dSVD
)In this vignette, we consider approximating a matrix as a product of two low-rank matrices (a.k.a., factor matrices).
Test data is available from toyModel
.
library("dcTensor")
X <- dcTensor::toyModel("dSVD")
You will see that there are five blocks in the data matrix as follows.
suppressMessages(library("fields"))
image.plot(X, main="Original Data", legend.mar=8)
Here, we introduce the ternary regularization to take {-1,0,1} values in \(U\) as below:
\[
X \approx U V' \ \mathrm{s.t.}\ U \in \{-1,0,1\},
\] where \(X\) (\(N \times M\)) is a data matrix, \(U\) (\(N \times J\)) is a ternary score matrix, and \(V\) (\(M \times J\)) is a loading matrix. In dcTensor
package, the object function is optimized by combining gradient-descent algorithm (Tsuyuzaki 2020) and ternary regularization.
In STMF, a rank parameter \(J\) (\(\leq \min(N, M)\)) is needed to be set in advance. Other settings such as the number of iterations (num.iter
) are also available. For the details of arguments of dSVD, see ?dSVD
. After the calculation, various objects are returned by dSVD
. STMF is achieved by specifying the ternary regularization parameter as a large value like the below:
set.seed(123456)
out_STMF <- dSVD(X, Ter_U=1E+10, J=5)
str(out_STMF, 2)
## List of 6
## $ U : num [1:100, 1:5] 0.00592 0.00582 0.00626 0.00641 0.00611 ...
## $ V : num [1:300, 1:5] 89.8 94.8 93.6 101 87.6 ...
## $ RecError : Named num [1:101] 1.00e-09 4.24e+05 3.67e+05 3.63e+05 3.65e+05 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TrainRecError: Named num [1:101] 1.00e-09 4.24e+05 3.67e+05 3.63e+05 3.65e+05 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ TestRecError : Named num [1:101] 1e-09 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
## $ RelChange : Named num [1:101] 1.00e-09 9.70e-01 1.55e-01 1.25e-02 4.53e-03 ...
## ..- attr(*, "names")= chr [1:101] "offset" "1" "2" "3" ...
The reconstruction error (RecError
) and relative error (RelChange
, the amount of change from the reconstruction error in the previous step) can be used to diagnose whether the calculation is converged or not.
layout(t(1:2))
plot(log10(out_STMF$RecError[-1]), type="b", main="Reconstruction Error")
plot(log10(out_STMF$RelChange[-1]), type="b", main="Relative Change")
The product of \(U\) and \(V\) shows whether the original data is well-recovered by dSVD
.
recX <- out_STMF$U %*% t(out_STMF$V)
layout(t(1:2))
image.plot(X, main="Original Data", legend.mar=8)
image.plot(recX, main="Reconstructed Data (STMF)", legend.mar=8)
The histograms of \(U\) and \(V\) show that \(U\) looks ternary but \(V\) does not.
layout(t(1:2))
hist(out_STMF$U, breaks=100)
hist(out_STMF$V, breaks=100)
## R version 4.4.3 (2025-02-28)
## Platform: x86_64-pc-linux-gnu
## Running under: Rocky Linux 9.5 (Blue Onyx)
##
## Matrix products: default
## BLAS: /opt/R/4.4.3/lib64/R/lib/libRblas.so
## LAPACK: /opt/R/4.4.3/lib64/R/lib/libRlapack.so; LAPACK version 3.12.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Asia/Tokyo
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] nnTensor_1.3.0 fields_16.3.1 viridisLite_0.4.2 spam_2.11-1
## [5] dcTensor_1.3.1
##
## loaded via a namespace (and not attached):
## [1] gtable_0.3.6 jsonlite_1.8.9 dplyr_1.1.4 compiler_4.4.3
## [5] maps_3.4.3 tidyselect_1.2.1 Rcpp_1.1.0 plot3D_1.4.2
## [9] tagcloud_0.7.0 jquerylib_0.1.4 scales_1.3.0 yaml_2.3.10
## [13] fastmap_1.2.0 ggplot2_3.5.1 R6_2.6.1 generics_0.1.3
## [17] tcltk_4.4.3 knitr_1.50 MASS_7.3-65 dotCall64_1.1-1
## [21] misc3d_0.9-1 tibble_3.3.0 munsell_0.5.1 pillar_1.10.1
## [25] bslib_0.9.0 RColorBrewer_1.1-3 rlang_1.1.6 cachem_1.1.0
## [29] xfun_0.53 sass_0.4.10 cli_3.6.5 magrittr_2.0.3
## [33] digest_0.6.37 grid_4.4.3 rTensor_1.4.9 lifecycle_1.0.4
## [37] vctrs_0.6.5 evaluate_1.0.3 glue_1.8.0 colorspace_2.1-1
## [41] rmarkdown_2.29 pkgconfig_2.0.3 tools_4.4.3 htmltools_0.5.8.1
Tsuyuzaki, K. et al. 2020. “Benchmarking Principal Component Analysis for Large-Scale Single-Cell Rna-Sequencing.” BMC Genome Biology 21(1): 9.