unlikely to be changed.

Examples

library(dplyr)
library(dtrackr)
graph = iris %>% track() %>% comment("A comment") %>% history()
print(graph)

include_any Include any items matching a criteria

Description

Apply a set of inclusion criteria and record the actions of the filter to the dtrackr history graph.
Because of the ... filter specification, all parameters MUST BE NAMED. This function is the
opposite of exclude_all() and the filtering criteria work to identify rows to include i.e. the results
include anything that match any of the criteria. If na.rm=TRUE they also keep anything that cannot
be evaluated by the criteria.

Usage

include_any(
.data,
...,
.headline = .defaultHeadline(),
na.rm = TRUE,
.type = "inclusion",
.asOffshoot = FALSE,
.tag = NULL

)

32 include_any

Arguments

.data a dataframe which may be grouped

... a dplyr filter specification as a set of formulae where the LHS are predicates to
test the data set against, items that match at least one of the predicates will be
included. The RHS is a glue specification, defining the message, to be entered
in the history graph for each predicate matched. This can refer to grouping
variables, variables from the environment and {.included} and {.matched} or
{.missing} (included = matched+missing), {.count} and {.total} - group and
overall counts respectively, e.g. "excluding {.matched} items and {.missing}
with missing values".

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

na.rm (default TRUE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

.type default "inclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with the history graph updated with the summary of included items as a
new stage

Examples

library(dplyr)
library(dtrackr)

iris %>% track() %>% group_by(Species) %>% include_any(
Petal.Length > 5 ~ "{.included} long ones",
Petal.Length < 2 ~ "{.included} short ones"

) %>% history()

simultaneous evaluation of criteria:
data.frame(a = 1:10) %>%

track() %>%
include_any(

These two criteria identify the same value and one item is excluded
a > 1 ~ "{.included} value > 1",
a != min(a) ~ "{.included} everything but the smallest value",

) %>%
status() %>%
history()

the behaviour is equivalent to dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a > 1, a != min(a)) %>%

inner_join.trackr_df 33

nrow()

step-wise evaluation of criteria results in a different output
data.frame(a = 1:10) %>%

track() %>%
Performing the same exclusion sequentially results in 2 items
being excluded as the criteria no longer identify the same
item.
include_any(a > 1 ~ "{.included} value > 1") %>%
include_any(a != min(a) ~ "{.included} everything but the smallest value") %>%
status() %>%
history()

the behaviour is equivalent to dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a > 1) %>%
dplyr::filter(a != min(a)) %>%
nrow()

inner_join.trackr_df Inner joins

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::inner_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
inner_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Inner join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::inner_join

34 inner_join.trackr_df

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

inner_join.trackr_df 35

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::inner_join()

36 intersect.trackr_df

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Inner join
join = lhs %>% inner_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

intersect.trackr_df Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

S3 method for class 'trackr_df'
intersect(
x,
y,
...,
.messages = "{.count.out} in intersection",
.headline = "Intersection"

)

Arguments

x, y Vectors to combine.
... a collection of tracked data frames to combine
.messages a set of glue specs. The glue code can use any global variable, or {.count.out}
.headline a glue spec. The glue code can use any global variable, or {.count.out}

intersect.trackr_df 37

Value

the dplyr output with the history graph updated.

See Also

generics::intersect()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

38 left_join.trackr_df

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

left_join.trackr_df Left join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::left_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
left_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Left join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::left_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.

left_join.trackr_df 39

To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

40 left_join.trackr_df

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::left_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

mutate.trackr_df 41

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Left join
join = lhs %>% left_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

mutate.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
mutate(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

42 mutate.trackr_df

Named arguments passed on to dplyr::mutate

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.keep Control which columns from .data are retained in the output. Grouping
columns and columns created by ... are always kept.

• "all" retains all columns from .data. This is the default.
• "used" retains only the columns used in ... to create new columns.

This is useful for checking your work, as it displays inputs and outputs
side-by-side.

• "unused" retains only the columns not used in ... to create new columns.
This is useful if you generate new columns, but no longer need the
columns used to generate them.

• "none" doesn’t retain any extra columns from .data. Only the group-
ing variables and columns created by ... are kept.

.before,.after <tidy-select> Optionally, control where new columns should
appear (the default is to add to the right hand side). See relocate() for
more details.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::mutate()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

mutate
In this example we compare the column names of the input and the
output to identify the new columns created by the mutate operation as

nest_join.trackr_df 43

the `.new_cols` variable
iris %>%

track() %>%
mutate(extra_col = NA_real_,

.messages="{.new_cols}",

.headline="Extra columns from mutate:") %>%
history()

nest_join.trackr_df Nest join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::nest_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
nest_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS", "{.count.out} matched"),
.headline = "Nest join by {.keys}"

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::nest_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.

44 nest_join.trackr_df

For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

keep Should the new list-column contain join keys? The default will preserve
the join keys for inequality joins.

name The name of the list-column created by the join. If NULL, the default, the
name of y is used.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::nest_join()

pause 45

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Nest join
join = lhs %>% nest_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

pause Pause tracking the data frame.

Description

Pausing tracking of a data frame may be required if an operation is about to be performed that
creates a lot of groupings or that you otherwise don’t want to pollute the history graph (e.g. maybe
selecting something using an anti-join). Once paused the history is not updated until a resume() is
called, or when the data frame is ungrouped (if auto is enabled).

Usage

pause(.data, auto = FALSE)

Arguments

.data a tracked dataframe

auto if TRUE the tracking will resume automatically when the number of groups has
fallen to a sensible level (default is FALSE)?

Value

the .data dataframe with history graph tracking paused

Examples

iris %>% track() %>% pause() %>% history()

46 pivot_longer.trackr_df

pivot_longer.trackr_df

Reshaping data using tidyr::pivot_longer

Description

A drop in replacement for tidyr::pivot_longer() which optionally takes a message and headline
to store in the history graph.

Usage

S3 method for class 'trackr_df'
pivot_longer(data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

data A data frame to pivot.

... Additional arguments passed on to methods. Named arguments passed on to
tidyr::pivot_longer

cols <tidy-select> Columns to pivot into longer format.
cols_vary When pivoting cols into longer format, how should the output rows

be arranged relative to their original row number?
• "fastest", the default, keeps individual rows from cols close together

in the output. This often produces intuitively ordered output when you
have at least one key column from data that is not involved in the
pivoting process.

• "slowest" keeps individual columns from cols close together in the
output. This often produces intuitively ordered output when you utilize
all of the columns from data in the pivoting process.

names_to A character vector specifying the new column or columns to create
from the information stored in the column names of data specified by cols.

• If length 0, or if NULL is supplied, no columns will be created.
• If length 1, a single column will be created which will contain the col-

umn names specified by cols.
• If length >1, multiple columns will be created. In this case, one of
names_sep or names_pattern must be supplied to specify how the
column names should be split. There are also two additional character
values you can take advantage of:
– NA will discard the corresponding component of the column name.
– ".value" indicates that the corresponding component of the column

name defines the name of the output column containing the cell val-
ues, overriding values_to entirely.

names_prefix A regular expression used to remove matching text from the
start of each variable name.

pivot_longer.trackr_df 47

names_sep,names_pattern If names_to contains multiple values, these argu-
ments control how the column name is broken up.
names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (speci-
fying a regular expression to split on).
names_pattern takes the same specification as extract(), a regular ex-
pression containing matching groups (()).
If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_ptypes,values_ptypes Optionally, a list of column name-prototype
pairs. Alternatively, a single empty prototype can be supplied, which will
be applied to all columns. A prototype (or ptype for short) is a zero-length
vector (like integer() or numeric()) that defines the type, class, and at-
tributes of a vector. Use these arguments if you want to confirm that the
created columns are the types that you expect. Note that if you want to
change (instead of confirm) the types of specific columns, you should use
names_transform or values_transform instead.

names_transform,values_transform Optionally, a list of column name-function
pairs. Alternatively, a single function can be supplied, which will be applied
to all columns. Use these arguments if you need to change the types of spe-
cific columns. For example, names_transform = list(week = as.integer)
would convert a character variable called week to an integer.
If not specified, the type of the columns generated from names_to will be
character, and the type of the variables generated from values_to will be
the common type of the input columns used to generate them.

names_repair What happens if the output has invalid column names? The
default, "check_unique" is to error if the columns are duplicated. Use
"minimal" to allow duplicates in the output, or "unique" to de-duplicated
by adding numeric suffixes. See vctrs::vec_as_names() for more op-
tions.

values_to A string specifying the name of the column to create from the data
stored in cell values. If names_to is a character containing the special
.value sentinel, this value will be ignored, and the name of the value col-
umn will be derived from part of the existing column names.

values_drop_na If TRUE, will drop rows that contain only NAs in the value_to
column. This effectively converts explicit missing values to implicit miss-
ing values, and should generally be used only when missing values in data
were created by its structure.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the result of the tidyr::pivot_longer but with a history graph updated.

48 pivot_wider.trackr_df

See Also

tidyr::pivot_longer()

pivot_wider.trackr_df Reshaping data using tidyr::pivot_wider

Description

A drop in replacement for tidyr::pivot_wider() which optionally takes a message and headline
to store in the history graph.

Usage

S3 method for class 'trackr_df'
pivot_wider(data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

data A data frame to pivot.

... Additional arguments passed on to methods. Named arguments passed on to
tidyr::pivot_wider

id_cols <tidy-select> A set of columns that uniquely identify each obser-
vation. Typically used when you have redundant variables, i.e. variables
whose values are perfectly correlated with existing variables.
Defaults to all columns in data except for the columns specified through
names_from and values_from. If a tidyselect expression is supplied, it
will be evaluated on data after removing the columns specified through
names_from and values_from.

id_expand Should the values in the id_cols columns be expanded by expand()
before pivoting? This results in more rows, the output will contain a com-
plete expansion of all possible values in id_cols. Implicit factor levels that
aren’t represented in the data will become explicit. Additionally, the row
values corresponding to the expanded id_cols will be sorted.

names_from,values_from <tidy-select> A pair of arguments describing which
column (or columns) to get the name of the output column (names_from),
and which column (or columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the
front of the output column.

names_prefix String added to the start of every variable name. This is par-
ticularly useful if names_from is a numeric vector and you want to create
syntactic variable names.

names_sep If names_from or values_from contains multiple variables, this
will be used to join their values together into a single string to use as a
column name.

pivot_wider.trackr_df 49

names_glue Instead of names_sep and names_prefix, you can supply a glue
specification that uses the names_from columns (and special .value) to
create custom column names.

names_sort Should the column names be sorted? If FALSE, the default, column
names are ordered by first appearance.

names_vary When names_from identifies a column (or columns) with multiple
unique values, and multiple values_from columns are provided, in what
order should the resulting column names be combined?

• "fastest" varies names_from values fastest, resulting in a column
naming scheme of the form: value1_name1, value1_name2, value2_name1, value2_name2.
This is the default.

• "slowest" varies names_from values slowest, resulting in a column
naming scheme of the form: value1_name1, value2_name1, value1_name2, value2_name2.

names_expand Should the values in the names_from columns be expanded by
expand() before pivoting? This results in more columns, the output will
contain column names corresponding to a complete expansion of all pos-
sible values in names_from. Implicit factor levels that aren’t represented
in the data will become explicit. Additionally, the column names will be
sorted, identical to what names_sort would produce.

names_repair What happens if the output has invalid column names? The
default, "check_unique" is to error if the columns are duplicated. Use
"minimal" to allow duplicates in the output, or "unique" to de-duplicated
by adding numeric suffixes. See vctrs::vec_as_names() for more op-
tions.

values_fill Optionally, a (scalar) value that specifies what each value should
be filled in with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

values_fn Optionally, a function applied to the value in each cell in the out-
put. You will typically use this when the combination of id_cols and
names_from columns does not uniquely identify an observation.
This can be a named list if you want to apply different aggregations to
different values_from columns.

unused_fn Optionally, a function applied to summarize the values from the
unused columns (i.e. columns not identified by id_cols, names_from, or
values_from).
The default drops all unused columns from the result.
This can be a named list if you want to apply different aggregations to
different unused columns.
id_cols must be supplied for unused_fn to be useful, since otherwise all
unspecified columns will be considered id_cols.
This is similar to grouping by the id_cols then summarizing the unused
columns using unused_fn.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

50 plot.trackr_graph

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the data dataframe result of the tidyr::pivot_wider function but with a history graph updated
with a .message if requested.

See Also

tidyr::pivot_wider()

plot.trackr_graph Plots a history graph as html

Description

Plots a history graph as html

Usage

S3 method for class 'trackr_graph'
plot(x, fill = "lightgrey", fontsize = "8", colour = "black", ...)

Arguments

x a dtrackr history graph (e.g. output from history())

fill the default node fill colour

fontsize the default font size

colour the default font colour

... not used

Value

HTML displayed

Examples

library(dplyr)
library(dtrackr)
iris %>% comment("hello {.total} rows") %>% history() %>% plot()

print.trackr_graph 51

print.trackr_graph Print a history graph to the console

Description

Print a history graph to the console

Usage

S3 method for class 'trackr_graph'
print(x, ...)

Arguments

x a dtrackr history graph (e.g. output from p_get())

... not used

Value

nothing

Examples

library(dplyr)
library(dtrackr)
iris %>% comment("hello {.total} rows") %>% history() %>% print()

p_add_count dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_add_count(x, ..., .messages = "", .headline = "", .tag = NULL)

52 p_add_count

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by. Named arguments passed on to dplyr::add_count

wt <data-masking> Frequency weights. Can be NULL or a variable:
• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.
name The name of the new column in the output.

If omitted, it will default to n. If there’s already a column called n, it will
use nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding
ns until it gets a new name.

.drop Handling of factor levels that don’t appear in the data, passed on to
group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels
of factors that don’t exist in the data).
[Deprecated] For add_count(): deprecated since it can’t actually affect
the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::add_count()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

add_count
adding in a count or tally column as a new column
iris %>%

p_add_tally 53

track() %>%
add_count(Species, name="new_count_total",

.messages="{.new_cols}",
.messages="{.cols}",
.headline="New columns from add_count:") %>%

history()

add_tally
iris %>%

track() %>%
group_by(Species) %>%
dtrackr::add_tally(wt=Petal.Length, name="new_tally_total",

.messages="{.new_cols}",

.headline="New columns from add_tally:") %>%
history()

p_add_tally dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_add_tally(x, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

54 p_anti_join

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::add_tally()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

add_count
adding in a count or tally column as a new column
iris %>%

track() %>%
add_count(Species, name="new_count_total",

.messages="{.new_cols}",
.messages="{.cols}",
.headline="New columns from add_count:") %>%

history()

add_tally
iris %>%

track() %>%
group_by(Species) %>%
dtrackr::add_tally(wt=Petal.Length, name="new_tally_total",

.messages="{.new_cols}",

.headline="New columns from add_tally:") %>%
history()

p_anti_join Anti join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::anti_join()
for more details on the underlying functions.

p_anti_join 55

Usage

p_anti_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS", "{.count.out} not matched"),
.headline = "Semi join by {.keys}"

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::anti_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

56 p_arrange

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::anti_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Anti join
join = lhs %>% anti_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_arrange dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_arrange(.data, ..., .messages = "", .headline = "", .tag = NULL)

p_arrange 57

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::arrange

.by_group If TRUE, will sort first by grouping variable. Applies to grouped data
frames only.

.locale The locale to sort character vectors in.
• If NULL, the default, uses the "C" locale unless the dplyr.legacy_locale

global option escape hatch is active. See the dplyr-locale help page for
more details.

• If a single string from stringi::stri_locale_list() is supplied,
then this will be used as the locale to sort with. For example, "en"
will sort with the American English locale. This requires the stringi
package.

• If "C" is supplied, then character vectors will always be sorted in the
C locale. This does not require stringi and is often much faster than
supplying a locale identifier.

The C locale is not the same as English locales, such as "en", particu-
larly when it comes to data containing a mix of upper and lower case let-
ters. This is explained in more detail on the locale help page under the
Default locale section.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::arrange()

58 p_bind_cols

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

arrange
In this case we sort the data descending and show the first value
is the same as the maximum value.
iris %>%

track() %>%
arrange(
desc(Petal.Width),
.messages="{.count} items, columns: {.cols}",
.headline="Reordered dataframe:") %>%

history()

p_bind_cols Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

p_bind_cols(
...,
.messages = "{.count.out} in combined set",
.headline = "Bind columns"

)

Arguments

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

p_bind_cols 59

See Also

dplyr::bind_cols()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)

60 p_bind_rows

not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_bind_rows Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

p_bind_rows(..., .messages = "{.count.out} in union", .headline = "Union")

Arguments

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::bind_rows()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

p_capture_exclusions 61

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_capture_exclusions Start capturing exclusions on a tracked dataframe.

62 p_clear

Description

Start capturing exclusions on a tracked dataframe.

Usage

p_capture_exclusions(.data, .capture = TRUE)

Arguments

.data a tracked dataframe

.capture Should we capture exclusions (things removed from the data set). This is useful
for debugging data issues but comes at a significant cost. Defaults to the value
of getOption("dtrackr.exclusions") or FALSE.

Value

the .data dataframe with the exclusions flag set (or cleared if .capture=FALSE).

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% filter(Species!="versicolor") %>% history()

p_clear Clear the dtrackr history graph

Description

This is unlikely to be needed directly and is mostly and internal function

Usage

p_clear(.data)

Arguments

.data a dataframe which may be grouped

Value

the .data dataframe with the history graph removed

Examples

library(dplyr)
library(dtrackr)
mtcars %>% track() %>% comment("A comment") %>% p_clear() %>% history()

p_comment 63

p_comment Add a generic comment to the dtrackr history graph

Description

A comment can be any kind of note and is added once for every current grouping as defined by the
.message field. It can be made context specific by including variables such as {.count} and {.total}
in .message which refer to the grouped and ungrouped counts at this current stage of the pipeline
respectively. It can also pull in any global variable.

Usage

p_comment(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = (.type == "exclusion"),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

.messages a character vector of glue specifications. A glue specification can refer to any
grouping variables of .data, or any variables defined in the calling environment,
the {.total} of all rows, the {.count} variable which is the count in each group
and {.strata} a description of the group

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment, or the {.total} variable (which is nrow(.data))
and {.strata} which is a description of the grouping

.type one of "info","...,"exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the same .data dataframe with the history graph updated with the comment

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% comment("hello {.total} rows") %>% history()

64 p_count_if

p_copy Copy the dtrackr history graph from one dataframe to another

Description

Copy the dtrackr history graph from one dataframe to another

Usage

p_copy(.data, from)

Arguments

.data a dataframe which may be grouped

from the dataframe to copy the history graph from

Value

the .data dataframe with the history graph of "from"

Examples

mtcars %>% p_copy(iris %>% comment("A comment")) %>% history()

p_count_if Simple count_if dplyr summary function

Description

Simple count_if dplyr summary function

Usage

p_count_if(..., na.rm = TRUE)

Arguments

... expression to be evaluated

na.rm ignore NA values?

Value

a count of the number of times the expression evaluated to true, in the current context

p_count_subgroup 65

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% dplyr::group_by(Species)
tmp %>% dplyr::summarise(long_ones = p_count_if(Petal.Length > 4))

p_count_subgroup Add a subgroup count to the dtrackr history graph

Description

A frequent use case for more detailed description is to have a subgroup count within a flowchart.
This works best for factor subgroup columns but other data will be converted to a factor automati-
cally. The count of the items in each subgroup is added as a new stage in the flowchart.

Usage

p_count_subgroup(
.data,
.subgroup,
...,
.messages = .defaultCountSubgroup(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL,
.maxsubgroups = .defaultMaxSupportedGroupings()

)

Arguments

.data a dataframe which may be grouped

.subgroup a column with a small number of levels (e.g. a factor)

... passed to base::factor(subgroup values, ...) to allow reordering of lev-
els etc.

.messages a character vector of glue specifications. A glue specification can refer to any-
thing from the calling environment, {.subgroup} for the subgroup column name
and {.name} for the subgroup column value, {.count} for the subgroup column
count, {.subtotal} for the current stratification grouping count and {.total} for
the whole dataset count

.headline a glue specification which can refer to grouping variables of .data, {.subtotal} for
the current grouping count, or any variables defined in the calling environment

.type one of "info","exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

66 p_distinct

.tag if you want to use the summary data from this step in the future then give it a
name with .tag.

.maxsubgroups the maximum number of discrete values allowed in .subgroup is configurable
with options("dtrackr.max_supported_groupings"=XX). The default is 16.
Large values produce unwieldy flow charts.

Value

the same .data dataframe with the history graph updated with a subgroup count as a new stage

Examples

library(dplyr)
library(dtrackr)
survival::cgd %>% track() %>% group_by(treat) %>%

count_subgroup(center) %>% history()

p_distinct Distinct values of data

Description

Distinct acts in the same way as in dplyr::distinct. Prior to the operation the size of the group
is calculated {.count.in} and after the operation the output size {.count.out} The group {.strata} is
also available (if grouped) for reporting. See dplyr::distinct().

Usage

p_distinct(
.data,
...,
.messages = "removing {.count.in-.count.out} duplicates",
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row
will be preserved. If omitted, will use all variables in the data frame. Named
arguments passed on to dplyr::distinct

.keep_all If TRUE, keep all variables in .data. If a combination of ... is not
distinct, this keeps the first row of values.

p_excluded 67

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with distinct values and history graph updated.

See Also

dplyr::distinct()

Examples

library(dplyr)
library(dtrackr)

tmp = bind_rows(iris %>% track(), iris %>% track() %>% filter(Petal.Length > 5))
tmp %>% group_by(Species) %>% distinct() %>% history()

p_excluded Get the dtrackr excluded data record

Description

Get the dtrackr excluded data record

Usage

p_excluded(.data, simplify = TRUE)

Arguments

.data a dataframe which may be grouped

simplify return a single summary dataframe of all exclusions.

Value

a new dataframe of the excluded data up to this point in the workflow. This dataframe is by default
flattened, but if .simplify=FALSE has a nested structure containing records excluded at each part
of the pipeline.

68 p_exclude_all

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% capture_exclusions()
tmp %>% exclude_all(

Petal.Length > 5.8 ~ "{.excluded} long ones",
Petal.Length < 1.3 ~ "{.excluded} short ones",
.stage = "petal length exclusion"

) %>% excluded()

p_exclude_all Exclude all items matching one or more criteria

Description

Apply a set of filters and summarise the actions of the filter to the dtrackr history graph. Because
of the ... filter specification, all parameters MUST BE NAMED. The filters work in an combinatorial
manner, i.e. the results EXCLUDE ALL rows that match any of the criteria. If na.rm = TRUE they
also remove anything that cannot be evaluated by any criteria.

Usage

p_exclude_all(
.data,
...,
.headline = .defaultHeadline(),
na.rm = FALSE,
.type = "exclusion",
.asOffshoot = TRUE,
.stage = (if (is.null(.tag)) "" else .tag),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

... a dplyr filter specification as a set of formulae where the LHS are predicates to
test the data set against, items that match any of the predicates will be excluded.
The RHS is a glue specification, defining the message, to be entered in the his-
tory graph for each predicate. This can refer to grouping variables variables
from the environment and {.excluded} and {.matched} or {.missing} (excluded
= matched+missing), {.count} and {.total} - group and overall counts respec-
tively, e.g. "excluding {.matched} items and {.missing} with missing values".

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

na.rm (default FALSE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

p_exclude_all 69

.type default "exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = TRUE).

.stage a name for this step in the pathway

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with the history graph updated with the summary of excluded items as
a new offshoot stage

Examples

library(dplyr)
library(dtrackr)

iris %>% track() %>% capture_exclusions() %>% exclude_all(
Petal.Length > 5 ~ "{.excluded} long ones",
Petal.Length < 2 ~ "{.excluded} short ones"

) %>% history()

simultaneous evaluation of criteria:
data.frame(a = 1:10) %>%

track() %>%
exclude_all(

These two criteria identify the same value and one item is excluded
a > 9 ~ "{.excluded} value > 9",
a == max(a) ~ "{.excluded} max value",

) %>%
status() %>%
history()

the behaviour is equivalent to the inverse of dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a <= 9, a != max(a)) %>%
nrow()

step-wise evaluation of criteria results in a different output
data.frame(a = 1:10) %>%

track() %>%
Performing the same exclusion sequentially results in 2 items
being excluded as the criteria no longer identify the same
item.
exclude_all(a > 9 ~ "{.excluded} value > 9") %>%
exclude_all(a == max(a) ~ "{.excluded} max value") %>%
status() %>%
history()

the behaviour is equivalent to the inverse of dplyr's filter function:
data.frame(a=1:10) %>%

70 p_filter

dplyr::filter(a <= 9) %>%
dplyr::filter(a != max(a)) %>%
nrow()

p_filter Filtering data

Description

Filter acts in the same way as in dplyr where predicates which evaluate to TRUE act to select items
to include, and items for which the predicate cannot be evaluated are excluded. For tracking prior to
the filter operation the size of each group is calculated {.count.in} and after the operation the output
size of each group {.count.out}. The grouping {.strata} is also available (if grouped) for reporting.
See dplyr::filter().

Usage

p_filter(
.data,
...,
.messages = "excluded {.excluded} items",
.headline = .defaultHeadline(),
.type = "exclusion",
.asOffshoot = (.type == "exclusion"),
.stage = (if (is.null(.tag)) "" else .tag),
.tag = NULL

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept. Named arguments passed on to dplyr::filter

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

p_flowchart 71

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type the format type of the action typically an exclusion

.asOffshoot if the type is exclusion, .asOffshoot places the information box outside of the
main flow, as an exclusion.

.stage a name for this step in the pathway

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with history graph updated

See Also

dplyr::filter()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% group_by(Species)
tmp %>% filter(Petal.Length > 5) %>% history()

p_flowchart Flowchart output

Description

Generate a flowchart of the history of the dataframe(s), with all the tracked data pipeline as stages
in the flowchart. Multiple dataframes can be plotted together in which case an attempt is made to
determine which parts are common.

Usage

p_flowchart(
.data,
filename = NULL,
size = std_size$full,
maxWidth = size$width,
maxHeight = size$height,
formats = c("dot", "png", "pdf", "svg"),
defaultToHTML = TRUE,
landscape = size$rot != 0,
...

)

72 p_full_join

Arguments

.data the tracked dataframe(s) either as a single dataframe or as a list of dataframes.

filename a file name which will be where the formatted flowcharts are saved. If no exten-
sion is specified the output formats are determined by the formats parameter.

size a named list with 3 elements, length and width in inches and rotation. A prede-
fined set of standard sizes are available in the std_size object.

maxWidth a width (on the paper) in inches if size is not defined

maxHeight a height (on the paper) in inches if size is not defined

formats some of pdf,dot,svg,png,ps

defaultToHTML if the correct output format is not easy to determine from the context, default
providing HTML (TRUE) or to embedding the PNG (FALSE)

landscape rotate the output by 270 degrees into a landscape format. maxWidth and maxHeight
still apply and refer to the paper width to fit the flowchart into after rotation. (you
might need to flip width and height)

... other parameters passed onto either p_get_as_dot(), notable ones are fill
(background colour e.g. lightgrey), fontsize (in points), colour (font colour)

Value

the nature of the flowchart output depends on the context in which the function is called. It will be
some form of browse-able html output if called from an interactive session or a PNG/PDF link if in
knitr and knitting latex or word type outputs, if file name is specified the output will also be saved
at the given location.

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% comment(.tag = "step1") %>% filter(Species!="versicolor")
tmp %>% group_by(Species) %>% comment(.tag="step2") %>% flowchart()

p_full_join Full join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::full_join()
for more details on the underlying functions.

p_full_join 73

Usage

p_full_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Full join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::full_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

74 p_full_join

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

p_get 75

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::full_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Full join
join = lhs %>% full_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_get Get the dtrackr history graph

Description

This provides the raw history graph and is not really intended for mainstream use. The internal
structure of the graph is explained below. print and plot S3 methods exist for the dtrackr history
graph.

76 p_get_as_dot

Usage

p_get(.data)

Arguments

.data a dataframe which may be grouped

Value

the history graph. This is a list, of class trackr_graph, containing the following named items:

• excluded - the data items that have been excluded thus far as a nested dataframe

• tags - a dataframe of tag-value pairs containing the summary of the data at named points in
the data flow (see tagged())

• nodes - a dataframe of the nodes of the flow chart

• edges - an edge list (as a dataframe) of the relationships between the nodes in the flow chart

• head - the current most recent nodes added into the graph as a dataframe.

The format of this data may grow over time but these fields are unlikely to be changed.

Examples

library(dplyr)
library(dtrackr)
graph = iris %>% track() %>% comment("A comment") %>% history()
print(graph)

p_get_as_dot DOT output

Description

(advance usage) outputs a dtrackr history graph as a DOT string for rendering with Graphviz

Usage

p_get_as_dot(.data, fill = "lightgrey", fontsize = "8", colour = "black", ...)

Arguments

.data the tracked dataframe

fill the default node fill colour

fontsize the default font size

colour the default font colour

... not used

p_group_by 77

Value

a representation of the history graph in Graphviz dot format.

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% comment(.tag = "step1") %>% filter(Species!="versicolor")
dot = tmp %>% group_by(Species) %>% comment(.tag="step2") %>% p_get_as_dot()
cat(dot)

p_group_by Stratifying your analysis

Description

Grouping a data set acts in the normal way. When tracking a dataframe sometimes a group_by()
operation will create a lot of groups. This happens for example if you are doing a group_by(),
summarise() step that is aggregating data on a fine scale, e.g. by day in a time-series. This is
generally a terrible idea when tracking a dataframe as the resulting flowchart will have many many
branches and be illegible. dtrackr will detect this issue and pause tracking the dataframe with a
warning. It is up to the user to the resume() tracking when the large number of groups have been re-
solved e.g. using a dplyr::ungroup(). This limit is configurable with options("dtrackr.max_supported_groupings"=XX).
The default is 16. See dplyr::group_by().

Usage

p_group_by(
.data,
...,
.messages = "stratify by {.cols}",
.headline = NULL,
.tag = NULL,
.maxgroups = .defaultMaxSupportedGroupings()

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... In group_by(), variables or computations to group by. Computations are always
done on the ungrouped data frame. To perform computations on the grouped
data, you need to use a separate mutate() step before the group_by(). Compu-
tations are not allowed in nest_by(). In ungroup(), variables to remove from
the grouping. Named arguments passed on to dplyr::group_by

78 p_group_modify

.add When FALSE, the default, group_by() will override existing groups. To
add to the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a new
grouping variable called add, and conflicts with our naming conventions.

.drop Drop groups formed by factor levels that don’t appear in the data? The
default is TRUE except when .data has been previously grouped with .drop
= FALSE. See group_by_drop_default() for details.

x A tbl()

.messages a set of glue specs. The glue code can use any global variable, or {.cols} which
is the columns that are being grouped by.

.headline a headline glue spec. The glue code can use any global variable, or {.cols}.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

.maxgroups the maximum number of subgroups allowed before the tracking is paused.

Value

the .data but grouped.

See Also

dplyr::group_by()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% group_by(Species, .messages="stratify by {.cols}")
tmp %>% comment("{.strata}") %>% history()

p_group_modify Group-wise modification of data and complex operations

Description

Group modifying a data set acts in the normal way. The internal mechanics of the modify func-
tion are opaque to the history. This means these can be used to wrap any unsupported opera-
tion without losing the history (e.g. df %>% track() %>% group_modify(function(d,...) { d
%>% unsupported_operation() })) Prior to the operation the size of the group is calculated
{.count.in} and after the operation the output size {.count.out} The group {.strata} is also avail-
able (if grouped) for reporting See dplyr::group_modify().

p_group_modify 79

Usage

p_group_modify(
.data,
...,
.messages = NULL,
.headline = .defaultHeadline(),
.type = "modify",
.tag = NULL

)

Arguments

.data A grouped tibble

... Additional arguments passed on to .f Named arguments passed on to dplyr::group_modify

.f A function or formula to apply to each group.
If a function, it is used as is. It should have at least 2 formal arguments.
If a formula, e.g. ~ head(.x), it is converted to a function.
In the formula, you can use

• . or .x to refer to the subset of rows of .tbl for the given group
• .y to refer to the key, a one row tibble with one column per grouping

variable that identifies the group
.keep are the grouping variables kept in .x

.messages a set of glue specs. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.headline a headline glue spec. The glue code can use any global variable, or {.strata},{.count.in},and
{.count.out}

.type default "modify": used to define formatting

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the transformed .data dataframe with the history graph updated.

See Also

dplyr::group_modify()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% track() %>% group_by(Species)
tmp %>% group_modify(

function(d,g,...) { return(tibble::tibble(x=runif(10))) },
.messages="{.count.in} in, {.count.out} out"

) %>% history()

80 p_include_any

p_include_any Include any items matching a criteria

Description

Apply a set of inclusion criteria and record the actions of the filter to the dtrackr history graph.
Because of the ... filter specification, all parameters MUST BE NAMED. This function is the
opposite of exclude_all() and the filtering criteria work to identify rows to include i.e. the results
include anything that match any of the criteria. If na.rm=TRUE they also keep anything that cannot
be evaluated by the criteria.

Usage

p_include_any(
.data,
...,
.headline = .defaultHeadline(),
na.rm = TRUE,
.type = "inclusion",
.asOffshoot = FALSE,
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

... a dplyr filter specification as a set of formulae where the LHS are predicates to
test the data set against, items that match at least one of the predicates will be
included. The RHS is a glue specification, defining the message, to be entered
in the history graph for each predicate matched. This can refer to grouping
variables, variables from the environment and {.included} and {.matched} or
{.missing} (included = matched+missing), {.count} and {.total} - group and
overall counts respectively, e.g. "excluding {.matched} items and {.missing}
with missing values".

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

na.rm (default TRUE) if the filter cannot be evaluated for a row count that row as
missing and either exclude it (TRUE) or don’t exclude it (FALSE)

.type default "inclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the filtered .data dataframe with the history graph updated with the summary of included items as a
new stage

p_inner_join 81

Examples

library(dplyr)
library(dtrackr)

iris %>% track() %>% group_by(Species) %>% include_any(
Petal.Length > 5 ~ "{.included} long ones",
Petal.Length < 2 ~ "{.included} short ones"

) %>% history()

simultaneous evaluation of criteria:
data.frame(a = 1:10) %>%

track() %>%
include_any(

These two criteria identify the same value and one item is excluded
a > 1 ~ "{.included} value > 1",
a != min(a) ~ "{.included} everything but the smallest value",

) %>%
status() %>%
history()

the behaviour is equivalent to dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a > 1, a != min(a)) %>%
nrow()

step-wise evaluation of criteria results in a different output
data.frame(a = 1:10) %>%

track() %>%
Performing the same exclusion sequentially results in 2 items
being excluded as the criteria no longer identify the same
item.
include_any(a > 1 ~ "{.included} value > 1") %>%
include_any(a != min(a) ~ "{.included} everything but the smallest value") %>%
status() %>%
history()

the behaviour is equivalent to dplyr's filter function:
data.frame(a=1:10) %>%

dplyr::filter(a > 1) %>%
dplyr::filter(a != min(a)) %>%
nrow()

p_inner_join Inner joins

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::inner_join()
for more details on the underlying functions.

82 p_inner_join

Usage

p_inner_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Inner join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::inner_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

p_inner_join 83

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

84 p_intersect

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::inner_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Inner join
join = lhs %>% inner_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_intersect Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

p_intersect 85

Usage

p_intersect(
x,
y,
...,
.messages = "{.count.out} in intersection",
.headline = "Intersection"

)

Arguments

x, y Vectors to combine.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

generics::intersect()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)

86 p_left_join

not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_left_join Left join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::left_join()
for more details on the underlying functions.

Usage

p_left_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

p_left_join 87

.headline = "Left join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::left_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:

88 p_left_join

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

• "any" returns one match detected in y, with no guarantees on which
match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

p_mutate 89

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::left_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Left join
join = lhs %>% left_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_mutate dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_mutate(.data, ..., .messages = "", .headline = "", .tag = NULL)

90 p_mutate

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::mutate

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.keep Control which columns from .data are retained in the output. Grouping
columns and columns created by ... are always kept.

• "all" retains all columns from .data. This is the default.
• "used" retains only the columns used in ... to create new columns.

This is useful for checking your work, as it displays inputs and outputs
side-by-side.

• "unused" retains only the columns not used in ... to create new columns.
This is useful if you generate new columns, but no longer need the
columns used to generate them.

• "none" doesn’t retain any extra columns from .data. Only the group-
ing variables and columns created by ... are kept.

.before,.after <tidy-select> Optionally, control where new columns should
appear (the default is to add to the right hand side). See relocate() for
more details.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::mutate()

p_nest_join 91

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

mutate
In this example we compare the column names of the input and the
output to identify the new columns created by the mutate operation as
the `.new_cols` variable
iris %>%

track() %>%
mutate(extra_col = NA_real_,

.messages="{.new_cols}",

.headline="Extra columns from mutate:") %>%
history()

p_nest_join Nest join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::nest_join()
for more details on the underlying functions.

Usage

p_nest_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS", "{.count.out} matched"),
.headline = "Nest join by {.keys}"

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::nest_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.

92 p_nest_join

If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

keep Should the new list-column contain join keys? The default will preserve
the join keys for inequality joins.

name The name of the list-column created by the join. If NULL, the default, the
name of y is used.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

p_pause 93

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::nest_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Nest join
join = lhs %>% nest_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_pause Pause tracking the data frame.

Description

Pausing tracking of a data frame may be required if an operation is about to be performed that
creates a lot of groupings or that you otherwise don’t want to pollute the history graph (e.g. maybe
selecting something using an anti-join). Once paused the history is not updated until a resume() is
called, or when the data frame is ungrouped (if auto is enabled).

Usage

p_pause(.data, auto = FALSE)

Arguments

.data a tracked dataframe

auto if TRUE the tracking will resume automatically when the number of groups has
fallen to a sensible level (default is FALSE)?

94 p_pivot_longer

Value

the .data dataframe with history graph tracking paused

Examples

iris %>% track() %>% pause() %>% history()

p_pivot_longer Reshaping data using tidyr::pivot_longer

Description

A drop in replacement for tidyr::pivot_longer() which optionally takes a message and headline
to store in the history graph.

Usage

p_pivot_longer(data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

data A data frame to pivot.

... Additional arguments passed on to methods. Named arguments passed on to
tidyr::pivot_longer

cols <tidy-select> Columns to pivot into longer format.
cols_vary When pivoting cols into longer format, how should the output rows

be arranged relative to their original row number?
• "fastest", the default, keeps individual rows from cols close together

in the output. This often produces intuitively ordered output when you
have at least one key column from data that is not involved in the
pivoting process.

• "slowest" keeps individual columns from cols close together in the
output. This often produces intuitively ordered output when you utilize
all of the columns from data in the pivoting process.

names_to A character vector specifying the new column or columns to create
from the information stored in the column names of data specified by cols.

• If length 0, or if NULL is supplied, no columns will be created.
• If length 1, a single column will be created which will contain the col-

umn names specified by cols.
• If length >1, multiple columns will be created. In this case, one of
names_sep or names_pattern must be supplied to specify how the
column names should be split. There are also two additional character
values you can take advantage of:
– NA will discard the corresponding component of the column name.

p_pivot_longer 95

– ".value" indicates that the corresponding component of the column
name defines the name of the output column containing the cell val-
ues, overriding values_to entirely.

names_prefix A regular expression used to remove matching text from the
start of each variable name.

names_sep,names_pattern If names_to contains multiple values, these argu-
ments control how the column name is broken up.
names_sep takes the same specification as separate(), and can either be a
numeric vector (specifying positions to break on), or a single string (speci-
fying a regular expression to split on).
names_pattern takes the same specification as extract(), a regular ex-
pression containing matching groups (()).
If these arguments do not give you enough control, use pivot_longer_spec()
to create a spec object and process manually as needed.

names_ptypes,values_ptypes Optionally, a list of column name-prototype
pairs. Alternatively, a single empty prototype can be supplied, which will
be applied to all columns. A prototype (or ptype for short) is a zero-length
vector (like integer() or numeric()) that defines the type, class, and at-
tributes of a vector. Use these arguments if you want to confirm that the
created columns are the types that you expect. Note that if you want to
change (instead of confirm) the types of specific columns, you should use
names_transform or values_transform instead.

names_transform,values_transform Optionally, a list of column name-function
pairs. Alternatively, a single function can be supplied, which will be applied
to all columns. Use these arguments if you need to change the types of spe-
cific columns. For example, names_transform = list(week = as.integer)
would convert a character variable called week to an integer.
If not specified, the type of the columns generated from names_to will be
character, and the type of the variables generated from values_to will be
the common type of the input columns used to generate them.

names_repair What happens if the output has invalid column names? The
default, "check_unique" is to error if the columns are duplicated. Use
"minimal" to allow duplicates in the output, or "unique" to de-duplicated
by adding numeric suffixes. See vctrs::vec_as_names() for more op-
tions.

values_to A string specifying the name of the column to create from the data
stored in cell values. If names_to is a character containing the special
.value sentinel, this value will be ignored, and the name of the value col-
umn will be derived from part of the existing column names.

values_drop_na If TRUE, will drop rows that contain only NAs in the value_to
column. This effectively converts explicit missing values to implicit miss-
ing values, and should generally be used only when missing values in data
were created by its structure.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

96 p_pivot_wider

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the result of the tidyr::pivot_longer but with a history graph updated.

See Also

tidyr::pivot_longer()

p_pivot_wider Reshaping data using tidyr::pivot_wider

Description

A drop in replacement for tidyr::pivot_wider() which optionally takes a message and headline
to store in the history graph.

Usage

p_pivot_wider(data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

data A data frame to pivot.

... Additional arguments passed on to methods. Named arguments passed on to
tidyr::pivot_wider

id_cols <tidy-select> A set of columns that uniquely identify each obser-
vation. Typically used when you have redundant variables, i.e. variables
whose values are perfectly correlated with existing variables.
Defaults to all columns in data except for the columns specified through
names_from and values_from. If a tidyselect expression is supplied, it
will be evaluated on data after removing the columns specified through
names_from and values_from.

id_expand Should the values in the id_cols columns be expanded by expand()
before pivoting? This results in more rows, the output will contain a com-
plete expansion of all possible values in id_cols. Implicit factor levels that
aren’t represented in the data will become explicit. Additionally, the row
values corresponding to the expanded id_cols will be sorted.

names_from,values_from <tidy-select> A pair of arguments describing which
column (or columns) to get the name of the output column (names_from),
and which column (or columns) to get the cell values from (values_from).
If values_from contains multiple values, the value will be added to the
front of the output column.

p_pivot_wider 97

names_prefix String added to the start of every variable name. This is par-
ticularly useful if names_from is a numeric vector and you want to create
syntactic variable names.

names_sep If names_from or values_from contains multiple variables, this
will be used to join their values together into a single string to use as a
column name.

names_glue Instead of names_sep and names_prefix, you can supply a glue
specification that uses the names_from columns (and special .value) to
create custom column names.

names_sort Should the column names be sorted? If FALSE, the default, column
names are ordered by first appearance.

names_vary When names_from identifies a column (or columns) with multiple
unique values, and multiple values_from columns are provided, in what
order should the resulting column names be combined?

• "fastest" varies names_from values fastest, resulting in a column
naming scheme of the form: value1_name1, value1_name2, value2_name1, value2_name2.
This is the default.

• "slowest" varies names_from values slowest, resulting in a column
naming scheme of the form: value1_name1, value2_name1, value1_name2, value2_name2.

names_expand Should the values in the names_from columns be expanded by
expand() before pivoting? This results in more columns, the output will
contain column names corresponding to a complete expansion of all pos-
sible values in names_from. Implicit factor levels that aren’t represented
in the data will become explicit. Additionally, the column names will be
sorted, identical to what names_sort would produce.

names_repair What happens if the output has invalid column names? The
default, "check_unique" is to error if the columns are duplicated. Use
"minimal" to allow duplicates in the output, or "unique" to de-duplicated
by adding numeric suffixes. See vctrs::vec_as_names() for more op-
tions.

values_fill Optionally, a (scalar) value that specifies what each value should
be filled in with when missing.
This can be a named list if you want to apply different fill values to different
value columns.

values_fn Optionally, a function applied to the value in each cell in the out-
put. You will typically use this when the combination of id_cols and
names_from columns does not uniquely identify an observation.
This can be a named list if you want to apply different aggregations to
different values_from columns.

unused_fn Optionally, a function applied to summarize the values from the
unused columns (i.e. columns not identified by id_cols, names_from, or
values_from).
The default drops all unused columns from the result.
This can be a named list if you want to apply different aggregations to
different unused columns.
id_cols must be supplied for unused_fn to be useful, since otherwise all
unspecified columns will be considered id_cols.

98 p_reframe

This is similar to grouping by the id_cols then summarizing the unused
columns using unused_fn.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the data dataframe result of the tidyr::pivot_wider function but with a history graph updated
with a .message if requested.

See Also

tidyr::pivot_wider()

p_reframe Summarise a data set

Description

Summarising a data set acts in the normal dplyr manner to collapse groups to individual rows. Any
columns resulting from the summary can be added to the history graph. In the history this also joins
any stratified branches and allows you to generate some summary statistics about the un-grouped
data. See dplyr::summarise().

Usage

p_reframe(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead. Named arguments passed on to dplyr::reframe

p_relocate 99

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.messages a set of glue specs. The glue code can use any summary variable defined in the
... parameter, or any global variable, or {.strata}

.headline a headline glue spec. The glue code can use any summary variable defined in
the ... parameter, or any global variable, or {.strata}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe summarised with the history graph updated showing the summarise operation
as a new stage

See Also

dplyr::reframe()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% group_by(Species) %>% track()
tmp %>% reframe(tibble(

param = c("mean","min","max"),
value = c(mean(Petal.Length), min(Petal.Length), max(Petal.Length))
), .messages="length {param}: {value}") %>% history()

p_relocate dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_relocate(.data, ..., .messages = "", .headline = "", .tag = NULL)

100 p_relocate

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::relocate

.before,.after <tidy-select> Destination of columns selected by Sup-
plying neither will move columns to the left-hand side; specifying both is
an error.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::relocate()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

relocate, this shows how the columns can be reordered
iris %>%

track() %>%
group_by(Species) %>%
relocate(

tidyselect::starts_with("Sepal"),

p_rename 101

.after=Species,

.messages="{.cols}",

.headline="Order of columns from relocate:") %>%
history()

p_rename dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_rename(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::rename

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

102 p_rename_with

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::rename()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

rename can show us which columns are new and which have been
removed (with .dropped_cols)
iris %>%

track() %>%
group_by(Species) %>%
rename(
Stamen.Width = Sepal.Width,
Stamen.Length = Sepal.Length,
.messages=c("added {.new_cols}","dropped {.dropped_cols}"),
.headline="Renamed columns:") %>%

history()

p_rename_with dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_rename_with(.data, ..., .messages = "", .headline = "", .tag = NULL)

p_rename_with 103

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::rename_with

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::rename_with()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

rename can show us which columns are new and which have been
removed (with .dropped_cols)
iris %>%

track() %>%
group_by(Species) %>%
rename(

104 p_resume

Stamen.Width = Sepal.Width,
Stamen.Length = Sepal.Length,
.messages=c("added {.new_cols}","dropped {.dropped_cols}"),
.headline="Renamed columns:") %>%

history()

p_resume Resume tracking the data frame.

Description

This may reset the grouping of the tracked data if the grouping structure has changed since the
data frame was paused. If you try and resume tracking a data frame with too many groups (as
defined by options("dtrackr.max_supported_groupings"=XX)) then the resume will fail and
the data frame will still be paused. This can be overridden by specifying a value for the .maxgroups
parameter.

Usage

p_resume(.data, ...)

Arguments

.data a tracked dataframe

... Named arguments passed on to p_group_by

.messages a set of glue specs. The glue code can use any global variable, or
{.cols} which is the columns that are being grouped by.

.headline a headline glue spec. The glue code can use any global variable, or
{.cols}.

.tag if you want the summary data from this step in the future then give it a
name with .tag.

.maxgroups the maximum number of subgroups allowed before the tracking is
paused.

... In group_by(), variables or computations to group by. Computations are
always done on the ungrouped data frame. To perform computations on
the grouped data, you need to use a separate mutate() step before the
group_by(). Computations are not allowed in nest_by(). In ungroup(),
variables to remove from the grouping.

Value

the .data data frame with history graph tracking resumed

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% pause() %>% resume() %>% history()

p_right_join 105

p_right_join Right join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::right_join()
for more details on the underlying functions.

Usage

p_right_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in linked set"),

.headline = "Right join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::right_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

106 p_right_join

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

p_right_join 107

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::right_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Full join
join = lhs %>% full_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

108 p_select

p_select dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

p_select(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::select()

p_semi_join 109

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

select
The output of the select verb (here using tidyselect syntax) can be captured
and here all column names are being reported with the .cols variable.
iris %>%

track() %>%
group_by(Species) %>%
select(
tidyselect::starts_with("Sepal"),
.messages="{.cols}",
.headline="Output columns from select:") %>%

history()

p_semi_join Semi join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::semi_join()
for more details on the underlying functions.

Usage

p_semi_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in intersection"),

.headline = "Semi join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::semi_join

110 p_semi_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::semi_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

p_set 111

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Semi join
join = lhs %>% semi_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

p_set Set the dtrackr history graph

Description

This is unlikely to be useful to an end user and is called automatically by many of the other functions
here. On the off chance you need to copy history metadata from one dataframe to another

Usage

p_set(.data, .graph)

Arguments

.data a dataframe which may be grouped

.graph a history graph list (consisting of nodes, edges, and head) see examples

Value

the .data dataframe with the history graph metadata set to the provided value

Examples

library(dplyr)
library(dtrackr)
mtcars %>% p_set(iris %>% comment("A comment") %>% p_get()) %>% history()

112 p_setdiff

p_setdiff Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

p_setdiff(
x,
y,
...,
.messages = "{.count.out} items in difference",
.headline = "Difference"

)

Arguments

x, y Vectors to combine.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::setdiff()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",

p_slice 113

species == "Droid" ~ "{.included} droids"
)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_slice Slice operations

114 p_slice

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

p_slice_head 115

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice()

Examples

library(dplyr)
library(dtrackr)

an arbitrary 50 items from the iris dataframe is selected. The
history is tracked
iris %>% track() %>% slice(51:100) %>% history()

p_slice_head Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice_head(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

116 p_slice_head

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_head

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

p_slice_max 117

See Also

dplyr::slice_head()

Examples

library(dplyr)
library(dtrackr)

the first 50% of the data frame, is taken and the history tracked
iris %>% track() %>% group_by(Species) %>%

slice_head(prop=0.5,.messages="{.count.out} / {.count.in}",
.headline="First {sprintf('%1.0f',prop*100)}%") %>%

history()

The last 100 items:
iris %>% track() %>% group_by(Species) %>%

slice_tail(n=100,.messages="{.count.out} / {.count.in}",
.headline="Last 100") %>%

history()

p_slice_max Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice_max(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_max

118 p_slice_max

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_max()

Examples

library(dplyr)
library(dtrackr)

Subset the data by the maximum of a given value

p_slice_min 119

iris %>% track() %>% group_by(Species) %>%
slice_max(prop=0.5, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} = {prop} (with ties)",

.headline="Widest 50% Sepals") %>%
history()

The narrowest 25% of the iris data set by group can be calculated in the
slice_min() function. Recording this is a matter of tracking and
using glue specs.
iris %>%

track() %>%
group_by(Species) %>%
slice_min(prop=0.25, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} (with ties)",

.headline="narrowest {sprintf('%1.0f',prop*100)}% {Species}") %>%
history()

p_slice_min Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice_min(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_min

120 p_slice_min

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_min()

Examples

library(dplyr)
library(dtrackr)

Subset the data by the maximum of a given value

p_slice_sample 121

iris %>% track() %>% group_by(Species) %>%
slice_max(prop=0.5, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} = {prop} (with ties)",

.headline="Widest 50% Sepals") %>%
history()

The narrowest 25% of the iris data set by group can be calculated in the
slice_min() function. Recording this is a matter of tracking and
using glue specs.
iris %>%

track() %>%
group_by(Species) %>%
slice_min(prop=0.25, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} (with ties)",

.headline="narrowest {sprintf('%1.0f',prop*100)}% {Species}") %>%
history()

p_slice_sample Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice_sample(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_sample

122 p_slice_sample

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_sample()

Examples

library(dplyr)
library(dtrackr)

In this example the iris dataframe is resampled 100 times with replacement
within each group and the

p_slice_tail 123

iris %>%
track() %>%
group_by(Species) %>%
slice_sample(n=100, replace=TRUE,

.messages="{.count.out} / {.count.in} = {n}",

.headline="100 {Species}") %>%
history()

p_slice_tail Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

p_slice_tail(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_tail

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

124 p_slice_tail

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_tail()

Examples

library(dplyr)
library(dtrackr)

the first 50% of the data frame, is taken and the history tracked
iris %>% track() %>% group_by(Species) %>%

slice_head(prop=0.5,.messages="{.count.out} / {.count.in}",
.headline="First {sprintf('%1.0f',prop*100)}%") %>%

history()

The last 100 items:
iris %>% track() %>% group_by(Species) %>%

slice_tail(n=100,.messages="{.count.out} / {.count.in}",
.headline="Last 100") %>%

p_status 125

history()

p_status Add a summary to the dtrackr history graph

Description

In the middle of a pipeline you may wish to document something about the data that is more complex
than the simple counts. status is essentially a dplyr summarisation step which is connected to a
glue specification output, that is recorded in the data frame history. This means you can do an
arbitrary interim summarisation and put the result into the flowchart without disrupting the pipeline
flow.

Usage

p_status(
.data,
...,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

... any normal dplyr::summarise specification, e.g. count=n() or av=mean(x),
etcetera.

.messages a character vector of glue specifications. A glue specification can refer to the
summary outputs, any grouping variables of .data, the {.strata}, or any variables
defined in the calling environment

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

.type one of "info","exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Details

Because of the ... summary specification parameters MUST BE NAMED.

Value

the same .data dataframe with the history metadata updated with the status inserted as a new stage

126 p_summarise

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% group_by(Species)
tmp %>% status(

long = p_count_if(Petal.Length>5),
short = p_count_if(Petal.Length<2),
.messages="{Species}: {long} long ones & {short} short ones"

) %>% history()

p_summarise Summarise a data set

Description

Summarising a data set acts in the normal dplyr manner to collapse groups to individual rows. Any
columns resulting from the summary can be added to the history graph. In the history this also joins
any stratified branches and allows you to generate some summary statistics about the un-grouped
data. See dplyr::summarise().

Usage

p_summarise(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead. Named arguments passed on to dplyr::summarise

.by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.groups [Experimental] Grouping structure of the result.
• "drop_last": dropping the last level of grouping. This was the only

supported option before version 1.0.0.
• "drop": All levels of grouping are dropped.
• "keep": Same grouping structure as .data.
• "rowwise": Each row is its own group.

p_tagged 127

When .groups is not specified, it is chosen based on the number of rows
of the results:

• If all the results have 1 row, you get "drop_last".
• If the number of rows varies, you get "keep" (note that returning a

variable number of rows was deprecated in favor of reframe(), which
also unconditionally drops all levels of grouping).

In addition, a message informs you of that choice, unless the result is un-
grouped, the option "dplyr.summarise.inform" is set to FALSE, or when
summarise() is called from a function in a package.

.messages a set of glue specs. The glue code can use any summary variable defined in the
... parameter, or any global variable, or {.strata}

.headline a headline glue spec. The glue code can use any summary variable defined in
the ... parameter, or any global variable, or {.strata}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe summarised with the history graph updated showing the summarise operation
as a new stage

See Also

dplyr::summarise()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% group_by(Species) %>% track()
tmp %>% summarise(avg = mean(Petal.Length), .messages="{avg} length") %>% history()

p_tagged Retrieve tagged data in the history graph

Description

Any counts at the individual stages that was stored with a .tag option in a pipeline step can be
recovered here. The idea here is to provide a quick way to access a single value for the counts or
other details tagged in a pipeline into a format that can be reported in text of a document. (e.g. for
a results section). For more examples the consort statement vignette has some examples of use.

Usage

p_tagged(.data, .tag = NULL, .strata = NULL, .glue = NULL, ...)

128 p_track

Arguments

.data the tracked dataframe.

.tag (optional) the tag to retrieve.

.strata (optional) filter the tagged data by the strata. set to "" to filter just the top level
ungrouped data.

.glue (optional) a glue specification which will be applied to the tagged content to
generate a .label for the tagged content.

... (optional) any other named parameters will be passed to glue::glue and can
be used to generate a label.

Value

various things depending on what is requested.

By default a tibble with a .tag column and all associated summary values in a nested .content
column.

If a .strata column is specified the results are filtered to just those that match a given .strata
grouping (i.e. this will be the grouping label on the flowchart). Ungrouped content will have an
empty "" as .strata

If .tag is specified the result will be for a single tag and .content will be automatically un-nested
to give a single un-nested dataframe of the content captured at the .tag tagged step. This could be
single or multiple rows depending on whether the original data was grouped at the point of tagging.

If both the .tag and .glue is specified a .label column will be computed from .glue and the
tagged content. If the result of this is a single row then just the string value of .label is returned.

If just the .glue is specified, an un-nested dataframe with .tag,.strata and .label columns with
a label for each tag in each strata.

If this seems complex then the best thing is to experiment until you get the output you want, leaving
any .glue options until you think you know what you are doing. It made sense at the time.

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% comment(.tag = "step1")
tmp = tmp %>% filter(Species!="versicolor") %>% group_by(Species)
tmp %>% comment(.tag="step2") %>% tagged(.glue = "{.count}/{.total}")

p_track Start tracking the dtrackr history graph

Description

Start tracking the dtrackr history graph

p_transmute 129

Usage

p_track(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

.messages a character vector of glue specifications. A glue specification can refer to any
grouping variables of .data, or any variables defined in the calling environment,
the {.total} variable which is the count of all rows, the {.count} variable which is
the count of rows in the current group and the {.strata} which describes the cur-
rent group. Defaults to the value of getOption("dtrackr.default_message").

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment, or the {.total} variable which is nrow(.data),
or {.strata} a summary of the current group. Defaults to the value of getOption("dtrackr.default_headline").

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with additional history graph metadata, to allow tracking.

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% history()

p_transmute dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

130 p_transmute

Usage

p_transmute(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::transmute()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

In this example we compare the column names of the input and the
output to identify the new columns created by the transmute operation as
the `.new_cols` variable
Here we do the same for a transmute()
iris %>%

track() %>%
group_by(Species, .add=TRUE) %>%

p_ungroup 131

transmute(
sepal.w = Sepal.Width-1,
sepal.l = Sepal.Length+1,
.messages="{.new_cols}",
.headline="New columns from transmute:") %>%

history()

p_ungroup Remove a stratification from a data set

Description

Un-grouping a data set logically combines the different arms. In the history this joins any stratified
branches and acts as a specific type of status(), allowing you to generate some summary statistics
about the un-grouped data. See dplyr::ungroup().

Usage

p_ungroup(
x,
...,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

x A tbl()

... variables to remove from the grouping.

.messages a set of glue specs. The glue code can use any any global variable, or {.count}.
the default is "total {.count} items"

.headline a headline glue spec. The glue code can use {.count} and {.strata}.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe but ungrouped with the history graph updated showing the ungroup operation
as a new stage.

See Also

dplyr::ungroup()

132 p_union

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% group_by(Species) %>% comment("A test")
tmp %>% ungroup(.messages="{.count} items in combined") %>% history()

p_union Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

p_union(
x,
y,
...,
.messages = "{.count.out} unique items in union",
.headline = "Distinct union"

)

Arguments

x, y Vectors to combine.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

generics::union()

p_union 133

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")

134 p_union_all

display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_union_all Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

p_union_all(
x,
y,
...,
.messages = "{.count.out} items in union",
.headline = "Union"

)

Arguments

x, y Pair of compatible data frames. A pair of data frames is compatible if they have
the same column names (possibly in different orders) and compatible types.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::union_all()

p_union_all 135

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")

136 reframe.trackr_df

display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

p_untrack Remove tracking from the dataframe

Description

Remove tracking from the dataframe

Usage

p_untrack(.data)

Arguments

.data a tracked dataframe

Value

the .data dataframe with history graph metadata removed.

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% untrack() %>% class()

reframe.trackr_df Summarise a data set

Description

Summarising a data set acts in the normal dplyr manner to collapse groups to individual rows. Any
columns resulting from the summary can be added to the history graph. In the history this also joins
any stratified branches and allows you to generate some summary statistics about the un-grouped
data. See dplyr::summarise().

Usage

S3 method for class 'trackr_df'
reframe(.data, ..., .messages = "", .headline = "", .tag = NULL)

relocate.trackr_df 137

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.

The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).

• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead.

.messages a set of glue specs. The glue code can use any summary variable defined in the
... parameter, or any global variable, or {.strata}

.headline a headline glue spec. The glue code can use any summary variable defined in
the ... parameter, or any global variable, or {.strata}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe summarised with the history graph updated showing the summarise operation
as a new stage

See Also

dplyr::reframe()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% group_by(Species) %>% track()
tmp %>% reframe(tibble(

param = c("mean","min","max"),
value = c(mean(Petal.Length), min(Petal.Length), max(Petal.Length))
), .messages="length {param}: {value}") %>% history()

relocate.trackr_df dplyr modifying operations

138 relocate.trackr_df

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
relocate(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::relocate

.before,.after <tidy-select> Destination of columns selected by Sup-
plying neither will move columns to the left-hand side; specifying both is
an error.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::relocate()

rename.trackr_df 139

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

relocate, this shows how the columns can be reordered
iris %>%

track() %>%
group_by(Species) %>%
relocate(
tidyselect::starts_with("Sepal"),
.after=Species,
.messages="{.cols}",
.headline="Order of columns from relocate:") %>%

history()

rename.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
rename(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).

140 rename.trackr_df

• NULL, to remove the column.

• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::rename

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::rename()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

rename can show us which columns are new and which have been
removed (with .dropped_cols)
iris %>%

track() %>%
group_by(Species) %>%
rename(

Stamen.Width = Sepal.Width,
Stamen.Length = Sepal.Length,
.messages=c("added {.new_cols}","dropped {.dropped_cols}"),
.headline="Renamed columns:") %>%

history()

rename_with.trackr_df 141

rename_with.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
rename_with(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

Named arguments passed on to dplyr::rename_with

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.
.messages a set of glue specs. The glue code can use any global variable, grouping variable,

{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

142 resume

See Also

dplyr::rename_with()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

rename can show us which columns are new and which have been
removed (with .dropped_cols)
iris %>%

track() %>%
group_by(Species) %>%
rename(
Stamen.Width = Sepal.Width,
Stamen.Length = Sepal.Length,
.messages=c("added {.new_cols}","dropped {.dropped_cols}"),
.headline="Renamed columns:") %>%

history()

resume Resume tracking the data frame.

Description

This may reset the grouping of the tracked data if the grouping structure has changed since the
data frame was paused. If you try and resume tracking a data frame with too many groups (as
defined by options("dtrackr.max_supported_groupings"=XX)) then the resume will fail and
the data frame will still be paused. This can be overridden by specifying a value for the .maxgroups
parameter.

Usage

resume(.data, ...)

Arguments

.data a tracked dataframe

... Named arguments passed on to p_group_by

.messages a set of glue specs. The glue code can use any global variable, or
{.cols} which is the columns that are being grouped by.

.headline a headline glue spec. The glue code can use any global variable, or
{.cols}.

right_join.trackr_df 143

.tag if you want the summary data from this step in the future then give it a
name with .tag.

.maxgroups the maximum number of subgroups allowed before the tracking is
paused.

... In group_by(), variables or computations to group by. Computations are
always done on the ungrouped data frame. To perform computations on
the grouped data, you need to use a separate mutate() step before the
group_by(). Computations are not allowed in nest_by(). In ungroup(),
variables to remove from the grouping. Named arguments passed on to
dplyr::group_by

.add When FALSE, the default, group_by() will override existing groups.
To add to the existing groups, use .add = TRUE.
This argument was previously called add, but that prevented creating a
new grouping variable called add, and conflicts with our naming con-
ventions.

.drop Drop groups formed by factor levels that don’t appear in the data?
The default is TRUE except when .data has been previously grouped
with .drop = FALSE. See group_by_drop_default() for details.

x A tbl()

Value

the .data data frame with history graph tracking resumed

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% pause() %>% resume() %>% history()

right_join.trackr_df Right join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::right_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
right_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",

144 right_join.trackr_df

"{.count.out} in linked set"),
.headline = "Right join by {.keys}"

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::right_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will
be added to the output to disambiguate them. Should be a character vector
of length 2.

keep Should the join keys from both x and y be preserved in the output?
• If NULL, the default, joins on equality retain only the keys from x, while

joins on inequality retain the keys from both inputs.
• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data

in key columns corresponding to rows that only exist in y are merged
into the key columns from x. Can’t be used when joining on inequality
conditions.

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

right_join.trackr_df 145

multiple Handling of rows in x with multiple matches in y. For each row of x:
• "all", the default, returns every match detected in y. This is the same

behavior as SQL.
• "any" returns one match detected in y, with no guarantees on which

match will be returned. It is often faster than "first" and "last" if
you just need to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be
handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows dur-
ing a join. It only checks for unmatched keys in the input that could poten-
tially drop rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for
x and y independently.

relationship Handling of the expected relationship between the keys of x and
y. If the expectations chosen from the list below are invalidated, an error is
thrown.

• NULL, the default, doesn’t expect there to be any relationship between x
and y. However, for equality joins it will check for a many-to-many re-
lationship (which is typically unexpected) and will warn if one occurs,
encouraging you to either take a closer look at your inputs or make this
relationship explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is pro-
vided to allow you to be explicit about this relationship if you know it
exists.

relationship doesn’t handle cases where there are zero matches. For that,
see unmatched.

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

146 save_dot

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::right_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Full join
join = lhs %>% full_join(rhs, by="name", multiple = "all") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

save_dot Save DOT content to a file

Description

Convert a digraph in dot format to SVG and save it to a range of output file types

Usage

save_dot(
dot,
filename,
size = std_size$half,
maxWidth = size$width,

select.trackr_df 147

maxHeight = size$height,
formats = c("dot", "png", "pdf", "svg"),
landscape = size$rot != 0,
...

)

Arguments

dot a graphviz dot string

filename the full path of the file name (minus extension for multiple formats)

size a named list with 3 elements, length and width in inches and rotation. A prede-
fined set of standard sizes are available in the std_size object.

maxWidth a width (on the paper) in inches if size is not defined

maxHeight a height (on the paper) in inches if size is not defined

formats some of pdf,dot,svg,png,ps

landscape rotate the output by 270 degrees into a landscape format. maxWidth and maxHeight
still apply and refer to the paper width to fit the flowchart into after rotation. (you
might need to flip width and height)

... ignored

Value

a list with items paths with the absolute paths of the saved files as a named list, and svg as the SVG
string of the rendered dot file.

Examples

save_dot("digraph {A->B}",tempfile())

select.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
select(.data, ..., .messages = "", .headline = "", .tag = NULL)

148 select.trackr_df

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::select()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

select
The output of the select verb (here using tidyselect syntax) can be captured
and here all column names are being reported with the .cols variable.
iris %>%

track() %>%
group_by(Species) %>%
select(
tidyselect::starts_with("Sepal"),
.messages="{.cols}",
.headline="Output columns from select:") %>%

history()

semi_join.trackr_df 149

semi_join.trackr_df Semi join

Description

Mutating joins behave as dplyr joins, except the history graph of the two sides of the joins is merged
resulting in a tracked dataframe with the history of both input dataframes. See dplyr::semi_join()
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
semi_join(
x,
y,
...,
.messages = c("{.count.lhs} on LHS", "{.count.rhs} on RHS",
"{.count.out} in intersection"),

.headline = "Semi join by {.keys}"
)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods. Named arguments passed on to dplyr::semi_join

by A join specification created with join_by(), or a character vector of vari-
ables to join by.
If NULL, the default, *_join() will perform a natural join, using all vari-
ables in common across x and y. A message lists the variables so that you
can check they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specifica-
tion. For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple
expressions. For example, join_by(a == b, c == d) will match x$a to y$b
and x$c to y$d. If the column names are the same between x and y, you
can shorten this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap
joins. See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector
of variable names to join by. For example, by = c("a", "b") joins x$a to
y$a and x$b to y$b. If variable names differ between x and y, use a named
character vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will
be copied into the same src as x. This allows you to join tables across srcs,
but it is a potentially expensive operation so you must opt into it.

150 semi_join.trackr_df

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never
match them together or to any other values. This is similar to joins for
database sources and to base::merge(incomparables = NA).

.messages a set of glue specs. The glue code can use any global variable, {.keys} for
the joining columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and
output dataframes sizes respectively

.headline a glue spec. The glue code can use any global variable, {.keys} for the join-
ing columns, {.count.lhs}, {.count.rhs}, {.count.out} for the input and output
dataframes sizes respectively

Value

the join of the two dataframes with the history graph updated.

See Also

dplyr::semi_join()

Examples

library(dplyr)
library(dtrackr)
Joins across data sets

example data uses the dplyr starways data
people = starwars %>% select(-films, -vehicles, -starships)
films = starwars %>% select(name,films) %>% tidyr::unnest(cols = c(films))

lhs = people %>% track() %>% comment("People df {.total}")
rhs = films %>% track() %>% comment("Films df {.total}") %>%

comment("a test comment")

Semi join
join = lhs %>% semi_join(rhs, by="name") %>% comment("joined {.total}")
See what the history of the graph is:
join %>% history() %>% print()
nrow(join)
Display the tracked graph (not run in examples)
join %>% flowchart()

setdiff.trackr_df 151

setdiff.trackr_df Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

S3 method for class 'trackr_df'
setdiff(
x,
y,
...,
.messages = "{.count.out} items in difference",
.headline = "Difference"

)

Arguments

x, y Vectors to combine.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::setdiff()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(

152 slice.trackr_df

species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

slice.trackr_df Slice operations

slice.trackr_df 153

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

154 slice_head.trackr_df

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice()

Examples

library(dplyr)
library(dtrackr)

an arbitrary 50 items from the iris dataframe is selected. The
history is tracked
iris %>% track() %>% slice(51:100) %>% history()

slice_head.trackr_df Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

slice_head.trackr_df 155

Usage

S3 method for class 'trackr_df'
slice_head(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_head

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

156 slice_max.trackr_df

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_head()

Examples

library(dplyr)
library(dtrackr)

the first 50% of the data frame, is taken and the history tracked
iris %>% track() %>% group_by(Species) %>%

slice_head(prop=0.5,.messages="{.count.out} / {.count.in}",
.headline="First {sprintf('%1.0f',prop*100)}%") %>%

history()

The last 100 items:
iris %>% track() %>% group_by(Species) %>%

slice_tail(n=100,.messages="{.count.out} / {.count.in}",
.headline="Last 100") %>%

history()

slice_max.trackr_df Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice_max(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

slice_max.trackr_df 157

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_max

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

158 slice_min.trackr_df

See Also

dplyr::slice_max()

Examples

library(dplyr)
library(dtrackr)

Subset the data by the maximum of a given value
iris %>% track() %>% group_by(Species) %>%

slice_max(prop=0.5, order_by = Sepal.Width,
.messages="{.count.out} / {.count.in} = {prop} (with ties)",
.headline="Widest 50% Sepals") %>%

history()

The narrowest 25% of the iris data set by group can be calculated in the
slice_min() function. Recording this is a matter of tracking and
using glue specs.
iris %>%

track() %>%
group_by(Species) %>%
slice_min(prop=0.25, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} (with ties)",

.headline="narrowest {sprintf('%1.0f',prop*100)}% {Species}") %>%
history()

slice_min.trackr_df Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice_min(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

slice_min.trackr_df 159

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_min

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

160 slice_sample.trackr_df

See Also

dplyr::slice_min()

Examples

library(dplyr)
library(dtrackr)

Subset the data by the maximum of a given value
iris %>% track() %>% group_by(Species) %>%

slice_max(prop=0.5, order_by = Sepal.Width,
.messages="{.count.out} / {.count.in} = {prop} (with ties)",
.headline="Widest 50% Sepals") %>%

history()

The narrowest 25% of the iris data set by group can be calculated in the
slice_min() function. Recording this is a matter of tracking and
using glue specs.
iris %>%

track() %>%
group_by(Species) %>%
slice_min(prop=0.25, order_by = Sepal.Width,

.messages="{.count.out} / {.count.in} (with ties)",

.headline="narrowest {sprintf('%1.0f',prop*100)}% {Species}") %>%
history()

slice_sample.trackr_df

Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice_sample(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

slice_sample.trackr_df 161

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_sample

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

162 slice_tail.trackr_df

See Also

dplyr::slice_sample()

Examples

library(dplyr)
library(dtrackr)

In this example the iris dataframe is resampled 100 times with replacement
within each group and the
iris %>%

track() %>%
group_by(Species) %>%
slice_sample(n=100, replace=TRUE,

.messages="{.count.out} / {.count.in} = {n}",

.headline="100 {Species}") %>%
history()

slice_tail.trackr_df Slice operations

Description

Slice operations behave as in dplyr, except the history graph can be updated with tracked dataframe
with the before and after sizes of the dataframe. See dplyr::slice(), dplyr::slice_head(),
dplyr::slice_tail(), dplyr::slice_min(), dplyr::slice_max(), dplyr::slice_sample(),
for more details on the underlying functions.

Usage

S3 method for class 'trackr_df'
slice_tail(
.data,
...,
.messages = c("{.count.in} before", "{.count.out} after"),
.headline = "slice data"

)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods. Named arguments
passed on to dplyr::slice_tail

slice_tail.trackr_df 163

.by,by [Experimental]
<tidy-select> Optionally, a selection of columns to group by for just
this operation, functioning as an alternative to group_by(). For details and
examples, see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE
(the default), the grouping structure is recalculated based on the resulting
data, otherwise the grouping is kept as is.

n,prop Provide either n, the number of rows, or prop, the proportion of rows
to select. If neither are supplied, n = 1 will be used. If n is greater than
the number of rows in the group (or prop > 1), the result will be silently
truncated to the group size. prop will be rounded towards zero to generate
an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For
example, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop =
-0.25 with 8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To
order by multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more
rows than you request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If
FALSE, NA values are sorted to the end (like in arrange()), so they will only
be included if there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector
of non-negative numbers the same length as the input. Weights are automat-
ically standardised to sum to 1.

replace Should sampling be performed with (TRUE) or without (FALSE, the
default) replacement.

.messages a set of glue specs. The glue code can use any global variable, {.count.in},
{.count.out} for the input and output dataframes sizes respectively and {.ex-
cluded} for the difference

.headline a glue spec. The glue code can use any global variable, {.count.in}, {.count.out}
for the input and output dataframes sizes respectively.

Value

the sliced dataframe with the history graph updated.

See Also

dplyr::slice_tail()

Examples

library(dplyr)
library(dtrackr)

the first 50% of the data frame, is taken and the history tracked
iris %>% track() %>% group_by(Species) %>%

164 status

slice_head(prop=0.5,.messages="{.count.out} / {.count.in}",
.headline="First {sprintf('%1.0f',prop*100)}%") %>%

history()

The last 100 items:
iris %>% track() %>% group_by(Species) %>%

slice_tail(n=100,.messages="{.count.out} / {.count.in}",
.headline="Last 100") %>%

history()

status Add a summary to the dtrackr history graph

Description

In the middle of a pipeline you may wish to document something about the data that is more complex
than the simple counts. status is essentially a dplyr summarisation step which is connected to a
glue specification output, that is recorded in the data frame history. This means you can do an
arbitrary interim summarisation and put the result into the flowchart without disrupting the pipeline
flow.

Usage

status(
.data,
...,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.type = "info",
.asOffshoot = FALSE,
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

... any normal dplyr::summarise specification, e.g. count=n() or av=mean(x),
etcetera.

.messages a character vector of glue specifications. A glue specification can refer to the
summary outputs, any grouping variables of .data, the {.strata}, or any variables
defined in the calling environment

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment

.type one of "info","exclusion": used to define formatting

.asOffshoot do you want this comment to be an offshoot of the main flow (default = FALSE).

.tag if you want the summary data from this step in the future then give it a name
with .tag.

std_size 165

Details

Because of the ... summary specification parameters MUST BE NAMED.

Value

the same .data dataframe with the history metadata updated with the status inserted as a new stage

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% group_by(Species)
tmp %>% status(

long = p_count_if(Petal.Length>5),
short = p_count_if(Petal.Length<2),
.messages="{Species}: {long} long ones & {short} short ones"

) %>% history()

std_size Standard paper sizes

Description

A list of standard paper sizes for outputting flowcharts or other dot graphs. These include width and
height dimensions in inches and can be used as one way to specify the output size of a dot graph,
including flowcharts (see the size parameter of flowchart()).

Usage

std_size

Format

An object of class list of length 12.

Details

The sizes available are A4, A5, full (fits a portrait A4 with margins), half (half an A4 with mar-
gins), third, two_third, quarter, sixth (all with reference to an A4 page with margins). There
are 2 landscape sizes A4_landscape and full_landscape which fit an A4 page with or without
margins. There are also 2 slide dimensions, to fit with standard presentation software dimensions.

This is just a convenience. Similar effects can be achieved by providing width and height param-
eters to flowchart() directly.

166 summarise.trackr_df

summarise.trackr_df Summarise a data set

Description

Summarising a data set acts in the normal dplyr manner to collapse groups to individual rows. Any
columns resulting from the summary can be added to the history graph. In the history this also joins
any stratified branches and allows you to generate some summary statistics about the un-grouped
data. See dplyr::summarise().

Usage

S3 method for class 'trackr_df'
summarise(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame, to add multiple columns from a single expression.

[Deprecated] Returning values with size 0 or >1 was deprecated as of 1.1.0.
Please use reframe() for this instead.

.messages a set of glue specs. The glue code can use any summary variable defined in the
... parameter, or any global variable, or {.strata}

.headline a headline glue spec. The glue code can use any summary variable defined in
the ... parameter, or any global variable, or {.strata}

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe summarised with the history graph updated showing the summarise operation
as a new stage

See Also

dplyr::summarise()

tagged 167

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% group_by(Species) %>% track()
tmp %>% summarise(avg = mean(Petal.Length), .messages="{avg} length") %>% history()

tagged Retrieve tagged data in the history graph

Description

Any counts at the individual stages that was stored with a .tag option in a pipeline step can be
recovered here. The idea here is to provide a quick way to access a single value for the counts or
other details tagged in a pipeline into a format that can be reported in text of a document. (e.g. for
a results section). For more examples the consort statement vignette has some examples of use.

Usage

tagged(.data, .tag = NULL, .strata = NULL, .glue = NULL, ...)

Arguments

.data the tracked dataframe.

.tag (optional) the tag to retrieve.

.strata (optional) filter the tagged data by the strata. set to "" to filter just the top level
ungrouped data.

.glue (optional) a glue specification which will be applied to the tagged content to
generate a .label for the tagged content.

... (optional) any other named parameters will be passed to glue::glue and can
be used to generate a label.

Value

various things depending on what is requested.

By default a tibble with a .tag column and all associated summary values in a nested .content
column.

If a .strata column is specified the results are filtered to just those that match a given .strata
grouping (i.e. this will be the grouping label on the flowchart). Ungrouped content will have an
empty "" as .strata

If .tag is specified the result will be for a single tag and .content will be automatically un-nested
to give a single un-nested dataframe of the content captured at the .tag tagged step. This could be
single or multiple rows depending on whether the original data was grouped at the point of tagging.

If both the .tag and .glue is specified a .label column will be computed from .glue and the
tagged content. If the result of this is a single row then just the string value of .label is returned.

168 track

If just the .glue is specified, an un-nested dataframe with .tag,.strata and .label columns with
a label for each tag in each strata.

If this seems complex then the best thing is to experiment until you get the output you want, leaving
any .glue options until you think you know what you are doing. It made sense at the time.

Examples

library(dplyr)
library(dtrackr)
tmp = iris %>% track() %>% comment(.tag = "step1")
tmp = tmp %>% filter(Species!="versicolor") %>% group_by(Species)
tmp %>% comment(.tag="step2") %>% tagged(.glue = "{.count}/{.total}")

track Start tracking the dtrackr history graph

Description

Start tracking the dtrackr history graph

Usage

track(
.data,
.messages = .defaultMessage(),
.headline = .defaultHeadline(),
.tag = NULL

)

Arguments

.data a dataframe which may be grouped

.messages a character vector of glue specifications. A glue specification can refer to any
grouping variables of .data, or any variables defined in the calling environment,
the {.total} variable which is the count of all rows, the {.count} variable which is
the count of rows in the current group and the {.strata} which describes the cur-
rent group. Defaults to the value of getOption("dtrackr.default_message").

.headline a glue specification which can refer to grouping variables of .data, or any vari-
ables defined in the calling environment, or the {.total} variable which is nrow(.data),
or {.strata} a summary of the current group. Defaults to the value of getOption("dtrackr.default_headline").

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe with additional history graph metadata, to allow tracking.

transmute.trackr_df 169

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% history()

transmute.trackr_df dplyr modifying operations

Description

See dplyr::mutate(), dplyr::add_count(), dplyr::add_tally(), dplyr::transmute(), dplyr::select(),
dplyr::relocate(), dplyr::rename() dplyr::rename_with(), dplyr::arrange() for more
details on underlying functions. dtrackr provides equivalent functions for mutating, selecting and
renaming a data set which act in the same way as dplyr. mutate / select / rename generally don’t
add anything in terms of provenance of data so the default behaviour is to miss these out of the
dtrackr history. This can be overridden with the .messages, or .headline values in which case
they behave just like a comment().

Usage

S3 method for class 'trackr_df'
transmute(.data, ..., .messages = "", .headline = "", .tag = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.messages a set of glue specs. The glue code can use any global variable, grouping variable,
{.new_cols} or {.dropped_cols} for changes to columns, {.cols} for the output
column names, or {.strata}. Defaults to nothing.

.headline a headline glue spec. The glue code can use any global variable, grouping vari-
able, {.new_cols}, {.dropped_cols}, {.cols} or {.strata}. Defaults to nothing.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

170 ungroup.trackr_df

Value

the .data dataframe after being modified by the dplyr equivalent function, but with the history
graph updated with a new stage if the .messages or .headline parameter is not empty.

See Also

dplyr::transmute()

Examples

library(dplyr)
library(dtrackr)

mutate and other functions are unitary operations that generally change
the structure but not size of a dataframe. In dtrackr these are by ignored
by default but we can change that so that their behaviour is obvious.

In this example we compare the column names of the input and the
output to identify the new columns created by the transmute operation as
the `.new_cols` variable
Here we do the same for a transmute()
iris %>%

track() %>%
group_by(Species, .add=TRUE) %>%
transmute(
sepal.w = Sepal.Width-1,
sepal.l = Sepal.Length+1,
.messages="{.new_cols}",
.headline="New columns from transmute:") %>%

history()

ungroup.trackr_df Remove a stratification from a data set

Description

Un-grouping a data set logically combines the different arms. In the history this joins any stratified
branches and acts as a specific type of status(), allowing you to generate some summary statistics
about the un-grouped data. See dplyr::ungroup().

Usage

S3 method for class 'trackr_df'
ungroup(
x,
...,
.messages = .defaultMessage(),

union.trackr_df 171

.headline = .defaultHeadline(),

.tag = NULL
)

Arguments

x A tbl()

... variables to remove from the grouping.

.messages a set of glue specs. The glue code can use any any global variable, or {.count}.
the default is "total {.count} items"

.headline a headline glue spec. The glue code can use {.count} and {.strata}.

.tag if you want the summary data from this step in the future then give it a name
with .tag.

Value

the .data dataframe but ungrouped with the history graph updated showing the ungroup operation
as a new stage.

See Also

dplyr::ungroup()

Examples

library(dplyr)
library(dtrackr)

tmp = iris %>% group_by(Species) %>% comment("A test")
tmp %>% ungroup(.messages="{.count} items in combined") %>% history()

union.trackr_df Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

172 union.trackr_df

Usage

S3 method for class 'trackr_df'
union(
x,
y,
...,
.messages = "{.count.out} unique items in union",
.headline = "Distinct union"

)

Arguments

x, y Vectors to combine.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

generics::union()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()

union_all.trackr_df 173

nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

union_all.trackr_df Set operations

Description

These perform set operations on tracked dataframes. It merges the history of 2 (or more) dataframes
and combines the rows (or columns). It calculates the total number of resulting rows as {.count.out}
in other terms it performs exactly the same operation as the equivalent dplyr operation. See
dplyr::bind_rows(), dplyr::bind_cols(), dplyr::intersect(), dplyr::union(), dplyr::setdiff(),dplyr::intersect(),
or dplyr::union_all() for the underlying function details.

Usage

S3 method for class 'trackr_df'
union_all(
x,

174 union_all.trackr_df

y,
...,
.messages = "{.count.out} items in union",
.headline = "Union"

)

Arguments

x, y Pair of compatible data frames. A pair of data frames is compatible if they have
the same column names (possibly in different orders) and compatible types.

... a collection of tracked data frames to combine

.messages a set of glue specs. The glue code can use any global variable, or {.count.out}

.headline a glue spec. The glue code can use any global variable, or {.count.out}

Value

the dplyr output with the history graph updated.

See Also

dplyr::union_all()

Examples

library(dplyr)
library(dtrackr)

Set operations
people = starwars %>% select(-films, -vehicles, -starships)
chrs = people %>% track("start")

lhs = chrs %>% include_any(
species == "Human" ~ "{.included} humans",
species == "Droid" ~ "{.included} droids"

)

these are different subsets of the same data
rhs = chrs %>% include_any(

species == "Human" ~ "{.included} humans",
species == "Gungan" ~ "{.included} gungans"

) %>% comment("{.count} gungans & humans")

Unions
set = bind_rows(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

untrack 175

set = union(lhs,rhs) %>% comment("{.count} human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = union_all(lhs,rhs) %>% comment("{.count} 2*human,droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

Intersections and differences

set = setdiff(lhs,rhs) %>% comment("{.count} droids and gungans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

set = intersect(lhs,rhs) %>% comment("{.count} humans")
display the history of the result:
set %>% history()
nrow(set)
not run - display the flowchart:
set %>% flowchart()

untrack Remove tracking from the dataframe

Description

Remove tracking from the dataframe

Usage

untrack(.data)

Arguments

.data a tracked dataframe

Value

the .data dataframe with history graph metadata removed.

176 untrack

Examples

library(dplyr)
library(dtrackr)
iris %>% track() %>% untrack() %>% class()

Index

∗ datasets
std_size, 165

?dplyr_by, 22, 42, 70, 90, 99, 114, 116, 118,
120, 122, 123, 126, 153, 155, 157,
159, 161, 163

?join_by, 25, 34, 39, 43, 55, 73, 82, 87, 92,
105, 110, 144, 149

add_count.trackr_df, 4
add_tally, 6
anti_join.trackr_df, 8
arrange(), 114, 116, 118, 120, 122, 124, 154,

155, 157, 159, 161, 163
arrange.trackr_df, 9

bind_cols, 11
bind_rows, 13

capture_exclusions, 14
comment, 15
count_subgroup, 16
cross_join(), 25, 34, 39, 44, 55, 73, 82, 87,

92, 105, 110, 144, 149

distinct.trackr_df, 17
dot2svg, 19
dplyr-locale, 10, 57
dplyr::add_count, 4, 52
dplyr::add_count(), 4, 6, 9, 41, 51, 53, 56,

89, 99, 101, 102, 108, 129, 138, 139,
141, 147, 169

dplyr::add_tally, 6
dplyr::add_tally(), 4, 6, 9, 41, 51, 53, 56,

89, 99, 101, 102, 108, 129, 138, 139,
141, 147, 169

dplyr::anti_join, 55
dplyr::anti_join(), 8, 54
dplyr::arrange, 9, 57
dplyr::arrange(), 4, 6, 9, 41, 51, 53, 56, 89,

99, 101, 102, 108, 129, 138, 139,
141, 147, 169

dplyr::bind_cols, 11
dplyr::bind_cols(), 11, 13, 36, 58, 60, 84,

112, 132, 134, 151, 171, 173
dplyr::bind_rows, 13
dplyr::bind_rows(), 11, 13, 36, 58, 60, 84,

112, 132, 134, 151, 171, 173
dplyr::distinct, 18, 66
dplyr::distinct(), 17, 66
dplyr::filter, 22, 70
dplyr::filter(), 22, 70
dplyr::full_join, 25, 73
dplyr::full_join(), 24, 72
dplyr::group_by, 28, 77, 143
dplyr::group_by(), 28, 77
dplyr::group_modify, 29, 79
dplyr::group_modify(), 29, 78
dplyr::inner_join, 33, 82
dplyr::inner_join(), 33, 81
dplyr::intersect(), 11, 13, 36, 58, 60, 84,

112, 132, 134, 151, 171, 173
dplyr::left_join, 38, 87
dplyr::left_join(), 38, 86
dplyr::mutate, 42, 90
dplyr::mutate(), 4, 6, 9, 41, 51, 53, 56, 89,

99, 101, 102, 108, 129, 138, 139,
141, 147, 169

dplyr::nest_join, 43, 91
dplyr::nest_join(), 43, 91
dplyr::reframe, 98
dplyr::relocate, 100, 138
dplyr::relocate(), 4, 6, 9, 41, 51, 53, 56,

89, 99, 101, 102, 108, 129, 138, 139,
141, 147, 169

dplyr::rename, 101, 140
dplyr::rename(), 4, 6, 9, 41, 51, 53, 56, 89,

99, 101, 102, 108, 129, 138, 139,
141, 147, 169

dplyr::rename_with, 103, 141
dplyr::rename_with(), 4, 6, 9, 41, 51, 53,

177

178 INDEX

56, 89, 99, 101, 102, 108, 129, 138,
139, 141, 147, 169

dplyr::right_join, 105, 144
dplyr::right_join(), 105, 143
dplyr::select(), 4, 6, 9, 41, 51, 53, 56, 89,

99, 101, 102, 108, 129, 138, 139,
141, 147, 169

dplyr::semi_join, 109, 149
dplyr::semi_join(), 109, 149
dplyr::setdiff(), 11, 13, 36, 58, 60, 84,

112, 132, 134, 151, 171, 173
dplyr::slice, 114, 153
dplyr::slice(), 114, 115, 117, 119, 121,

123, 153, 154, 156, 158, 160, 162
dplyr::slice_head, 116, 155
dplyr::slice_head(), 114, 115, 117, 119,

121, 123, 153, 154, 156, 158, 160,
162

dplyr::slice_max, 117, 157
dplyr::slice_max(), 114, 115, 117, 119,

121, 123, 153, 154, 156, 158, 160,
162

dplyr::slice_min, 119, 159
dplyr::slice_min(), 114, 115, 117, 119,

121, 123, 153, 154, 156, 158, 160,
162

dplyr::slice_sample, 121, 161
dplyr::slice_sample(), 114, 115, 117, 119,

121, 123, 153, 154, 156, 158, 160,
162

dplyr::slice_tail, 123, 162
dplyr::slice_tail(), 114, 115, 117, 119,

121, 123, 153, 154, 156, 158, 160,
162

dplyr::summarise, 126
dplyr::summarise(), 98, 126, 136, 166
dplyr::transmute(), 4, 6, 9, 41, 51, 53, 56,

89, 99, 101, 102, 108, 129, 138, 139,
141, 147, 169

dplyr::ungroup(), 131, 170
dplyr::union(), 11, 13, 36, 58, 60, 84, 112,

132, 134, 151, 171, 173
dplyr::union_all(), 11, 13, 36, 58, 60, 84,

112, 132, 134, 151, 171, 173

exclude_all, 20
exclude_all(), 31, 80
excluded, 19
expand(), 48, 49, 96, 97

extract(), 47, 95

filter.trackr_df, 22
flowchart, 23
flowchart(), 165
full_join.trackr_df, 24

group_by(), 5, 6, 22, 42, 52, 70, 90, 99, 114,
116, 118, 120, 122, 123, 126, 153,
155, 157, 159, 161, 163

group_by.trackr_df, 27
group_by_drop_default(), 28, 78, 143
group_modify.trackr_df, 29

history, 30
history(), 50

include_any, 31
inner_join.trackr_df, 33
intersect.trackr_df, 36

join_by(), 25, 34, 38, 39, 43, 55, 73, 82, 87,
91, 92, 105, 110, 144, 149

left_join.trackr_df, 38
locale, 10, 57

match(), 26, 34, 39, 44, 55, 74, 83, 87, 92,
106, 110, 144, 150

merge(), 26, 34, 39, 44, 55, 74, 83, 87, 92,
106, 110, 144, 150

mutate.trackr_df, 41

nest_join.trackr_df, 43

p_add_count, 51
p_add_tally, 53
p_anti_join, 54
p_arrange, 56
p_bind_cols, 58
p_bind_rows, 60
p_capture_exclusions, 61
p_clear, 62
p_comment, 63
p_copy, 64
p_count_if, 64
p_count_subgroup, 65
p_distinct, 66
p_exclude_all, 68
p_excluded, 67

INDEX 179

p_filter, 70
p_flowchart, 71
p_full_join, 72
p_get, 75
p_get(), 51
p_get_as_dot, 76
p_group_by, 77, 104, 142
p_group_modify, 78
p_include_any, 80
p_inner_join, 81
p_intersect, 84
p_left_join, 86
p_mutate, 89
p_nest_join, 91
p_pause, 93
p_pivot_longer, 94
p_pivot_wider, 96
p_reframe, 98
p_relocate, 99
p_rename, 101
p_rename_with, 102
p_resume, 104
p_right_join, 105
p_select, 108
p_semi_join, 109
p_set, 111
p_setdiff, 112
p_slice, 113
p_slice_head, 115
p_slice_max, 117
p_slice_min, 119
p_slice_sample, 121
p_slice_tail, 123
p_status, 125
p_summarise, 126
p_tagged, 127
p_track, 128
p_transmute, 129
p_ungroup, 131
p_union, 132
p_union_all, 134
p_untrack, 136
pause, 45
pivot_longer.trackr_df, 46
pivot_wider.trackr_df, 48
plot.trackr_graph, 50
print.trackr_graph, 51

reframe(), 98, 126, 127, 137, 166

reframe.trackr_df, 136
relocate(), 42, 90
relocate.trackr_df, 137
rename.trackr_df, 139
rename_with.trackr_df, 141
resume, 142
right_join.trackr_df, 143

save_dot, 146
select.trackr_df, 147
semi_join.trackr_df, 149
separate(), 47, 95
setdiff.trackr_df, 151
slice.trackr_df, 152
slice_head.trackr_df, 154
slice_max.trackr_df, 156
slice_min.trackr_df, 158
slice_sample.trackr_df, 160
slice_tail.trackr_df, 162
status, 164
status(), 131, 170
std_size, 24, 72, 147, 165
stringi::stri_locale_list(), 10, 57
summarise.trackr_df, 166

tagged, 167
tagged(), 31, 76
tbl(), 28, 78, 131, 143, 171
tidyr::pivot_longer, 46, 94
tidyr::pivot_longer(), 46, 94
tidyr::pivot_wider, 48, 96
tidyr::pivot_wider(), 48, 96
track, 168
transmute.trackr_df, 169

ungroup.trackr_df, 170
union.trackr_df, 171
union_all.trackr_df, 173
untrack, 175

vctrs::vec_as_names(), 11, 47, 49, 95, 97

	add_count.trackr_df
	add_tally
	anti_join.trackr_df
	arrange.trackr_df
	bind_cols
	bind_rows
	capture_exclusions
	comment
	count_subgroup
	distinct.trackr_df
	dot2svg
	excluded
	exclude_all
	filter.trackr_df
	flowchart
	full_join.trackr_df
	group_by.trackr_df
	group_modify.trackr_df
	history
	include_any
	inner_join.trackr_df
	intersect.trackr_df
	left_join.trackr_df
	mutate.trackr_df
	nest_join.trackr_df
	pause
	pivot_longer.trackr_df
	pivot_wider.trackr_df
	plot.trackr_graph
	print.trackr_graph
	p_add_count
	p_add_tally
	p_anti_join
	p_arrange
	p_bind_cols
	p_bind_rows
	p_capture_exclusions
	p_clear
	p_comment
	p_copy
	p_count_if
	p_count_subgroup
	p_distinct
	p_excluded
	p_exclude_all
	p_filter
	p_flowchart
	p_full_join
	p_get
	p_get_as_dot
	p_group_by
	p_group_modify
	p_include_any
	p_inner_join
	p_intersect
	p_left_join
	p_mutate
	p_nest_join
	p_pause
	p_pivot_longer
	p_pivot_wider
	p_reframe
	p_relocate
	p_rename
	p_rename_with
	p_resume
	p_right_join
	p_select
	p_semi_join
	p_set
	p_setdiff
	p_slice
	p_slice_head
	p_slice_max
	p_slice_min
	p_slice_sample
	p_slice_tail
	p_status
	p_summarise
	p_tagged
	p_track
	p_transmute
	p_ungroup
	p_union
	p_union_all
	p_untrack
	reframe.trackr_df
	relocate.trackr_df
	rename.trackr_df
	rename_with.trackr_df
	resume
	right_join.trackr_df
	save_dot
	select.trackr_df
	semi_join.trackr_df
	setdiff.trackr_df
	slice.trackr_df
	slice_head.trackr_df
	slice_max.trackr_df
	slice_min.trackr_df
	slice_sample.trackr_df
	slice_tail.trackr_df
	status
	std_size
	summarise.trackr_df
	tagged
	track
	transmute.trackr_df
	ungroup.trackr_df
	union.trackr_df
	union_all.trackr_df
	untrack
	Index

