Provides tools for detecting XOR-like patterns in variable pairs. Includes visualizations for pattern exploration.
Traditional feature selection methods often miss complex non-linear
relationships where variables interact to produce class differences. The
detectXOR package specifically targets XOR
patterns - relationships where class discrimination only
emerges through variable interactions, not individual variables
alone.
π XOR pattern detection - Statistical
identification using ΟΒ² and Wilcoxon tests
π Correlation analysis - Class-wise Kendall Ο
coefficients
π Visualization - Spaghetti plots and decision
boundary visualizations
β‘ Parallel processing - Multi-core acceleration for
large datasets
π¬ Robust statistics - Winsorization and scaling
options for outlier handling
Install the development version from GitHub:
# Install devtools if needed
if (!requireNamespace("devtools", quietly = TRUE)) { install.packages("devtools") }
# Install detectXOR
devtools::install_github("JornLotsch/detectXOR")The package requires R β₯ 3.5.0 and depends on: - dplyr,
tibble (data manipulation) - ggplot2,
ggh4x, scales (visualization) -
future, future.apply, pbmcapply,
parallel (parallel processing) - reshape2,
glue (data processing and string manipulation) -
DescTools (statistical tools) - Base R packages:
stats, utils, methods,
grDevices
Optional packages (suggested): - testthat,
knitr, rmarkdown (development and
documentation) - doParallel, foreach
(additional parallel processing options)
library(detectXOR)
# Load example data
data(XOR_data)
# Detect XOR patterns with default settings
results <- detectXOR(XOR_data, class_col = "class")
# View summary
print(results$results_df)# Detection with custom thresholds and parallel processing
results <- detect_xor(
  data = XOR_data,
  class_col = "class",
  p_threshold = 0.01,
  tau_threshold = 0.4,
  max_cores = 4,
  extreme_handling = "winsorize",
  scale_data = TRUE
)detectXOR() -
Main detection function| Parameter | Type | Default | Description | 
|---|---|---|---|
| data | data.frame | required | Input dataset with variables and class column | 
| class_col | character | "class" | Name of the class/target variable column | 
| check_tau | logical | TRUE | Compute class-wise Kendall Ο correlations | 
| compute_axes_parallel_significance | logical | TRUE | Perform group-wise Wilcoxon tests | 
| p_threshold | numeric | 0.05 | Significance threshold for statistical tests | 
| tau_threshold | numeric | 0.3 | Minimum absolute Ο for βstrongβ correlation | 
| abs_diff_threshold | numeric | 20 | Minimum absolute difference for practical significance | 
| split_method | character | "quantile" | Tile splitting method: "quantile"or"range" | 
| max_cores | integer | NULL | Maximum cores for parallel processing (auto-detect if NULL) | 
| extreme_handling | character | "winsorize" | Outlier handling: "winsorize","remove",
or"none" | 
| winsor_limits | numeric vector | c(0.05, 0.95) | Winsorization percentiles | 
| scale_data | logical | TRUE | Standardize variables before analysis | 
| use_complete | logical | TRUE | Use only complete cases (remove NA values) | 
The detectXOR() function returns a list with two
components: ### results_df - Summary data frame
| Column | Description | 
|---|---|
| var1,var2 | Variable pair names | 
| xor_shape_detected | Logical: XOR pattern identified | 
| chi_sq_p_value | ΟΒ² test p-value for tile independence | 
| tau_class_0,tau_class_1 | Class-wise Kendall Ο coefficients | 
| tau_difference | Absolute difference between class Ο values | 
| wilcox_p_x,wilcox_p_y | Wilcoxon test p-values for each axis | 
| significant_wilcox | Logical: significant group differences detected | 
pair_list - Detailed
resultsContains comprehensive analysis for each variable pair including: - Tile pattern analysis results - Statistical test outputs - Processed data subsets - Intermediate calculations
| Function | Description | Key Parameters | 
|---|---|---|
| generate_spaghetti_plot_from_results() | Creates connected line plots showing variable trajectories for XOR-detected pairs | results,data,class_col,scale_data = TRUE | 
| generate_xy_plot_from_results() | Generates scatter plots with decision boundary lines for detected XOR patterns | results,data,class_col,scale_data = TRUE,quantile_lines = c(1/3, 2/3),line_method = "quantile" | 
Both functions return ggplot objects that can be displayed or saved manually.
# Generate plots
generate_spaghetti_plot_from_results(results, XOR_data) 
generate_xy_plot_from_results(results, XOR_data)| Function | Description | Key Parameters | 
|---|---|---|
| generate_xor_reportConsole() | Creates console-friendly formatted report with optional plots | results,data,class_col,scale_data = TRUE,show_plots = TRUE | 
| generate_xor_reportHTML() | Generates comprehensive HTML report with interactive elements | results,data,class_col,output_file,open_browser = TRUE | 
# Generate formatted report 
generate_xor_reportHTML(results, XOR_data, class_col = "class")The report will be automaticlaly opened in the system standard web browser.
future::multisession for
parallel processingpbmcapply::pbmclapply with fork-based parallelismdetectXOR/
βββ R/                 # Package source code
βββ man/               # Package documentation
βββ data/              # Example dataset
βββ issues/            # Problem reporting
βββ analyses/          # Files used to generate or plot publictaion data sets (not in library)Contributions are welcome! Please feel free to submit issues, feature requests, or pull requests on GitHub. ## License GPL-3 ## Citation
For citation details or to request a formal publication reference, please contact the maintainer.