Title: Data Quality in Epidemiological Research
Version: 2.8.2
Description: Data quality assessments guided by a 'data quality framework introduced by Schmidt and colleagues, 2021' <doi:10.1186/s12874-021-01252-7> target the data quality dimensions integrity, completeness, consistency, and accuracy. The scope of applicable functions rests on the availability of extensive metadata which can be provided in spreadsheet tables. Either standardized (e.g. as 'html5' reports) or individually tailored reports can be generated. For an introduction into the specification of corresponding metadata, please refer to the 'package website' https://dataquality.qihs.uni-greifswald.de/VIN_Annotation_of_Metadata.html.
License: BSD_2_clause + file LICENSE
URL: https://dataquality.qihs.uni-greifswald.de/
BugReports: https://gitlab.com/libreumg/dataquier/-/issues
Depends: R (≥ 3.6.0)
Imports: dplyr (≥ 1.0.2), emmeans, ggplot2 (≥ 3.5.0), lme4, lubridate, MASS, MultinomialCI, parallelMap, patchwork (≥ 1.3.0), R.devices, rlang, robustbase, qmrparser, utils, rio, readr, scales, withr, lifecycle, units, methods, hms
Suggests: S7 (≥ 0.2.1), cowplot, grid, openxlsx2, grDevices, jsonlite, cli, whoami, DT (≥ 0.23), htmltools, knitr, markdown, parallel, parallelly, rmarkdown, rstudioapi, testthat (≥ 3.1.9), tibble, vdiffr, pkgload, Rdpack, callr, colorspace, plotly (≥ 4.11.0), htmlwidgets, future, processx, R6, shiny, xml2, mgcv, rvest, textutils, dbx, grImport2, rsvg, stringdist, rankICC, nnet, ordinal, storr, reticulate, stringi, lobstr, visNetwork
VignetteBuilder: knitr
Encoding: UTF-8
KeepSource: FALSE
Language: en-US
RoxygenNote: 7.3.3
Config/testthat/parallel: true
Config/testthat/edition: 3
Config/testthat/start-first: dq_report_by_sm, dq_report2, dq_report_by_arguments, dq_report_by_pipesymbol_list, dq_report_by_s, dq_report_by_m, util_handle_complex_data_types, int_encoding_errors, plots, acc_loess, com_item_missingness, dq_report_by_na, dq_report_by_directories, con_limit_deviations, con_contradictions_redcap, com_segment_missingness, util_correct_variable_use
BuildManual: TRUE
NeedsCompilation: no
Packaged: 2025-12-22 23:27:00 UTC; struckmanns
Author: University Medicine Greifswald [cph], Elisa Kasbohm ORCID iD [aut], Elena Salogni ORCID iD [aut], Joany Marino ORCID iD [aut], Adrian Richter ORCID iD [aut], Carsten Oliver Schmidt ORCID iD [aut], Stephan Struckmann ORCID iD [aut, cre], German Research Foundation (DFG SCHM 2744/3-1, SCHM 2744/9-1, SCHM 2744/3-4) [fnd], National Research Data Infrastructure for Personal Health Data: (NFDI 13/1) [fnd], European Union’s Horizon 2020 programme (euCanSHare, grant agreement No. 825903) [fnd]
Maintainer: Stephan Struckmann <stephan.struckmann@uni-greifswald.de>
Repository: CRAN
Date/Publication: 2025-12-22 23:50:02 UTC

The dataquieR package about Data Quality in Epidemiological Research

Description

For a quick start please read dq_report2 and maybe the vignettes or the package's website.

Options

This package features the following options():

Author(s)

Maintainer: Stephan Struckmann stephan.struckmann@uni-greifswald.de (ORCID)

Authors:

Other contributors:

References

See Also

Useful links:

Other options: dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Write single results from a dataquieR_resultset2 report

Description

Write single results from a dataquieR_resultset2 report

Usage

## S3 replacement method for class 'dataquieR_resultset2'
x$el <- value

Arguments

x

the report

el

the index

value

the single result

Value

the dataquieR result object


Access single results from a dataquieR_resultset2 report

Description

Access single results from a dataquieR_resultset2 report

Usage

## S3 method for class 'dataquieR_resultset2'
x$el

Arguments

x

the report

el

the index

Value

the dataquieR result object


Operator caring for units

Description

Operator caring for units

Usage

## S3 method for class 'numeric_with_unit'
e1 %% e2

Arguments

e1

first argument

e2

second argument

Value

result


Operator caring for units

Description

Operator caring for units

Usage

## S3 method for class 'numeric_with_unit'
e1 %/% e2

Arguments

e1

first argument

e2

second argument

Value

result


Operator caring for units

Description

Operator caring for units

Usage

## S3 method for class 'numeric_with_unit'
e1 * e2

Arguments

e1

first argument

e2

second argument

Value

result


Operator caring for units

Description

Operator caring for units

Usage

## S3 method for class 'numeric_with_unit'
e1 + e2

Arguments

e1

first argument

e2

second argument

Value

result


Operator caring for units

Description

Operator caring for units

Usage

## S3 method for class 'numeric_with_unit'
e1 - e2

Arguments

e1

first argument

e2

second argument

Value

result


Get Access to Utility Functions

Description

[Experimental]

Usage

.get_internal_api(fkt, version = API_VERSION, or_newer = TRUE)

Arguments

fkt

function name

version

version number to get

Value

an API object


Roxygen-Template for indicator functions

Description

Roxygen-Template for indicator functions

Usage

.template_function_indicator(
  resp_vars,
  study_data,
  label_col,
  item_level,
  meta_data,
  meta_data_v2,
  meta_data_dataframe,
  meta_data_segment,
  dataframe_level,
  segment_level
)

Arguments

resp_vars

variable the names of the measurement variables, if missing or NULL, all variables will be checked

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

meta_data_dataframe

data.frame the data frame that contains the metadata for the data frame level

meta_data_segment

data.frame – optional: Segment level metadata

dataframe_level

data.frame alias for meta_data_dataframe

segment_level

data.frame alias for meta_data_segment

Value

invisible(NULL)


Variable-argument roles

Description

A Variable-argument role is the intended use of an argument of a indicator function – an argument that refers variables. In general for the table .variable_arg_roles, the suffix _var means one variable allowed, while _vars means more than one. The default sets of arguments for util_correct_variable_use/util_correct_variable_use2 are defined from the point of usage, e.g. if it could be, that NAs are in the list of variable names, the function should be able to remove certain response variables from the output and not disallow them by setting allow_na to FALSE.

Usage

.variable_arg_roles

Format

An object of class tbl_df (inherits from tbl, data.frame) with 14 rows and 9 columns.

See Also

util_correct_variable_use()

util_correct_variable_use2()


Operator caring for units

Description

Operator caring for units

Usage

## S3 method for class 'numeric_with_unit'
e1 / e2

Arguments

e1

first argument

e2

second argument

Value

result


Version of the API

Description

Version of the API

Usage

API_VERSION

Format

An object of class package_version (inherits from numeric_version) of length 1.

See Also

.get_internal_api()


Cross-item level metadata attribute name

Description

The allowable direction of an association. The input is a string that can be either "positive" or "negative".

Usage

ASSOCIATION_DIRECTION

Format

An object of class character of length 1.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

The allowable form of association. The string specifies the form based on a selected list.

Usage

ASSOCIATION_FORM

Format

An object of class character of length 1.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

The metric underlying the association in ASSOCIATION_RANGE. The input is a string that specifies the analysis algorithm to be used.

Usage

ASSOCIATION_METRIC

Format

An object of class character of length 1.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

Specifies the allowable range of an association. The inclusion of the endpoints follows standard mathematical notation using round brackets for open intervals and square brackets for closed intervals. Values must be separated by a semicolon.

Usage

ASSOCIATION_RANGE

Format

An object of class character of length 1.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

Specifies the unique IDs for cross-item level metadata records

Usage

CHECK_ID

Format

An object of class character of length 1.

Details

if missing, dataquieR will create such IDs

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

Specifies the unique labels for cross-item level metadata records

Usage

CHECK_LABEL

Format

An object of class character of length 1.

Details

if missing, dataquieR will create such labels

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


types of value codes

Description

types of value codes

Usage

CODE_CLASSES

Format

An object of class list of length 3.


Default Name of the Table featuring Code Lists

Description

Default Name of the Table featuring Code Lists

Metadata sheet name containing VALUE_LABEL_TABLES This metadata sheet can contain both value labels of several VALUE_LABEL_TABLE and also Missing and JUMP tables

Usage

CODE_LIST_TABLE

CODE_LIST_TABLE

Format

An object of class character of length 1.

An object of class character of length 1.


Only existence is checked, order not yet used

Description

Only existence is checked, order not yet used

Usage

CODE_ORDER

Format

An object of class character of length 1.


Cross-item level metadata attribute name

Description

Cross-item level metadata attribute name

Usage

COMPUTATION_RULE

Format

An object of class character of length 1.

See Also

meta_data_computation


SSI related Cross-item level metadata attribute names Computed Variable roles can be one of the following:

Description

See Also

VARIABLE_ROLES

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross

Other SSI: IRV, MAXIMUM_LONG_STRING, MISS_RESP, RELCOMPL_SPEED, RESPT_PER_ITEM, TOTRESPT


Cross-item level metadata attribute name

Description

Note: in some prep_-functions, this field is named RULE

Usage

CONTRADICTION_TERM

Format

An object of class character of length 1.

Details

Specifies a contradiction rule. Use REDCap like syntax, see online vignette

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

Specifies the type of a contradiction. According to the data quality concept, there are logical and empirical contradictions, see online vignette

Usage

CONTRADICTION_TYPE

Format

An object of class character of length 1.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

For contradiction rules, the required pre-processing steps that can be given. Note: MISSING_LABEL, MISSING_INTERPRET may not work for non-factor variables

Usage

DATA_PREPARATION

Format

An object of class character of length 1.

Details

LABEL LIMITS MISSING_NA MISSING_LABEL MISSING_INTERPRET

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Data Types

Description

Data Types of Study Data

In the metadata, the following entries are allowed for the variable attribute DATA_TYPE:

Usage

DATA_TYPES

Format

An object of class list of length 5.

Details

Data Types of Function Arguments

As function arguments, dataquieR uses additional type specifications:

See Also

integer string


All available data types, mapped from their respective R types

Description

All available data types, mapped from their respective R types

Usage

DATA_TYPES_OF_R_TYPE

Format

An object of class list of length 17.

See Also

prep_dq_data_type_of


Data frame level metadata attribute name

Description

Name of the data frame

Usage

DF_CODE

Format

An object of class character of length 1.

See Also

meta_data_dataframe


Data frame level metadata attribute name

Description

Number of expected data elements in a data frame. numeric. Check only conducted if number entered

Usage

DF_ELEMENT_COUNT

Format

An object of class character of length 1.

See Also

meta_data_dataframe


Data frame level metadata attribute name

Description

The name of the data frame containing the reference IDs to be compared with the IDs in the study data set.

Usage

DF_ID_REF_TABLE

Format

An object of class character of length 1.

See Also

meta_data_dataframe


Data frame level metadata attribute name

Description

All variables that are to be used as one single ID variable (combined key) in a data frame.

Usage

DF_ID_VARS

Format

An object of class character of length 1.

See Also

meta_data_dataframe


Data frame level metadata attribute name

Description

Name of the data frame

Usage

DF_NAME

Format

An object of class character of length 1.

See Also

meta_data_dataframe


Data frame level metadata attribute name

Description

The type of check to be conducted when comparing the reference ID table with the IDs delivered in the study data files.

Usage

DF_RECORD_CHECK

Format

An object of class character of length 1.

See Also

meta_data_dataframe


Data frame level metadata attribute name

Description

Number of expected data records in a data frame. numeric. Check only conducted if number entered

Usage

DF_RECORD_COUNT

Format

An object of class character of length 1.

See Also

meta_data_dataframe


Data frame level metadata attribute name

Description

Defines expectancies on the uniqueness of the IDs across the rows of a data frame, or the number of times some ID can be repeated.

Usage

DF_UNIQUE_ID

Format

An object of class character of length 1.

See Also

meta_data_dataframe


Data frame level metadata attribute name

Description

Specifies whether identical data is permitted across rows in a data frame (excluding ID variables)

Usage

DF_UNIQUE_ROWS

Format

An object of class character of length 1.

See Also

meta_data_dataframe


All available probability distributions for acc_shape_or_scale

Description

Usage

DISTRIBUTIONS

Format

An object of class list of length 3.


Descriptor Function

Description

A function that returns some figure or table to assess data quality, but it does not return a value correlating with the magnitude of a data quality problem. It's the opposite of an Indicator.

The object Descriptor only contains the name used internally to tag such functions.

Usage

Descriptor

Format

An object of class character of length 1.

See Also

Indicator


Cross-item level metadata attribute name

Description

Defines the measurement variable to be used as a known gold standard. Only one variable can be defined as the gold standard.

Usage

GOLDSTANDARD

Format

An object of class character of length 1.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

TODO

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross

Other SSI: COMPUTED_VARIABLE_ROLES, MAXIMUM_LONG_STRING, MISS_RESP, RELCOMPL_SPEED, RESPT_PER_ITEM, TOTRESPT


Indicator Function

Description

A function that returns some value that correlates with the magnitude of a certain class of data quality problems. Typically, in dataquieR, such functions return a SummaryTable that features columns with names, that start with a short abbreviation that describes the specific semantics of the value (e.g., PCT for a percentage or COR for a correlation) and the public name of the indicator according to the data quality concept DQ_OBS, e.g., com_qum_nonresp for item-non-response-rate. A name could therefore be PCT_com_qum_nonresp.

The object Indicator only contains the name used internally to tag such functions.

Usage

Indicator

Format

An object of class character of length 1.

See Also

Descriptor


Cross-item level metadata attribute name

Description

Select, whether to compute acc_mahalanobis.

Usage

MAHALANOBIS_THRESHOLD

Format

An object of class character of length 1.

Details

You can leave the cell empty, then the depends on the setting of the option dataquieR.MULTIVARIATE_OUTLIER_CHECK. If this column is missing, all this is the same as having all cells empty and dataquieR.MULTIVARIATE_OUTLIER_CHECK set to "auto".

See also MULTIVARIATE_OUTLIER_CHECKTYPE.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

TODO

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross

Other SSI: COMPUTED_VARIABLE_ROLES, IRV, MISS_RESP, RELCOMPL_SPEED, RESPT_PER_ITEM, TOTRESPT


Cross-item level metadata attribute name

Description

TODO

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross

Other SSI: COMPUTED_VARIABLE_ROLES, IRV, MAXIMUM_LONG_STRING, RELCOMPL_SPEED, RESPT_PER_ITEM, TOTRESPT


Cross-item level metadata attribute name

Description

Select, whether to compute acc_multivariate_outlier.

Usage

MULTIVARIATE_OUTLIER_CHECK

Format

An object of class character of length 1.

Details

You can leave the cell empty, then the depends on the setting of the option dataquieR.MULTIVARIATE_OUTLIER_CHECK. If this column is missing, all this is the same as having all cells empty and dataquieR.MULTIVARIATE_OUTLIER_CHECK set to "auto".

See also MULTIVARIATE_OUTLIER_CHECKTYPE.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

Select, which outlier criteria to compute, see acc_multivariate_outlier.

Usage

MULTIVARIATE_OUTLIER_CHECKTYPE

Format

An object of class character of length 1.

Details

You can leave the cell empty, then, all checks will apply. If you enter a set of methods, the maximum for N_RULES changes. See also UNIVARIATE_OUTLIER_CHECKTYPE.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

TODO

TODO

See Also

meta_data_cross

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross

Other SSI: COMPUTED_VARIABLE_ROLES, IRV, MAXIMUM_LONG_STRING, MISS_RESP, RESPT_PER_ITEM, TOTRESPT

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross

Other SSI: COMPUTED_VARIABLE_ROLES, IRV, MAXIMUM_LONG_STRING, MISS_RESP, RESPT_PER_ITEM, TOTRESPT


Cross-item level metadata attribute name

Description

Specifies the type of reliability or validity analysis. The string specifies the analysis algorithm to be used, and can be either "inter-class" or "intra-class".

Usage

REL_VAL

Format

An object of class character of length 1.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name

Description

TODO

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross

Other SSI: COMPUTED_VARIABLE_ROLES, IRV, MAXIMUM_LONG_STRING, MISS_RESP, RELCOMPL_SPEED, TOTRESPT


Cross-item level metadata attribute name TODO

Description

Cross-item level metadata attribute name TODO

Usage

SCALE_ACRONYM

Format

An object of class character of length 1.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Scale Levels

Description

Scale Levels of Study Data according to ⁠Stevens's⁠ Typology

In the metadata, the following entries are allowed for the variable attribute SCALE_LEVEL:

Usage

SCALE_LEVELS

Format

An object of class list of length 5.

Details

Examples

See Also

Wikipedia


Cross-item level metadata attribute name TODO

Description

Cross-item level metadata attribute name TODO

Usage

SCALE_NAME

Format

An object of class character of length 1.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Segment level metadata attribute name

Description

The name of the data frame containing the reference IDs to be compared with the IDs in the targeted segment.

Usage

SEGMENT_ID_REF_TABLE

Format

An object of class character of length 1.

See Also

meta_data_segment


Deprecated segment level metadata attribute name

Description

The name of the data frame containing the reference IDs to be compared with the IDs in the targeted segment.

Usage

SEGMENT_ID_TABLE

Format

An object of class character of length 1.

Details

Please use SEGMENT_ID_REF_TABLE


Segment level metadata attribute name

Description

All variables that are to be used as one single ID variable (combined key) in a segment.

Usage

SEGMENT_ID_VARS

Format

An object of class character of length 1.

See Also

meta_data_segment


Segment level metadata attribute name

Description

true or false to suppress crude segment missingness output (⁠Completeness/Misg. Segments⁠ in the report). Defaults to compute the output, if more than one segment is available in the item-level metadata.

Usage

SEGMENT_MISS

Format

An object of class character of length 1.

See Also

meta_data_segment


Segment level metadata attribute name

Description

The name of the segment participation status variable

Usage

SEGMENT_PART_VARS

Format

An object of class character of length 1.

See Also

meta_data_segment


Segment level metadata attribute name

Description

The type of check to be conducted when comparing the reference ID table with the IDs in a segment.

Usage

SEGMENT_RECORD_CHECK

Format

An object of class character of length 1.

See Also

meta_data_segment


Segment level metadata attribute name

Description

Number of expected data records in each segment. numeric. Check only conducted if number entered

Usage

SEGMENT_RECORD_COUNT

Format

An object of class character of length 1.

See Also

meta_data_segment


Segment level metadata attribute name

Description

Segment level metadata attribute name

Usage

SEGMENT_UNIQUE_ID

Format

An object of class character of length 1.

See Also

DF_UNIQUE_ID

meta_data_segment


Segment level metadata attribute name

Description

Specifies whether identical data is permitted across rows in a segment (excluding ID variables)

Usage

SEGMENT_UNIQUE_ROWS

Format

An object of class character of length 1.

See Also

meta_data_segment


Character used by default as a separator in metadata such as missing codes

Description

This 1 character is according to our metadata concept "|".

Usage

SPLIT_CHAR

Format

An object of class character of length 1.


Cross-item level metadata attribute name

Description

TODO

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross

Other SSI: COMPUTED_VARIABLE_ROLES, IRV, MAXIMUM_LONG_STRING, MISS_RESP, RELCOMPL_SPEED, RESPT_PER_ITEM


Valid unit symbols according to units::valid_udunits()

Description

like m, g, N, ...

See Also

Other UNITS: UNIT_IS_COUNT, UNIT_PREFIXES, UNIT_PREFIX_FACTORS, UNIT_SOURCES, WELL_KNOWN_META_VARIABLE_NAMES


Is a unit a count according to units::valid_udunits()

Description

see column def, therein

Details

like ⁠%⁠, ppt, ppm

See Also

Other UNITS: UNITS, UNIT_PREFIXES, UNIT_PREFIX_FACTORS, UNIT_SOURCES, WELL_KNOWN_META_VARIABLE_NAMES


Valid unit prefixes according to units::valid_udunits_prefixes()

Description

like k, m, M, c, ...

See Also

Other UNITS: UNITS, UNIT_IS_COUNT, UNIT_PREFIX_FACTORS, UNIT_SOURCES, WELL_KNOWN_META_VARIABLE_NAMES


Factors related to unit prefixes units::valid_udunits_prefixes()

Description

named numeric vector

Details

translates k, m, M, c, ... to 1000, 0.001, ...

See Also

Other UNITS: UNITS, UNIT_IS_COUNT, UNIT_PREFIXES, UNIT_SOURCES, WELL_KNOWN_META_VARIABLE_NAMES


Maturity stage of a unit according to units::valid_udunits()

Description

see column source_xml therein, i.e., base, derived, accepted, or common

See Also

Other UNITS: UNITS, UNIT_IS_COUNT, UNIT_PREFIXES, UNIT_PREFIX_FACTORS, WELL_KNOWN_META_VARIABLE_NAMES


Requirement levels of certain metadata columns

Description

These levels are cumulatively used by the function prep_create_meta and related in the argument level therein.

Usage

VARATT_REQUIRE_LEVELS

Format

An object of class list of length 5.

Details

currently available:


Cross-item level metadata attribute name

Description

Specifies a group of variables for multivariate analyses. Separated by |, please use variable names from VAR_NAMES or a label as specified in label_col, usually LABEL or LONG_LABEL.

Usage

VARIABLE_LIST

Format

An object of class character of length 1.

Details

if missing, dataquieR will create such IDs from CONTRADICTION_TERM, if specified.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST_ORDER, meta_data_computation, meta_data_cross


Cross-item level metadata attribute name TODO internal use, only

Description

Cross-item level metadata attribute name TODO internal use, only

Usage

VARIABLE_LIST_ORDER

Format

An object of class character of length 1.

See Also

meta_data_cross

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, meta_data_computation, meta_data_cross


Variable roles can be one of the following:

Description

Usage

VARIABLE_ROLES

Format

An object of class list of length 5.


Well-known metadata column names, names of metadata columns

Description

names of the variable attributes in the metadata frame holding the names of the respective observers, devices, lower limits for plausible values, upper limits for plausible values, lower limits for allowed values, upper limits for allowed values, the variable name (column name, e.g. v0020349) used in the study data, the variable name used for processing (readable name, e.g. RR_DIAST_1) and in parameters of the QA-Functions, the variable label, variable long label, variable short label, variable data type (see also DATA_TYPES), re-code for definition of lists of event categories, missing lists and jump lists as CSV strings. For valid units see UNITS.

Usage

WELL_KNOWN_META_VARIABLE_NAMES

Format

An object of class list of length 63.

Details

all entries of this list will be mapped to the package's exported NAMESPACE environment directly, i.e. they are available directly by their names too:

See Also

meta_data_segment for STUDY_SEGMENT

online

Other UNITS: UNITS, UNIT_IS_COUNT, UNIT_PREFIXES, UNIT_PREFIX_FACTORS, UNIT_SOURCES

Examples

print(WELL_KNOWN_META_VARIABLE_NAMES$VAR_NAMES)
# print(VAR_NAMES) # should usually also work

Write to a report

Description

Overwriting of elements only list-wise supported

Usage

## S3 replacement method for class 'dataquieR_resultset2'
x[...] <- value

Arguments

x

a 'dataquieR_resultset2

...

if this contains only one entry and this entry is not named or its name is els, then, the report will be accessed in list mode.

value

new value to write

Value

nothing, stops


Get a subset of a dataquieR dq_report2 report

Description

Get a subset of a dataquieR dq_report2 report

Usage

## S3 method for class 'dataquieR_resultset2'
x[row, col, res, drop = FALSE, els = row, as_raw = FALSE]

Arguments

x

the report

row

the variable names, must be unique

col

the function-call-names, must be unique

res

the result slot, must be unique

drop

drop, if length is 1

els

used, if in list-mode with named argument

as_raw

retrieve the result maybe as compressed raw util_compress() serialized object

Value

a list with results, depending on drop and the number of results, the list may contain all requested results in sub-lists. The order of the results follows the order of the row/column/result-names given


Set a single result from a ⁠dataquieR 2⁠ report

Description

Set a single result from a ⁠dataquieR 2⁠ report

Usage

## S3 replacement method for class 'dataquieR_resultset2'
x[[el]] <- value

Arguments

x

the report

el

the index

value

the single result

Value

the dataquieR result object


Get a single result from a ⁠dataquieR 2⁠ report

Description

Get a single result from a ⁠dataquieR 2⁠ report

Usage

## S3 method for class 'dataquieR_resultset2'
x[[el]]

Arguments

x

the report

el

the index

Value

the dataquieR result object


Operator caring for units

Description

Operator caring for units

Usage

## S3 method for class 'numeric_with_unit'
e1 ^ e2

Arguments

e1

first argument

e2

second argument

Value

result


Plots and checks for distributions for categorical variables

Description

This function creates distribution plots for categorical variables.

Descriptor

Usage

acc_cat_distributions(
  resp_vars = NULL,
  group_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  n_cat_max = getOption("dataquieR.max_cat_resp_var_levels_in_plot",
    dataquieR.max_cat_resp_var_levels_in_plot_default),
  n_group_max = getOption("dataquieR.max_group_var_levels_in_plot",
    dataquieR.max_group_var_levels_in_plot_default),
  n_data_min = getOption("dataquieR.min_time_points_for_cat_resp_var",
    dataquieR.min_time_points_for_cat_resp_var_default)
)

Arguments

resp_vars

variable the name of the measurement variable

group_vars

variable the name of the observer, device or reader variable

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

n_cat_max

maximum number of categories to be displayed individually for the categorical variable (resp_vars)

n_group_max

maximum number of categories to be displayed individually for the grouping variable (group_vars, devices / examiners)

n_data_min

minimum number of data points to create a time course plot for an individual category of the resp_vars variable

Details

To complete

Value

A list with:

See Also

Online Documentation


Plots and checks for distributions

Description

Data quality indicator checks "Unexpected location" and "Unexpected proportion" with histograms.

Indicator

Usage

acc_distributions(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  check_param = c("any", "location", "proportion"),
  plot_ranges = TRUE,
  flip_mode = "noflip",
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the names of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

check_param

enum any | location | proportion. Which type of check should be conducted (if possible): a check on the location of the mean or median value of the study data, a check on proportions of categories, or either of them if the necessary metadata is available.

plot_ranges

logical Should the plot show ranges and results from the data quality checks? (default: TRUE)

flip_mode

enum default | flip | noflip | auto. Should the plot be in default orientation, flipped, not flipped or auto-flipped. Not all options are always supported. In general, this con be controlled by setting the roptions(dataquieR.flip_mode = ...). If called from dq_report, you can also pass flip_mode to all function calls or set them specifically using specific_args.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

A list with:

Algorithm of this implementation:

See Also

Online Documentation


ECDF plots for distribution checks

Description

Data quality indicator checks "Unexpected location" and "Unexpected proportion" if a grouping variable is included: Plots of empirical cumulative distributions for the subgroups.

Descriptor

Usage

acc_distributions_ecdf(
  resp_vars = NULL,
  group_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  n_group_max = getOption("dataquieR.max_group_var_levels_in_plot",
    dataquieR.max_group_var_levels_in_plot_default),
  n_obs_per_group_min = getOption("dataquieR.min_obs_per_group_var_in_plot",
    dataquieR.min_obs_per_group_var_in_plot_default)
)

Arguments

resp_vars

variable list the names of the measurement variables

group_vars

variable list the name of the observer, device or reader variable

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

n_group_max

maximum number of categories to be displayed individually for the grouping variable (group_vars, devices / examiners)

n_obs_per_group_min

minimum number of data points per group to create a graph for an individual category of the group_vars variable

Value

A list with:

See Also

Online Documentation


Plots and checks for distributions – Location

Description

Data quality indicator checks "Unexpected location" and "Unexpected proportion" with histograms.

Indicator

Usage

acc_distributions_loc(
  resp_vars = NULL,
  study_data,
  label_col = VAR_NAMES,
  item_level = "item_level",
  check_param = "location",
  plot_ranges = TRUE,
  flip_mode = "noflip",
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the names of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

check_param

enum any | location | proportion. Which type of check should be conducted (if possible): a check on the location of the mean or median value of the study data, a check on proportions of categories, or either of them if the necessary metadata is available.

plot_ranges

logical Should the plot show ranges and results from the data quality checks? (default: TRUE)

flip_mode

enum default | flip | noflip | auto. Should the plot be in default orientation, flipped, not flipped or auto-flipped. Not all options are always supported. In general, this con be controlled by setting the roptions(dataquieR.flip_mode = ...). If called from dq_report, you can also pass flip_mode to all function calls or set them specifically using specific_args.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

A list with:

Algorithm of this implementation:

See Also


Plots and checks for distributions – only

Description

Descriptor

Usage

acc_distributions_only(
  resp_vars = NULL,
  study_data,
  label_col = VAR_NAMES,
  item_level = "item_level",
  flip_mode = "noflip",
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the names of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

flip_mode

enum default | flip | noflip | auto. Should the plot be in default orientation, flipped, not flipped or auto-flipped. Not all options are always supported. In general, this con be controlled by setting the roptions(dataquieR.flip_mode = ...). If called from dq_report, you can also pass flip_mode to all function calls or set them specifically using specific_args.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

A list with:

Algorithm of this implementation:

See Also


Plots and checks for distributions – Proportion

Description

Data quality indicator checks "Unexpected location" and "Unexpected proportion" with histograms.

Indicator

Usage

acc_distributions_prop(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  check_param = "proportion",
  plot_ranges = TRUE,
  flip_mode = "noflip",
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the names of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

check_param

enum any | location | proportion. Which type of check should be conducted (if possible): a check on the location of the mean or median value of the study data, a check on proportions of categories, or either of them if the necessary metadata is available.

plot_ranges

logical Should the plot show ranges and results from the data quality checks? (default: TRUE)

flip_mode

enum default | flip | noflip | auto. Should the plot be in default orientation, flipped, not flipped or auto-flipped. Not all options are always supported. In general, this con be controlled by setting the roptions(dataquieR.flip_mode = ...). If called from dq_report, you can also pass flip_mode to all function calls or set them specifically using specific_args.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

A list with:

Algorithm of this implementation:

See Also


Extension of acc_shape_or_scale to examine uniform distributions of end digits

Description

This implementation contrasts the empirical distribution of a measurement variables against assumed distributions. The approach is adapted from the idea of rootograms (Tukey (1977)) which is also applicable for count data (Kleiber and Zeileis (2016)).

Indicator

Usage

acc_end_digits(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable the names of the measurement variables, mandatory

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

a list with:

ALGORITHM OF THIS IMPLEMENTATION:

See Also

Online Documentation


Smoothes and plots adjusted longitudinal measurements and longitudinal trends from logistic regression models

Description

The following R implementation executes calculations for quality indicator "Unexpected location" (see here. Local regression (LOESS) is a versatile statistical method to explore an averaged course of time series measurements (Cleveland, Devlin, and Grosse 1988). In context of epidemiological data, repeated measurements using the same measurement device or by the same examiner can be considered a time series. LOESS allows to explore changes in these measurements over time.

Descriptor

Usage

acc_loess(
  resp_vars,
  group_vars = NULL,
  time_vars,
  co_vars = NULL,
  study_data,
  label_col = VAR_NAMES,
  item_level = "item_level",
  min_obs_in_subgroup = 30,
  resolution = 80,
  comparison_lines = list(type = c("mean/sd", "quartiles"), color = "grey30", linetype =
    2, sd_factor = 0.5),
  mark_time_points = getOption("dataquieR.acc_loess.mark_time_points",
    dataquieR.acc_loess.mark_time_points_default),
  plot_observations = getOption("dataquieR.acc_loess.plot_observations",
    dataquieR.acc_loess.plot_observations_default),
  plot_format = getOption("dataquieR.acc_loess.plot_format",
    dataquieR.acc_loess.plot_format_default),
  meta_data = item_level,
  meta_data_v2,
  n_group_max = getOption("dataquieR.max_group_var_levels_in_plot",
    dataquieR.max_group_var_levels_in_plot_default),
  enable_GAM = getOption("dataquieR.GAM_for_LOESS", dataquieR.GAM_for_LOESS_default),
  exclude_constant_subgroups =
    getOption("dataquieR.acc_loess.exclude_constant_subgroups",
    dataquieR.acc_loess.exclude_constant_subgroups_default),
  min_bandwidth = getOption("dataquieR.acc_loess.min_bw",
    dataquieR.acc_loess.min_bw_default),
  min_proportion = getOption("dataquieR.acc_loess.min_proportion",
    dataquieR.acc_loess.min_proportion_default)
)

Arguments

resp_vars

variable the name of the continuous measurement variable

group_vars

variable the name of the observer, device or reader variable

time_vars

variable the name of the variable giving the time of measurement

co_vars

variable list a vector of covariables for adjustment, for example age and sex. Can be NULL (default) for no adjustment.

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

min_obs_in_subgroup

integer (optional argument) If group_vars is specified, this argument can be used to specify the minimum number of observations required for each of the subgroups. Subgroups with fewer observations are excluded. The default number is 30.

resolution

numeric the maximum number of time points used for plotting the trend lines

comparison_lines

list type and style of lines with which trend lines are to be compared. Can be mean +/- 0.5 standard deviation (the factor can be specified differently in sd_factor) or quartiles (Q1, Q2, and Q3). Arguments color and linetype are passed to ggplot2::geom_line().

mark_time_points

logical mark time points with observations (caution, there may be many marks)

plot_observations

logical show observations as scatter plot in the background. If there are co_vars specified, the values of the observations in the plot will also be adjusted for the specified covariables.

plot_format

enum AUTO | COMBINED | FACETS | BOTH. Return the plot as one combined plot for all groups or as facet plots (one figure per group). BOTH will return both variants, AUTO will decide based on the number of observers.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

n_group_max

integer maximum number of categories to be displayed individually for the grouping variable (group_vars, devices / examiners)

enable_GAM

logical Can LOESS computations be replaced by general additive models to reduce memory consumption for large datasets?

exclude_constant_subgroups

logical Should subgroups with constant values be excluded?

min_bandwidth

numeric lower limit for the LOESS bandwidth, should be greater than 0 and less than or equal to 1. In general, increasing the bandwidth leads to a smoother trend line.

min_proportion

numeric lower limit for the proportion of the smaller group (cases or controls) for creating a LOESS figure, should be greater than 0 and less than 0.4.

Details

If mark_time_points or plot_observations is selected, but would result in plotting more than 400 points, only a sample of the data will be displayed.

Limitations

The application of LOESS requires model fitting, i.e. the smoothness of a model is subject to a smoothing parameter (span). Particularly in the presence of interval-based missing data, high variability of measurements combined with a low number of observations in one level of the group_vars may distort the fit. Since our approach handles data without knowledge of such underlying characteristics, finding the best fit is complicated if computational costs should be minimal. The default of LOESS in R uses a span of 0.75, which provides in most cases reasonable fits. The function acc_loess adapts the span for each level of the group_vars (with at least as many observations as specified in min_obs_in_subgroup and with at least three time points) based on the respective number of observations. LOESS consumes a lot of memory for larger datasets. That is why acc_loess switches to a generalized additive model with integrated smoothness estimation (gam by mgcv) if there are 1000 observations or more for at least one level of the group_vars (similar to geom_smooth from ggplot2).

Value

a list with:

See Also

Online Documentation


Calculate and plot Mahalanobis distances for social science indices

Description

A standard tool to calculate Mahalanobis distance. In this approach the Mahalanobis distance is calculated for ordinal variables (treated as continuous) to identify inattentive responses. It calculates the distance for each observational unit from the sample mean. The greater the distance, the atypical the responses.

Indicator

Usage

acc_mahalanobis(
  variable_group = NULL,
  label_col = VAR_NAMES,
  study_data,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  mahalanobis_threshold =
    suppressWarnings(as.numeric(getOption("dataquieR.MAHALANOBIS_THRESHOLD",
    dataquieR.MAHALANOBIS_THRESHOLD_default)))
)

Arguments

variable_group

variable list the names of the continuous measurement variables building a group, for that multivariate outliers make sense.

label_col

variable attribute the name of the column in the metadata with labels of variables

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

mahalanobis_threshold

numeric TODO: ES

Value

a list with:

ALGORITHM OF THIS IMPLEMENTATION:

See Also

Online Documentation


Estimate marginal means, see emmeans::emmeans

Description

This function examines the impact of so-called process variables on a measurement variable. This implementation combines a descriptive and a model-based approach. Process variables that can be considered in this implementation must be categorical. It is currently not possible to consider more than one process variable within one function call. The measurement variable can be adjusted for (multiple) covariables, such as age or sex, for example.

Marginal means rests on model-based results, i.e. a significantly different marginal mean depends on sample size. Particularly in large studies, small and irrelevant differences may become significant. The contrary holds if sample size is low.

Indicator

Usage

acc_margins(
  resp_vars = NULL,
  group_vars = NULL,
  co_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  threshold_type = "empirical",
  threshold_value,
  min_obs_in_subgroup = 5,
  min_obs_in_cat = 5,
  dichotomize_categorical_resp = TRUE,
  cut_off_linear_model_for_ord = 10,
  meta_data = item_level,
  meta_data_v2,
  sort_group_var_levels = getOption("dataquieR.acc_margins_sort",
    dataquieR.acc_margins_sort_default),
  include_numbers_in_figures = getOption("dataquieR.acc_margins_num",
    dataquieR.acc_margins_num_default),
  n_violin_max = getOption("dataquieR.max_group_var_levels_with_violins",
    dataquieR.max_group_var_levels_with_violins_default)
)

Arguments

resp_vars

variable the name of the measurement variable

group_vars

variable list len=1-1. the name of the observer, device or reader variable

co_vars

variable list a vector of covariables, e.g. age and sex for adjustment

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

threshold_type

enum empirical | user | none. In case empirical is chosen, a multiplier of the scale measure is used. In case of user, a value of the mean or probability (binary data) has to be defined see ⁠Implementation and use of thresholds⁠ in the online documentation). In case of none, no thresholds are displayed and no flagging of unusual group levels is applied.

threshold_value

numeric a multiplier or absolute value (see ⁠Implementation and use of thresholds⁠ in the online documentation).

min_obs_in_subgroup

integer from=0. This optional argument specifies the minimum number of observations that is required to include a subgroup (level) of the group_var in the analysis. Subgroups with less observations are excluded.

min_obs_in_cat

integer This optional argument specifies the minimum number of observations that is required to include a category (level) of the outcome (resp_vars) in the analysis. Categories with less observations are combined into one group. If the collapsed category contains less observations than required, it will be excluded from the analysis.

dichotomize_categorical_resp

logical Should nominal response variables always be transformed to binary variables?

cut_off_linear_model_for_ord

integer from=0. This optional argument specifies the minimum number of observations for individual levels of an ordinal outcome (resp_var) that is required to run a linear model instead of an ordered regression (i.e., a cut-off value above which linear models are considered a good approximation). The argument can be set to NULL if ordered regression models are preferred for ordinal data in any case.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

sort_group_var_levels

logical Should the levels of the grouping variable be sorted descending by the number of observations? Note that ordinal grouping variables will not be reordered.

include_numbers_in_figures

logical Should the figure report the number of observations for each level of the grouping variable?

n_violin_max

integer from=0. This optional argument specifies the maximum number of levels of the group_var for which violin plots will be shown in the figure.

Details

Limitations

Selecting the appropriate distribution is complex. Dozens of continuous, discrete or mixed distributions are conceivable in the context of epidemiological data. Their exact exploration is beyond the scope of this data quality approach. The present function uses the help function util_dist_selection, the assigned SCALE_LEVEL and the DATA_TYPE to discriminate the following cases:

Continuous data and count data with more than 20 distinct values are analyzed by linear models. Count data with up to 20 distinct values are modeled by a Poisson regression. For binary data, the implementation uses logistic regression. Nominal response variables will either be transformed to binary variables or analyzed by multinomial logistic regression models. The latter option is only available if the argument dichotomize_categorical_resp is set to FALSE and if the package nnet is installed. The transformation to a binary variable can be user-specified using the metadata columns RECODE_CASES and/or RECODE_CONTROL. Otherwise, the most frequent category will be assigned to cases and the remaining categories to control. For ordinal response variables, the argument cut_off_linear_model_for_ord controls whether the data is analyzed in the same way as continuous data: If every level of the variable has at least as many observations as specified in the argument, the data will be analyzed by a linear model. Otherwise, the data will be modeled by a ordered regression, if the package ordinal is installed.

Value

a list with:

See Also

Online Documentation


Calculate and plot Mahalanobis distances

Description

A standard tool to detect multivariate outliers is the Mahalanobis distance. This approach is very helpful for the interpretation of the plausibility of a measurement given the value of another. In this approach the Mahalanobis distance is used as a univariate measure itself. We apply the same rules for the identification of outliers as in univariate outliers:

For further details, please see the vignette for univariate outlier.

Indicator

Usage

acc_multivariate_outlier(
  variable_group = NULL,
  id_vars = NULL,
  label_col = VAR_NAMES,
  study_data,
  item_level = "item_level",
  n_rules = 4,
  max_non_outliers_plot = 10000,
  criteria = c("tukey", "3sd", "hubert", "sigmagap"),
  meta_data = item_level,
  meta_data_v2,
  scale = getOption("dataquieR.acc_multivariate_outlier.scale",
    dataquieR.acc_multivariate_outlier.scale_default),
  multivariate_outlier_check = TRUE
)

Arguments

variable_group

variable list the names of the continuous measurement variables building a group, for that multivariate outliers make sense.

id_vars

variable optional, an ID variable of the study data. If not specified row numbers are used.

label_col

variable attribute the name of the column in the metadata with labels of variables

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

n_rules

numeric from=1 to=4. the no. of rules that must be violated to classify as outlier

max_non_outliers_plot

integer from=0. Maximum number of non-outlier points to be plot. If more points exist, a subsample will be plotted only. Note, that sampling is not deterministic.

criteria

set tukey | 3SD | hubert | sigmagap. a vector with methods to be used for detecting outliers.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

scale

logical Should min-max-scaling be applied per variable?

multivariate_outlier_check

logical really check, pipeline use, only.

Value

a list with:

ALGORITHM OF THIS IMPLEMENTATION:

List function.

See Also

Online Documentation


Identify univariate outliers by four different approaches

Description

A classical but still popular approach to detect univariate outlier is the boxplot method introduced by Tukey 1977. The boxplot is a simple graphical tool to display information about continuous univariate data (e.g., median, lower and upper quartile). Outliers are defined as values deviating more than 1.5 \times IQR from the 1st (Q25) or 3rd (Q75) quartile. The strength of Tukey's method is that it makes no distributional assumptions and thus is also applicable to skewed or non mound-shaped data Marsh and Seo, 2006. Nevertheless, this method tends to identify frequent measurements which are falsely interpreted as true outliers.

A somewhat more conservative approach in terms of symmetric and/or normal distributions is the 3SD approach, i.e. any measurement not in the interval of mean(x) +/- 3 * \sigma is considered an outlier.

Both methods mentioned above are not ideally suited to skewed distributions. As many biomarkers such as laboratory measurements represent in skewed distributions the methods above may be insufficient. The approach of Hubert and Vandervieren 2008 adjusts the boxplot for the skewness of the distribution. This approach is implemented in several R packages such as robustbase::mc which is used in this implementation of dataquieR.

Another completely heuristic approach is also included to identify outliers. The approach is based on the assumption that the distances between measurements of the same underlying distribution should homogeneous. For comprehension of this approach:

Note, that the plots are not deterministic, because they use ggplot2::geom_jitter.

Indicator

Usage

acc_robust_univariate_outlier(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  exclude_roles,
  n_rules = length(unique(criteria)),
  max_non_outliers_plot = 10000,
  criteria = c("tukey", "3sd", "hubert", "sigmagap"),
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the name of the continuous measurement variable

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

exclude_roles

variable roles a character (vector) of variable roles not included

n_rules

integer from=1 to=4. the no. rules that must be violated to flag a variable as containing outliers. The default is 4, i.e. all.

max_non_outliers_plot

integer from=0. Maximum number of non-outlier points to be plot. If more points exist, a subsample will be plotted only. Note, that sampling is not deterministic.

criteria

set tukey | 3SD | hubert | sigmagap. a vector with methods to be used for detecting outliers.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

Hint: The function is designed for unimodal data only.

Value

a list with:

ALGORITHM OF THIS IMPLEMENTATION:

See Also

acc_univariate_outlier


Compare observed versus expected distributions

Description

This implementation contrasts the empirical distribution of a measurement variables against assumed distributions. The approach is adapted from the idea of rootograms (Tukey 1977) which is also applicable for count data (Kleiber and Zeileis 2016).

Indicator

Usage

acc_shape_or_scale(
  resp_vars,
  study_data,
  label_col,
  item_level = "item_level",
  dist_col,
  guess,
  par1,
  par2,
  end_digits,
  flip_mode = "noflip",
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable the name of the continuous measurement variable

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

dist_col

variable attribute the name of the variable attribute in meta_data that provides the expected distribution of a study variable

guess

logical estimate parameters

par1

numeric first parameter of the distribution if applicable

par2

numeric second parameter of the distribution if applicable

end_digits

logical internal use. check for end digits preferences

flip_mode

enum default | flip | noflip | auto. Should the plot be in default orientation, flipped, not flipped or auto-flipped. Not all options are always supported. In general, this con be controlled by setting the roptions(dataquieR.flip_mode = ...). If called from dq_report, you can also pass flip_mode to all function calls or set them specifically using specific_args.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

a list with:

ALGORITHM OF THIS IMPLEMENTATION:

See Also

Online Documentation


Identify univariate outliers by four different approaches

Description

A classical but still popular approach to detect univariate outlier is the boxplot method introduced by Tukey 1977. The boxplot is a simple graphical tool to display information about continuous univariate data (e.g., median, lower and upper quartile). Outliers are defined as values deviating more than 1.5 \times IQR from the 1st (Q25) or 3rd (Q75) quartile. The strength of Tukey's method is that it makes no distributional assumptions and thus is also applicable to skewed or non mound-shaped data Marsh and Seo, 2006. Nevertheless, this method tends to identify frequent measurements which are falsely interpreted as true outliers.

A somewhat more conservative approach in terms of symmetric and/or normal distributions is the 3SD approach, i.e. any measurement not in the interval of mean(x) +/- 3 * \sigma is considered an outlier.

Both methods mentioned above are not ideally suited to skewed distributions. As many biomarkers such as laboratory measurements represent in skewed distributions the methods above may be insufficient. The approach of Hubert and Vandervieren 2008 adjusts the boxplot for the skewness of the distribution. This approach is implemented in several R packages such as robustbase::mc which is used in this implementation of dataquieR.

Another completely heuristic approach is also included to identify outliers. The approach is based on the assumption that the distances between measurements of the same underlying distribution should homogeneous. For comprehension of this approach:

Note, that the plots are not deterministic, because they use ggplot2::geom_jitter.

Indicator

Usage

acc_univariate_outlier(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  exclude_roles,
  n_rules = length(unique(criteria)),
  max_non_outliers_plot = 10000,
  criteria = c("tukey", "3sd", "hubert", "sigmagap"),
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the name of the continuous measurement variable

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

exclude_roles

variable roles a character (vector) of variable roles not included

n_rules

integer from=1 to=4. the no. rules that must be violated to flag a variable as containing outliers. The default is 4, i.e. all.

max_non_outliers_plot

integer from=0. Maximum number of non-outlier points to be plot. If more points exist, a subsample will be plotted only. Note, that sampling is not deterministic.

criteria

set tukey | 3SD | hubert | sigmagap. a vector with methods to be used for detecting outliers.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

Hint: The function is designed for unimodal data only.

Value

a list with:

ALGORITHM OF THIS IMPLEMENTATION:

See Also


Utility function to compute model-based ICC depending on the (statistical) data type

Description

This function is still under construction. It is designed to run for any statistical data type as follows:

Indicator

Usage

acc_varcomp(
  resp_vars = NULL,
  group_vars = NULL,
  co_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  min_obs_in_subgroup = 10,
  min_subgroups = 5,
  cut_off_linear_model_for_ord = 10,
  threshold_value = lifecycle::deprecated(),
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable the name of the measurement variable

group_vars

variable the name of the examiner, device or reader variable

co_vars

variable list a vector of covariables, e.g. age and sex, for adjustment

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

min_obs_in_subgroup

integer from=0. This optional argument specifies the minimum number of observations that is required to include a subgroup (level) of the group_var in the analysis. Subgroups with less observations are excluded.

min_subgroups

integer from=0. This optional argument specifies the minimum number of subgroups (level) of the group_var that is required to run the analysis. If there are less subgroups, the analysis is not conducted.

cut_off_linear_model_for_ord

integer from=0. This optional argument specifies the minimum number of observations for individual levels of an ordinal outcome (resp_var) that is required to run a linear mixed effects model instead of a mixed effects ordered regression (i.e., a cut-off value above which linear models are considered a good approximation). The argument can be set to NULL if ordered regression models are preferred for ordinal data in any case.

threshold_value

Deprecated.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

Not yet described

Value

The function returns two data frames, 'SummaryTable' and 'SummaryData', that differ only in the names of the columns.


as.character implementation for the class interval

Description

such objects, for now, only occur in RECCap rules, so this function is meant for internal use, mostly – for now.

Usage

## S3 method for class 'interval'
as.character(x, ...)

Arguments

x

interval objects to convert

...

not used yet

Value

interval as character

See Also

base::as.character


Convert a full dataquieR report to a data.frame

Description

Deprecated

Usage

## S3 method for class 'dataquieR_resultset'
as.data.frame(x, ...)

Arguments

x

Deprecated

...

Deprecated

Value

Deprecated


Convert a full dataquieR report to a list

Description

Deprecated

Usage

## S3 method for class 'dataquieR_resultset'
as.list(x, ...)

Arguments

x

Deprecated

...

Deprecated

Value

Deprecated


inefficient way to convert a report to a list. try prep_set_backend()

Description

inefficient way to convert a report to a list. try prep_set_backend()

Usage

## S3 method for class 'dataquieR_resultset2'
as.list(x, ...)

Arguments

x

dataquieR_resultset2

...

no used

Value

list


Data frame with contradiction rules

Description

Two versions exist, the newer one is used by con_contradictions_redcap and is described here., the older one used by con_contradictions is described here.

See Also

meta_data_cross


Summarize missingness columnwise (in variable)

Description

Item-Missingness (also referred to as item nonresponse (De Leeuw et al. 2003)) describes the missingness of single values, e.g. blanks or empty data cells in a data set. Item-Missingness occurs for example in case a respondent does not provide information for a certain question, a question is overlooked by accident, a programming failure occurs or a provided answer were missed while entering the data.

Indicator

Usage

com_item_missingness(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  show_causes = TRUE,
  cause_label_df,
  include_sysmiss = TRUE,
  threshold_value,
  suppressWarnings = FALSE,
  assume_consistent_codes = TRUE,
  expand_codes = assume_consistent_codes,
  drop_levels = FALSE,
  expected_observations = c("HIERARCHY", "ALL", "SEGMENT"),
  pretty_print = lifecycle::deprecated(),
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the name of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

show_causes

logical if TRUE, then the distribution of missing codes is shown

cause_label_df

data.frame missing code table. If missing codes have labels the respective data frame can be specified here or in the metadata as assignments, see cause_label_df

include_sysmiss

logical Optional, if TRUE system missingness (NAs) is evaluated in the summary plot

threshold_value

numeric from=0 to=100. a numerical value ranging from 0-100

suppressWarnings

logical warn about consistency issues with missing and jump lists

assume_consistent_codes

logical if TRUE and no labels are given and the same missing/jump code is used for more than one variable, the labels assigned for this code are treated as being be the same for all variables.

expand_codes

logical if TRUE, code labels are copied from other variables, if the code is the same and the label is set somewhere

drop_levels

logical if TRUE, do not display unused missing codes in the figure legend.

expected_observations

enum HIERARCHY | ALL | SEGMENT. If ALL, all observations are expected to comprise all study segments. If SEGMENT, the PART_VAR is expected to point to a variable with values of 0 and 1, indicating whether the variable was expected to be observed for each data row. If HIERARCHY, this is also checked recursively, so, if a variable points to such a participation variable, and that other variable does has also a PART_VAR entry pointing to a variable, the observation of the initial variable is only expected, if both segment variables are 1.

pretty_print

logical deprecated. If you want to have a human readable output, use SummaryData instead of SummaryTable

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

a list with:

ALGORITHM OF THIS IMPLEMENTATION:

See Also

Online Documentation


Compute Indicators for Qualified Item Missingness

Description

Indicator

Usage

com_qualified_item_missingness(
  resp_vars,
  study_data,
  label_col = NULL,
  item_level = "item_level",
  expected_observations = c("HIERARCHY", "ALL", "SEGMENT"),
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the name of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

expected_observations

enum HIERARCHY | ALL | SEGMENT. Report the number of observations expected using the old PART_VAR concept. See com_item_missingness for an explanation.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

A list with:


Compute Indicators for Qualified Segment Missingness

Description

Indicator

Usage

com_qualified_segment_missingness(
  label_col = NULL,
  study_data,
  item_level = "item_level",
  expected_observations = c("HIERARCHY", "ALL", "SEGMENT"),
  meta_data = item_level,
  meta_data_v2,
  meta_data_segment,
  segment_level
)

Arguments

label_col

variable attribute the name of the column in the metadata with labels of variables

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

expected_observations

enum HIERARCHY | ALL | SEGMENT. Report the number of observations expected using the old PART_VAR concept. See com_item_missingness for an explanation.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

meta_data_segment

data.frame Segment level metadata

segment_level

data.frame alias for meta_data_segment

Value

A list with:


Summarizes missingness for individuals in specific segments

Description

This implementation can be applied in two use cases:

  1. participation in study segments is not recorded by respective variables, e.g. a participant's refusal to attend a specific examination is not recorded.

  2. participation in study segments is recorded by respective variables.

Use case (1) will be common in smaller studies. For the calculation of segment missingness it is assumed that study variables are nested in respective segments. This structure must be specified in the static metadata. The R-function identifies all variables within each segment and returns TRUE if all variables within a segment are missing, otherwise FALSE.

Use case (2) assumes a more complex structure of study data and metadata. The study data comprise so-called intro-variables (either TRUE/FALSE or codes for non-participation). The column PART_VAR in the metadata is filled by variable-IDs indicating for each variable the respective intro-variable. This structure has the benefit that subsequent calculation of item missingness obtains correct denominators for the calculation of missingness rates.

Descriptor

Usage

com_segment_missingness(
  study_data,
  item_level = "item_level",
  strata_vars = NULL,
  group_vars = NULL,
  label_col,
  threshold_value,
  direction,
  color_gradient_direction,
  expected_observations = c("HIERARCHY", "ALL", "SEGMENT"),
  exclude_roles = c(VARIABLE_ROLES$PROCESS),
  meta_data = item_level,
  meta_data_v2,
  segment_level,
  meta_data_segment
)

Arguments

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

strata_vars

variable the name of a variable used for stratification, defaults to NULL for not grouping output

group_vars

variable the name of a variable used for grouping, defaults to NULL for not grouping output

label_col

variable attribute the name of the column in the metadata with labels of variables

threshold_value

numeric from=0 to=100. a numerical value ranging from 0-100

direction

enum low | high. "high" or "low", i.e. are deviations above/below the threshold critical. This argument is deprecated and replaced by color_gradient_direction.

color_gradient_direction

enum above | below. "above" or "below", i.e. are deviations above or below the threshold critical? (default: above)

expected_observations

enum HIERARCHY | ALL | SEGMENT. If ALL, all observations are expected to comprise all study segments. If SEGMENT, the PART_VAR is expected to point to a variable with values of 0 and 1, indicating whether the variable was expected to be observed for each data row. If HIERARCHY, this is also checked recursively, so, if a variable points to such a participation variable, and that other variable does has also a PART_VAR entry pointing to a variable, the observation of the initial variable is only expected, if both segment variables are 1.

exclude_roles

variable roles a character (vector) of variable roles not included

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

segment_level

data.frame alias for meta_data_segment

meta_data_segment

data.frame Segment level metadata. Optional.

Details

Implementation and use of thresholds

This implementation uses one threshold to discriminate critical from non-critical values. If direction is above than all values below the threshold_value are normal (displayed in dark blue in the plot and flagged with GRADING = 0 in the dataframe). All values above the threshold_value are considered critical. The more they deviate from the threshold the displayed color shifts to dark red. All critical values are highlighted with GRADING = 1 in the summary data frame. By default, highest values are always shown in dark red irrespective of the absolute deviation.

If direction is below than all values above the threshold_value are normal (displayed in dark blue, GRADING = 0).

Hint

This function does not support a resp_vars argument but exclude_roles to specify variables not relevant for detecting a missing segment.

List function.

Value

a list with:

See Also

Online Documentation


Counts all individuals with no measurements at all

Description

This implementation examines a crude version of unit missingness or unit-nonresponse (Kalton and Kasprzyk 1986), i.e. if all measurement variables in the study data are missing for an observation it has unit missingness.

The function can be applied on stratified data. In this case strata_vars must be specified.

Descriptor

Usage

com_unit_missingness(
  id_vars = NULL,
  strata_vars = NULL,
  label_col,
  study_data,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2
)

Arguments

id_vars

variable list optional, a (vectorized) call of ID-variables that should not be considered in the calculation of unit- missingness

strata_vars

variable optional, a string or integer variable used for stratification

label_col

variable attribute the name of the column in the metadata with labels of variables

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

This implementations calculates a crude rate of unit-missingness. This type of missingness may have several causes and is an important research outcome. For example, unit-nonresponse may be selective regarding the targeted study population or technical reasons such as record-linkage may cause unit-missingness.

It has to be discriminated form segment and item missingness, since different causes and mechanisms may be the reason for unit-missingness.

Hint

This function does not support a resp_vars argument but id_vars, which have a roughly inverse logic behind: id_vars with values do not prevent a row from being considered missing, because an ID is the only hint for a unit that elsewise would not occur in the data at all.

List function.

Value

A list with:

See Also

Online Documentation


Checks user-defined contradictions in study data

Description

This approach considers a contradiction if impossible combinations of data are observed in one participant. For example, if age of a participant is recorded repeatedly the value of age is (unfortunately) not able to decline. Most cases of contradictions rest on comparison of two variables.

Important to note, each value that is used for comparison may represent a possible characteristic but the combination of these two values is considered to be impossible. The approach does not consider implausible or inadmissible values.

Descriptor

Usage

con_contradictions(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  threshold_value,
  check_table,
  summarize_categories = FALSE,
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the name of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

threshold_value

numeric from=0 to=100. a numerical value ranging from 0-100

check_table

data.frame contradiction rules table. Table defining contradictions. See details for its required structure.

summarize_categories

logical Needs a column 'tag' in the check_table. If set, a summary output is generated for the defined categories plus one plot per category.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

Algorithm of this implementation:

List function.

Value

If summarize_categories is FALSE: A list with:

if summarize_categories is TRUE, other objects are returned: one per category named by that category (e.g. "Empirical") containing a result for contradictions within that category only. Additionally, in the slot all_checks a result as it would have been returned with summarize_categories set to FALSE. Finally, a slot SummaryData is returned containing sums per Category and an according ggplot2::ggplot in SummaryPlot.

See Also

Online Documentation


Checks user-defined contradictions in study data

Description

This approach considers a contradiction if impossible combinations of data are observed in one participant. For example, if age of a participant is recorded repeatedly the value of age is (unfortunately) not able to decline. Most cases of contradictions rest on comparison of two variables.

Important to note, each value that is used for comparison may represent a possible characteristic but the combination of these two values is considered to be impossible. The approach does not consider implausible or inadmissible values.

Indicator

Usage

con_contradictions_redcap(
  study_data,
  item_level = "item_level",
  label_col,
  threshold_value,
  meta_data_cross_item = "cross-item_level",
  use_value_labels,
  summarize_categories = FALSE,
  meta_data = item_level,
  cross_item_level,
  `cross-item_level`,
  meta_data_v2
)

Arguments

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

threshold_value

numeric from=0 to=100. a numerical value ranging from 0-100

meta_data_cross_item

data.frame contradiction rules table. Table defining contradictions. See online documentation for its required structure.

use_value_labels

logical Deprecated in favor of DATA_PREPARATION. If set to TRUE, labels can be used in the REDCap syntax to specify contraction checks for categorical variables. If set to FALSE, contractions have to be specified using the coded values. In case that this argument is not set in the function call, it will be set to TRUE if the metadata contains a column VALUE_LABELS which is not empty.

summarize_categories

logical Needs a column CONTRADICTION_TYPE in the meta_data_cross_item. If set, a summary output is generated for the defined categories plus one plot per category. TODO: Not yet controllable by metadata.

meta_data

data.frame old name for item_level

cross_item_level

data.frame alias for meta_data_cross_item

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

`cross-item_level`

data.frame alias for meta_data_cross_item

Details

Algorithm of this implementation:

List function.

Value

If summarize_categories is FALSE: A list with:

If summarize_categories is TRUE, other objects are returned: A list with one element Other, a list with the following entries: One per category named by that category (e.g. "Empirical") containing a result for contradiction checks within that category only. Additionally, in the slot all_checks, a result as it would have been returned with summarize_categories set to FALSE. Finally, in the top-level list, a slot SummaryData is returned containing sums per Category and an according ggplot2::ggplot in SummaryPlot.

See Also

Online Documentation for the function meta_data_cross Online Documentation for the required cross-item-level metadata


Detects variable levels not specified in metadata

Description

For each categorical variable, value lists should be defined in the metadata. This implementation will examine, if all observed levels in the study data are valid.

Indicator

Usage

con_inadmissible_categorical(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  threshold_value = 0,
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the name of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

threshold_value

numeric from=0 to=100. a numerical value ranging from 0-100.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

Algorithm of this implementation:

Value

a list with:

See Also

Online Documentation


Detects variable levels not specified in standardized vocabulary

Description

For each categorical variable, value lists should be defined in the metadata. This implementation will examine, if all observed levels in the study data are valid.

Indicator

Usage

con_inadmissible_vocabulary(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  threshold_value = 0,
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list the name of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

threshold_value

numeric from=0 to=100. a numerical value ranging from 0-100.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

Algorithm of this implementation:

Value

a list with:

See Also

Online Documentation

Examples

## Not run: 
sdt <- data.frame(DIAG = c("B050", "B051", "B052", "B999"),
                  MED0 = c("S01XA28", "N07XX18", "ABC", NA), stringsAsFactors = FALSE)
mdt <- tibble::tribble(
~ VAR_NAMES, ~ DATA_TYPE, ~ STANDARDIZED_VOCABULARY_TABLE, ~ SCALE_LEVEL, ~ LABEL,
"DIAG", "string", "<ICD10>", "nominal", "Diagnosis",
"MED0", "string", "<ATC>", "nominal", "Medication"
)
con_inadmissible_vocabulary(NULL, sdt, mdt, label_col = LABEL)
prep_load_workbook_like_file("meta_data_v2")
il <- prep_get_data_frame("item_level")
il$STANDARDIZED_VOCABULARY_TABLE[[11]] <- "<ICD10GM>"
il$DATA_TYPE[[11]] <- DATA_TYPES$INTEGER
il$SCALE_LEVEL[[11]] <- SCALE_LEVELS$NOMINAL
prep_add_data_frames(item_level = il)
r <- dq_report2("study_data", dimensions = "con")
r <- dq_report2("study_data", dimensions = "con",
     advanced_options = list(dataquieR.non_disclosure = TRUE))
r

## End(Not run)

Detects variable values exceeding limits defined in metadata

Description

Inadmissible numerical values can be of type integer or float. This implementation requires the definition of intervals in the metadata to examine the admissibility of numerical study data.

This helps identify inadmissible measurements according to hard limits (for multiple variables).

Indicator

Usage

con_limit_deviations(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  meta_data_cross_item = "cross-item_level",
  limits = NULL,
  flip_mode = "noflip",
  return_flagged_study_data = FALSE,
  return_limit_categorical = TRUE,
  meta_data = item_level,
  cross_item_level,
  `cross-item_level`,
  meta_data_v2,
  show_obs = TRUE
)

Arguments

resp_vars

variable list the name of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data_cross_item

meta_data_cross

limits

enum HARD_LIMITS | SOFT_LIMITS | DETECTION_LIMITS. what limits from metadata to check for

flip_mode

enum default | flip | noflip | auto. Should the plot be in default orientation, flipped, not flipped or auto-flipped. Not all options are always supported. In general, this con be controlled by setting the roptions(dataquieR.flip_mode = ...). If called from dq_report, you can also pass flip_mode to all function calls or set them specifically using specific_args.

return_flagged_study_data

logical return FlaggedStudyData in the result

return_limit_categorical

logical if TRUE return limit deviations also for categorical variables

meta_data

data.frame old name for item_level

cross_item_level

data.frame alias for meta_data_cross_item

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

show_obs

logical Should (selected) individual observations be marked in the figure for continuous variables?

`cross-item_level`

data.frame alias for meta_data_cross_item

Details

Algorithm of this implementation:

Value

a list with:

See Also


contradiction_functions

Description

Detect abnormalities help functions

Usage

contradiction_functions

Format

An object of class list of length 11.

Details

2 variables:


description of the contradiction functions

Description

description of the contradiction functions

Usage

contradiction_functions_descriptions

Format

An object of class list of length 11.


Log Level

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Add stack-trace in condition messages (to be deprecated)

Description

to be deprecated

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Metadata describes more than the current study data

Description

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Set caller for error conditions (to be deprecated)

Description

to be deprecated

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Enable to switch to a general additive model instead of LOESS

Description

If this option is set to TRUE, time course plots will use general additive models (GAM) instead of LOESS when the number of observations exceeds a specified threshold. LOESS computations for large datasets have a high memory consumption.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Default availability of Mahalanobis based multivariate outlier checks in reports

Description

a number, see corresponding argument in acc_mahalanobis()

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Maximum length for variable labels LABEL

Description

All variable labels will be shortened to fit this maximum length. Cannot be larger than 200 for technical reasons.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Maximum length for long variable labels LONG_LABEL

Description

All long variable labels will be shortened to fit this maximum length. Cannot be larger than 200 for technical reasons.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Maximum length for value labels

Description

value labels are restricted to this length

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Set caller for message conditions (to be deprecated)

Description

to be deprecated

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Default availability of multivariate outlier checks in reports

Description

can be

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Assume, all VALUE_LABELS are HTML escaped

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Set caller for warning conditions (to be deprecated)

Description

to be deprecated

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Exclude subgroups with constant values from LOESS figure

Description

If this option is set to TRUE, time course plots will only show subgroups with more than one distinct value. This might improve the readability of the figure.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Display time-points in LOESS plots

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Lower limit for the LOESS bandwidth

Description

The value should be greater than 0 and less than or equal to 1. In general, increasing the bandwidth leads to a smoother trend line.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Lower limit for the proportion of cases or controls to create a smoothed time trend figure

Description

The value should be greater than 0 and less than 0.4. If the proportion of cases or controls is lower than the specified value, the LOESS figure will not be created for the specified binary outcome.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


default for Plot-Format in acc_loess()

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Display observations in LOESS plots

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Include number of observations for each level of the grouping variable in the 'margins' figure

Description

If this option is set to FALSE, the figures created by acc_margins will not include the number of observations for each level of the grouping variable. This can be used to obtain clean static plots.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Sort levels of the grouping variable in the 'margins' figures

Description

If this option is set to TRUE, the levels of the grouping variable in the figure are sorted in descending order according to the number of observations so that levels with more observations are easier to identify. Otherwise, the original order of the levels is retained.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Apply min-max scaling in parallel coordinates figure to inspect multivariate outliers

Description

boolean, TRUE or FALSE

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Color for empirical contradictions

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Color for logical contradictions

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


If report uses a storr back-end, do not convert to base-list

Description

if TRUE and a report uses a storr-back-end, convert it to a base list, i.e., copy to the RAM, even if this would likely not be really needed for apply-calls

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Call browser() on errors

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Removal of hard limits from data before calculating descriptive statistics.

Description

can be

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Disable automatic post-processing of dataquieR function results

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Show also unused levels in heatmaps

Description

if TRUE, levels not taken will not be displayed when printing/plotting heatmap tables

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


character Adjust data types according to metadata

Description

also reports inadmissible data types. can be turned off for performance reasons, if the data source is already type-safe (e.g., a database) use with care, may cause pipelines breaking (maybe only in the final rendering step), if the data type is incorrectly set for some columns.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Try to avoid fallback to string columns when reading files

Description

If a file does not feature column data types or features data types cell-based, choose that type which matches the majority of the sampled cells of a column for the column's data type.

Details

This may make you miss data type problems but it could fix them, so prep_get_data_frame() works better.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Flip-Mode to Use for figures

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Converting MISSING_LIST/JUMP_LIST to a MISSING_LIST_TABLE create on list per item

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Control, how the label_col argument is used.

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Name of the data.frame featuring a format for grading-values

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Name of the data.frame featuring GRADING_RULESET

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


For metadata guessing, try to guess DATA_TYPE from the data values

Description

By default, the DATA_TYPE is derived from the R data type of the study data. However, when data are imported from plain text files, it can be more appropriate to examine the actual values and infer the data type based on their content. This option enables that behavior: set dataquieR.guess_character to TRUE to infer data types from the observed values rather than relying solely on the column’s class in the data frame.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Control, if dataquieR tries to guess missing-codes from the study data in absence of metadata

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


character remove variables with only empty values

Description

remove variables with only empty values (NA, ". ", "" or similar) from reports. auto means, such variables are removed, if we have more than 20% of the variables empty.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt

Other study_data_cache: dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_metrics_env_default, dataquieR.study_data_cache_quick_fill


Language-Suffix for metadata Label-Columns

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


character plots realized lazy

Description

if TRUE, plots are not realized until needed in side reports to save memory.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


character cache realizations

Description

if TRUE, realized plots are cached, may need more memory.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


character be as compatible with ggplot2 objects as possible

Description

if TRUE, plot promises are blessed in an S7 class so they behave almost like "real" ggplot2 objects, so you normally do not need to call prep_realize_ggplot() on them. However, this comes with a small memory overhead, so, you can disable this.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


character default language for type conversion

Description

the language to use for type conversions (en, de, fr, cn, ca, ...) only used by util_adjust_data_type2(), currently

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Maximum number of levels of the categorical response variable shown individually in figures

Description

If there are more levels of a categorical response variable than can be shown individually, they will be collapsed into "other".

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Maximum number of levels of the grouping variable shown individually in figures

Description

If there are more examiners or devices than can be shown individually, they will be collapsed into "other".

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Maximum number of levels of the grouping variable shown with individual histograms ('violins') in 'margins' figures

Description

If there are more examiners or devices, the figure will be reduced to box-plots to save space.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Minimum number of observations per grouping variable that is required to include an individual level of the grouping variable in a figure

Description

Levels of the grouping variable with fewer observations than specified here will be excluded from the figure.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Minimum number of data points to create a time course plot for an individual level of a categorical response variable

Description

If there are less observations for an individual level of a categorical variable, it will not be shown in the time course plot.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Remove all observation-level-real-data from reports

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


character use the old handling of study data already featuring factors

Description

if study_data comes as a data frame, it may already feature factors. if a column has the DATA_TYPE integer in the meta data, the factor was converted to integer using as.integer(), which caused unexpected behavior. if this option is set to "FALSE" (the new default), the conversion will now try to apply as.character(column_data), first.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


character use the old type conversion code (slower)

Description

character use the old type conversion code (slower)

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Pre-compute different curation levels of study data

Description

as described in dataquieR.study_data_cache_max, different flavors of the study data are cached. With this option, you control, if before a report is computed, a frequently needed bunch of such flavors are pre-computed and distributed to the compute nodes. However, this may be time- and RAM- consuming, so, you can turn the pre-computation off, which will still allow the individual compute nodes to maintain such a cache but then growing on demand on individual nodes separately, only. If dataquieR.study_data_cache_max cannot handle all flavors, they may still be pre-computed but immediately discarded.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt

Other study_data_cache: dataquieR.ignore_empty_vars, dataquieR.print_block_load_factor, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_metrics_env_default, dataquieR.study_data_cache_quick_fill


numeric

Description

multiply size of parallel compute blocks by this factor. the higher it is set, the less smooth progress bar grows, but setting it to a huge number can really speed up the rendering process by approx. 10%. Either set to 1 for full progress control or large (e.g., 1000000) for maximum speed.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt

Other study_data_cache: dataquieR.ignore_empty_vars, dataquieR.precomputeStudyData, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_metrics_env_default, dataquieR.study_data_cache_quick_fill


function to call on progress increase

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


function to call on progress message update

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


If result already exists in a storr back-end, re-use it

Description

if TRUE, computation won't be repeated, if a result already exist in the output storr

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


If output folder is not empty, try to resume stopped print()

Description

if TRUE and a report was already partially printed with also this option TRUE, then, a second call to print() will resume the printing.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Number of levels to consider a variable ordinal in absence of SCALE_LEVEL

Description

If SCALE_LEVEL is not specified in the meta_data, it will be inferred using a heuristic. This option defines, for numeric variables, the maximum number of distinct data values for a variable to be considered ordinal.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Number of levels to consider a variable metric in absence of SCALE_LEVEL

Description

If SCALE_LEVEL is not specified in the meta_data, it will be inferred using a heuristic. This option defines, for numeric variables, the maximum number of distinct data values for a variable to be considered categorical, not ordinal.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Maximum size of cache for curated study data

Description

dataquieR caches all used flavors of curated study data, e.g., having missing codes replaced by NAs, having hard limits replaced by NA, ... For larger sets of study data this can be very RAM consuming, so you can control here the maximum size for this cache. Also, this cache is distributed to all compute nodes in case of parallel computation, which may be very time- consuming, and, on single-node-parallelization, also, it may be even more RAM-consuming then.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt

Other study_data_cache: dataquieR.ignore_empty_vars, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_metrics_env_default, dataquieR.study_data_cache_quick_fill


Collect metrics on cache usage of study data cache

Description

if TRUE, collect metrics on the usage of the study data cache described here: dataquieR.study_data_cache_max. Won't work, fully, if running in parallel. [Experimental]

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt

Other study_data_cache: dataquieR.ignore_empty_vars, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_metrics_env_default, dataquieR.study_data_cache_quick_fill


environment for storing metrics on the study data cache

Description

this is the environment, where metrics will be stored, if dataquieR.study_data_cache_metrics-option() has been set TRUE. [Experimental]

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt

Other study_data_cache: dataquieR.ignore_empty_vars, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env_default, dataquieR.study_data_cache_quick_fill


Default space for some metrics during report computation

Description

[Experimental]

Usage

dataquieR.study_data_cache_metrics_env_default

Format

An object of class environment of length 0.

See Also

Other study_data_cache: dataquieR.ignore_empty_vars, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill


Control the pre-computation of curation levels of study data

Description

as described in dataquieR.precomputeStudyData, different flavors of the study data are cached. With this option, you control, if before a report is computed, only frequently needed bunch of such flavors are pre-computed, or simply all possible flavors. Won't have any effect, if pre-computation has been turned off.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt

Other study_data_cache: dataquieR.ignore_empty_vars, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_metrics_env_default


character Are column names in study data considered case-sensitive for mapping

Description

if TRUE, colnames(study_data) replaced by the capitalization used in the metadata using a case-insensitive matching, first.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Disable all interactively used metadata-based function argument provision

Description

TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.traceback, dataquieR.type_adjust_parallel, progress_init_fkt


Include full trace-back in captured conditions

Description

Caveat: Needs really much memory

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.type_adjust_parallel, progress_init_fkt


character try to do type adjustments in parallel only, if dq_report2() was called with cores = 2 or higher.

Description

character try to do type adjustments in parallel only, if dq_report2() was called with cores = 2 or higher.

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, progress_init_fkt


Internal constructor for the internal class dataquieR_resultset.

Description

creates an object of the class dataquieR_resultset.

Usage

dataquieR_resultset(...)

Arguments

...

properties stored in the object

Details

The class features the following methods:

Value

an object of the class dataquieR_resultset.

See Also

dq_report


Class dataquieR_resultset2.

Description

Class dataquieR_resultset2.

See Also

dq_report2


Verify an object of class dataquieR_resultset

Description

Deprecated

Usage

dataquieR_resultset_verify(...)

Arguments

...

Deprecated

Value

Deprecated


Compute Pairwise Correlations

Description

works on variable groups (cross-item_level), which are expected to show a Pearson correlation

Usage

des_scatterplot_matrix(
  label_col,
  study_data,
  item_level = "item_level",
  meta_data_cross_item = "cross-item_level",
  meta_data = item_level,
  meta_data_v2,
  cross_item_level,
  `cross-item_level`
)

Arguments

label_col

variable attribute the name of the column in the metadata with labels of variables

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data_cross_item

meta_data_cross

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

cross_item_level

data.frame alias for meta_data_cross_item

`cross-item_level`

data.frame alias for meta_data_cross_item

Details

Descriptor # TODO: This can be an indicator

Value

a list with the slots:

Examples

## Not run: 
devtools::load_all()
prep_load_workbook_like_file("meta_data_v2")
des_scatterplot_matrix("study_data")

## End(Not run)

Compute Descriptive Statistics

Description

generates a descriptive overview of the variables in resp_vars.

Descriptor

Usage

des_summary(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  hard_limits_removal = getOption("dataquieR.des_summary_hard_lim_remove",
    dataquieR.des_summary_hard_lim_remove_default),
  ...
)

Arguments

resp_vars

variable the name of the measurement variables

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

hard_limits_removal

logical if TRUE values outside hard limits are removed from the data before calculating descriptive statistics. The default is FALSE

...

arguments to be passed to all called indicator functions if applicable.

Details

TODO

Value

a list with:

See Also

Online Documentation

Examples

## Not run: 
xx <- des_summary(study_data = "study_data", meta_data_v2 = "meta_data_v2")
xx$SummaryData

## End(Not run)

Compute Descriptive Statistics - categorical variables

Description

generates a descriptive overview of the categorical variables (nominal and ordinal) in resp_vars.

Descriptor

Usage

des_summary_categorical(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  hard_limits_removal = getOption("dataquieR.des_summary_hard_lim_remove",
    dataquieR.des_summary_hard_lim_remove_default),
  ...
)

Arguments

resp_vars

variable the name of the categorical measurement variable

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

hard_limits_removal

logical if TRUE values outside hard limits are removed from the data before calculating descriptive statistics. The default is FALSE

...

arguments to be passed to all called indicator functions if applicable.

Details

TODO

Value

a list with:

See Also

Online Documentation

Examples

## Not run: 
prep_load_workbook_like_file("meta_data_v2")
xx <- des_summary_categorical(study_data = "study_data", meta_data =
                              prep_get_data_frame("item_level"))
util_html_table(xx$SummaryData)
util_html_table(des_summary_categorical(study_data = prep_get_data_frame("study_data"),
                   meta_data = prep_get_data_frame("item_level"))$SummaryData)

## End(Not run)

Compute Descriptive Statistics - continuous variables

Description

generates a descriptive overview of continuous variables (ratio and interval) in resp_vars.

Descriptor

Usage

des_summary_continuous(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  hard_limits_removal = getOption("dataquieR.des_summary_hard_lim_remove",
    dataquieR.des_summary_hard_lim_remove_default),
  ...
)

Arguments

resp_vars

variable the name of the continuous measurement variable

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

hard_limits_removal

logical if TRUE values outside hard limits are removed from the data before calculating descriptive statistics. The default is FALSE

...

arguments to be passed to all called indicator functions if applicable.

Details

TODO

Value

a list with:

See Also

Online Documentation

Examples

## Not run: 
prep_load_workbook_like_file("meta_data_v2")
xx <- des_summary_continuous(study_data = "study_data", meta_data =
                              prep_get_data_frame("item_level"))
xx$SummaryData

## End(Not run)

Get the dimensions of a dq_report2 result

Description

Get the dimensions of a dq_report2 result

Usage

## S3 method for class 'dataquieR_resultset2'
dim(x)

Arguments

x

a dataquieR_resultset2 result

Value

dimensions


Names of DQ dimensions

Description

a vector of data quality dimensions. The supported dimensions are Completeness, Consistency and Accuracy.

Usage

dimensions

Format

An object of class character of length 3.

Value

Only a definition, not a function, so no return value

See Also

Data Quality Concept


Names of a dataquieR report object (v2.0)

Description

Names of a dataquieR report object (v2.0)

Usage

## S3 method for class 'dataquieR_resultset2'
dimnames(x)

Arguments

x

the result object

Value

the names


Dimension Titles for Prefixes

Description

order does matter, because it defines the order in the dq_report2.

Usage

dims

Format

An object of class character of length 5.

See Also

util_html_for_var()

util_html_for_dims()


Generate a full DQ report

Description

Deprecated

Usage

dq_report(...)

Arguments

...

Deprecated

Value

Deprecated


Generate a full DQ report, v2

Description

Generate a full DQ report, v2

Usage

dq_report2(
  study_data,
  item_level = "item_level",
  label_col = LABEL,
  meta_data_segment = "segment_level",
  meta_data_dataframe = "dataframe_level",
  meta_data_cross_item = "cross-item_level",
  meta_data_item_computation = "item_computation_level",
  meta_data = item_level,
  meta_data_v2,
  ...,
  dimensions = c("Completeness", "Consistency"),
  cores = list(mode = "socket", logging = FALSE, cpus = util_detect_cores(),
    load.balancing = TRUE),
  ignore_empty_vars = getOption("dataquieR.ignore_empty_vars",
    dataquieR.ignore_empty_vars_default),
  specific_args = list(),
  advanced_options = list(),
  author = prep_get_user_name(),
  title = "Data quality report",
  subtitle = as.character(Sys.Date()),
  user_info = NULL,
  debug_parallel = FALSE,
  resp_vars = character(0),
  filter_indicator_functions = character(0),
  filter_result_slots = c("^Summary", "^Segment", "^DataTypePlotList",
    "^ReportSummaryTable", "^Dataframe", "^Result", "^VariableGroup"),
  mode = c("default", "futures", "queue", "parallel"),
  mode_args = list(),
  notes_from_wrapper = list(),
  storr_factory = NULL,
  amend = FALSE,
  cross_item_level,
  `cross-item_level`,
  segment_level,
  dataframe_level,
  item_computation_level,
  .internal = rlang::env_inherits(rlang::caller_env(), parent.env(environment())),
  checkpoint_resumed = getOption("dataquieR.resume_checkpoint",
    dataquieR.resume_checkpoint_default),
  name_of_study_data,
  dt_adjust = as.logical(getOption("dataquieR.dt_adjust", dataquieR.dt_adjust_default))
)

Arguments

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

meta_data_segment

data.frame – optional: Segment level metadata

meta_data_dataframe

data.frame – optional: Data frame level metadata

meta_data_cross_item

data.frame – optional: Cross-item level metadata

meta_data_item_computation

data.frame optional. computation rules for computed variables.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

...

arguments to be passed to all called indicator functions if applicable.

dimensions

dimensions Vector of dimensions to address in the report. Allowed values in the vector are Completeness, Consistency, and Accuracy. The generated report will only cover the listed data quality dimensions. Accuracy is computational expensive, so this dimension is not enabled by default. Completeness should be included, if Consistency is included, and Consistency should be included, if Accuracy is included to avoid misleading detections of e.g. missing codes as outliers, please refer to the data quality concept for more details. Integrity is always included. If dimensions is equal to NULL or "all", all dimensions will be covered.

cores

integer number of cpu cores to use or a named list with arguments for parallelMap::parallelStart or NULL, if parallel has already been started by the caller. Can also be a cluster.

ignore_empty_vars

enum TRUE | FALSE | auto. See dataquieR.ignore_empty_vars.

specific_args

list named list of arguments specifically for one of the called functions, the of the list elements correspond to the indicator functions whose calls should be modified. The elements are lists of arguments.

advanced_options

list options to set during report computation, see options()

author

character author for the report documents.

title

character optional argument to specify the title for the data quality report

subtitle

character optional argument to specify a subtitle for the data quality report

user_info

list additional info stored with the report, e.g., comments, title, ...

debug_parallel

logical print blocks currently evaluated in parallel

resp_vars

variable list the name of the measurement variables for the report. If missing, all variables will be used. Only item level indicator functions are filtered, so far.

filter_indicator_functions

character regular expressions, only if an indicator function's name matches one of these, it'll be used for the report. If of length zero, no filtering is performed.

filter_result_slots

character regular expressions, only if an indicator function's result's name matches one of these, it'll be used for the report. If of length zero, no filtering is performed.

mode

character work mode for parallel execution. default is "default", the values mean: - default: use queue except cores has been set explicitly - futures: use the future package - queue: use a queue as described in the examples from the callr package by Csárdi and Chang and start sub-processes as workers that evaluate the queue. - parallel: use the cluster from cores to evaluate all calls of indicator functions using the classic R parallel back-ends

mode_args

list of arguments for the selected mode. As of writing this manual, only for the mode queue the argument step is supported, which gives the number of function calls that are run by one worker at a time. the default is 15, which gives on most of the tested systems a good balance between synchronization overhead and idling workers.

notes_from_wrapper

list a list containing notes about changed labels by dq_report_by (otherwise NULL)

storr_factory

function NULL, or a function returning a storr object as back-end for the report's results. If used with cores > 1, the storage must be accessible from all cores and capable of concurrent writing according to storr. Hint: dataquieR currently only supports storr::storr_rds(), officially, while other back- ends may nevertheless work, yet, they are not tested.

amend

logical if there is already data in.storr_factory, use it anyways – unsupported, so far!

cross_item_level

data.frame alias for meta_data_cross_item

segment_level

data.frame alias for meta_data_segment

dataframe_level

data.frame alias for meta_data_dataframe

item_computation_level

data.frame alias for meta_data_item_computation

.internal

logical internal use, only.

checkpoint_resumed

logical if using a storr_factory and the back- end there is already filled, and if amend is missing or set to TRUE, compute all missing result and add them to the back-end.

name_of_study_data

character name for study data inside the report, internal use.

dt_adjust

logical whether to trust data types in the study data. if TRUE, data types are checked based on the metadata and later casted to the declared type. if your data source is already typed, this can be turned off to speed up computations. see dataquieR.dt_adjust

`cross-item_level`

data.frame alias for meta_data_cross_item

Details

See dq_report_by for a way to generate stratified or splitted reports easily.

Value

a dataquieR_resultset2 that can be printed creating a HTML-report.

See Also


Generate a stratified full DQ report

Description

Generate a stratified full DQ report

Usage

dq_report_by(
  study_data,
  item_level = "item_level",
  meta_data_segment = "segment_level",
  meta_data_dataframe = "dataframe_level",
  meta_data_cross_item = "cross-item_level",
  meta_data_item_computation = "item_computation_level",
  missing_tables = NULL,
  label_col,
  meta_data_v2,
  segment_column = NULL,
  strata_column = NULL,
  strata_select = NULL,
  selection_type = NULL,
  segment_select = NULL,
  segment_exclude = NULL,
  strata_exclude = NULL,
  subgroup = NULL,
  resp_vars = character(0),
  id_vars = NULL,
  advanced_options = list(),
  storr_factory = NULL,
  amend = FALSE,
  checkpoint_resumed = getOption("dataquieR.resume_checkpoint",
    dataquieR.resume_checkpoint_default),
  ...,
  output_dir = NULL,
  input_dir = NULL,
  also_print = FALSE,
  disable_plotly = FALSE,
  view = TRUE,
  meta_data = item_level,
  cross_item_level,
  `cross-item_level`,
  segment_level,
  dataframe_level,
  item_computation_level
)

Arguments

study_data

data.frame the data frame that contains the measurements: it can be an R object (e.g., bia), a data frame (e.g., "C:/Users/data/bia.dta"), a vector containing data frames files (e.g., c("C:/Users/data/bia.dta", ⁠C:/Users/data/biames.dta"⁠)), or it can be left empty and the data frames are provided in the data frame level metadata. If only the file name without path is provided (e.g., "bia.dta"), the file name needs the extension and the path must be provided in the argument input_dir. It can also contain only the file name in case of example data from the package dataquieR (e.g., "study_data" or "ship")

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data_segment

data.frame – optional: Segment level metadata

meta_data_dataframe

data.frame – optional if study_data is present: Data frame level metadata

meta_data_cross_item

data.frame – optional: Cross-item level metadata

meta_data_item_computation

data.frame – optional: Computed items metadata

missing_tables

character the name of the data frame containing the missing codes, it can be a vector if more than one table is provided. Example: c("missing_table1", "missing_table2")

label_col

variable attribute the name of the column in the metadata containing the labels of the variables

meta_data_v2

character path or file name of the workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2

segment_column

variable attribute name of a metadata attribute usable to split the report in sections of variables, e.g. all blood-pressure related variables. By default, reports are split by STUDY_SEGMENT if available and no segment_column nor strata_column or subgroup are defined. To create an un-split report please write explicitly the argument 'segment_column = NULL'

strata_column

variable name of a study variable to stratify the report by, e.g. the study centers. Both labels and VAR_NAMES are accepted. In case of NAs in the selected variable, a separate report containing the NAs subset will be created

strata_select

character if given, the strata of strata_column are limited to the content of this vector. A character vector or a regular expression can be provided (e.g., "^a.*$"). This argument can not be used if no strata_column is provided

selection_type

character optional, can only be specified if a strata_select or strata_exclude is specified. If not present the function try to guess what the user typed as strata_select or strata_exclude. There are 3 options: value indicating that the stratum selected is a value and not a value_label. For example "0"; v_label indicating that the stratum specified is a label. For example "male". regex indicating that the user specified strata using a regular expression. For example "^Ber" to select all strata starting with that letters

segment_select

character if given, the levels of segment_column are limited to the content of this vector. A character vector or a regular expression (e.g., ".*_EXAM$") can be provided. This argument can not be used if no segment_column is provided.

segment_exclude

character optional, can only be specified if a segment_column is specified. The levels of segment_column will not include the content of this argument. A character vector or a regular expression can be provided (e.g., "^STU").

strata_exclude

character optional, can only be specified if a strata_column is specified. The strata of strata_column will not include the content of this argument. A character vector or a regular expression can be provided (e.g., "^STU").

subgroup

character optional, to define subgroups of cases. Rules are to be written as REDCap rules. Only VAR_NAMES are accepted in the rules.

resp_vars

variable the names of the measurement variables, if missing or NULL, all variables will be included

id_vars

variable a vector containing the name/s of the variables containing ids, to be used to merge multiple data frames if provided in study_data and to be add to referred vars

advanced_options

list options to set during report computation, see options()

storr_factory

function NULL, or a function returning a storr object as back-end for the report's results. If used with cores > 1, the storage must be accessible from all cores and capable of concurrent writing according to storr. Hint: dataquieR currently only supports storr::storr_rds(), officially, while other back- ends may nevertheless work, yet, they are not tested.

amend

logical if there is already data in.storr_factory, use it anyways – unsupported, so far!

checkpoint_resumed

logical if using a storr_factory and the back- end there is already filled, and if amend is missing or set to TRUE, compute all missing result and add them to the back-end.

...

arguments to be passed through to dq_report or dq_report2

output_dir

character if given, the output is not returned but saved in this directory

input_dir

character if given, the study data files that have no path and that are not URL are searched in this directory. Also meta_data_v2 is searched in this directory if no path is provided

also_print

logical if output_dir is not NULL, also create HTML output for each report using print.dataquieR_resultset2() written to the path output_dir

disable_plotly

logical do not use plotly, even if installed

view

logical open the returned report

meta_data

data.frame old name for item_level

cross_item_level

data.frame alias for meta_data_cross_item

segment_level

data.frame alias for meta_data_segment

dataframe_level

data.frame alias for meta_data_dataframe

item_computation_level

data.frame alias for meta_data_item_computation

`cross-item_level`

data.frame alias for meta_data_cross_item

Value

A named list of named lists of dq_report2 reports, returned invisibly unless view = TRUE. If output_dir is given, the result is still returned (invisibly), and optionally opened in a browser (view = TRUE, also_print = TRUE).

See Also

dq_report

Examples

## Not run:  # really long-running example.
prep_load_workbook_like_file("meta_data_v2")
rep <- dq_report_by("study_data", label_col =
  LABEL, strata_column = "CENTER_0")
rep <- dq_report_by("study_data",
  label_col = LABEL, strata_column = "CENTER_0",
  segment_column = NULL
)
unlink("/tmp/testRep/", force = TRUE, recursive = TRUE)
dq_report_by("study_data",
  label_col = LABEL, strata_column = "CENTER_0",
  segment_column = STUDY_SEGMENT, output_dir = "/tmp/testRep"
)
unlink("/tmp/testRep/", force = TRUE, recursive = TRUE)
dq_report_by("study_data",
  label_col = LABEL, strata_column = "CENTER_0",
  segment_column = NULL, output_dir = "/tmp/testRep"
)
dq_report_by("study_data",
  label_col = LABEL,
  segment_column = STUDY_SEGMENT, output_dir = "/tmp/testRep"
)
dq_report_by("study_data",
  label_col = LABEL,
  segment_column = STUDY_SEGMENT, output_dir = "/tmp/testRep",
  also_print = TRUE
)
dq_report_by(study_data = "study_data", meta_data_v2 = "meta_data_v2",
  advanced_options = list(dataquieR.study_data_cache_max = 0,
  dataquieR.study_data_cache_metrics = TRUE,
  dataquieR.study_data_cache_metrics_env = environment()),
  cores = NULL, dimensions = "int")
dq_report_by(study_data = "study_data", meta_data_v2 = "meta_data_v2",
  advanced_options = list(dataquieR.study_data_cache_max = 0),
  cores = NULL, dimensions = "int")

## End(Not run)

Remove unused levels from ReportSummaryTable

Description

Remove unused levels from ReportSummaryTable

Usage

## S3 method for class 'ReportSummaryTable'
droplevels(x, ...)

Arguments

x

ReportSummaryTable an object from which to drop unused factor levels.

...

no used.

Value

ReportSummaryTable with all (NA or 0)-columns removed


S3/S7 methods for lazy ggplot objects

Description

These S3/S7 methods make dq_lazy_ggplot/dq_lazy_ggplot_s7 objects work smoothly with functions from ggplot2 and plotly. They simply materialize the underlying ggplot object and then delegate to the respective generic.

Usage

ggplotGrob.dq_lazy_ggplot(x, ...)

ggplotly.dq_lazy_ggplot_s7(p, ...)

plotly_build.dq_lazy_ggplot_s7(p, ...)

ggplotly.dq_lazy_ggplot(p, ...)

plotly_build.dq_lazy_ggplot(p, ...)

ggplotGrob.dq_lazy_ggplot_s7(x, ...)

Arguments

x, p

A dq_lazy_ggplot object.

...

Further arguments passed on to the underlying generic.

Value

The return value is the same as for the corresponding generic:

See Also

ggplotGrob, plotly::ggplotly plotly::plotly_build


grid.draw method for util_pairs_ggplot_panels objects

Description

grid.draw method for util_pairs_ggplot_panels objects

Usage

## S3 method for class 'util_pairs_ggplot_panels'
grid.draw(x, ...)

Arguments

x

An object of class util_pairs_ggplot_panels.

...

Ignored.


HTML Dependency for report headers in clipboard

Description

HTML Dependency for report headers in clipboard

Usage

html_dependency_clipboard()

Value

the dependency


HTML Dependency for dataquieR

Description

generate all dependencies used in static dataquieR reports

Usage

html_dependency_dataquieR(iframe = FALSE)

Arguments

iframe

logical(1) if TRUE, create the dependency used in figure iframes.

Value

the dependency


HTML dependency for jsPDF

Description

Provides jsPDF for use in Shiny or RMarkdown via htmltools.

Usage

html_dependency_jspdf()

Value

An htmltools::htmlDependency() object


HTML Dependency for report headers in DT::datatable

Description

HTML Dependency for report headers in DT::datatable

Usage

html_dependency_report_dt()

Value

the dependency


HTML Dependency for tippy

Description

HTML Dependency for tippy

Usage

html_dependency_tippy()

Value

the dependency


HTML Dependency for vertical headers in DT::datatable

Description

HTML Dependency for vertical headers in DT::datatable

Usage

html_dependency_vert_dt()

Value

the dependency


Wrapper function to check for studies data structure

Description

This function tests for unexpected elements and records, as well as duplicated identifiers and content. The unexpected element record check can be conducted by providing the number of expected records or an additional table with the expected records. It is possible to conduct the checks by study segments or to consider only selected segments.

Indicator

Usage

int_all_datastructure_dataframe(
  meta_data_dataframe = "dataframe_level",
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  dataframe_level
)

Arguments

meta_data_dataframe

data.frame the data frame that contains the metadata for the data frame level

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

dataframe_level

data.frame alias for meta_data_dataframe

Value

a list with

Examples

## Not run: 
out_dataframe <- int_all_datastructure_dataframe(
  meta_data_dataframe = "meta_data_dataframe",
  meta_data = "ship_meta"
)
md0 <- prep_get_data_frame("ship_meta")
md0
md0$VAR_NAMES
md0$VAR_NAMES[[1]] <- "Id" # is this missmatch reported -- is the data frame
                           # also reported, if nothing is wrong with it
out_dataframe <- int_all_datastructure_dataframe(
  meta_data_dataframe = "meta_data_dataframe",
  meta_data = md0
)

# This is the "normal" procedure for inside pipeline
# but outside this function  checktype is exact by default
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "subset_u")
lapply(setNames(nm = prep_get_data_frame("meta_data_dataframe")$DF_NAME),
  int_sts_element_dataframe, meta_data = md0)
md0$VAR_NAMES[[1]] <-
  "id" # is this missmatch reported -- is the data frame also reported,
       # if nothing is wrong with it
lapply(setNames(nm = prep_get_data_frame("meta_data_dataframe")$DF_NAME),
  int_sts_element_dataframe, meta_data = md0)
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "exact")

## End(Not run)


Wrapper function to check for segment data structure

Description

This function tests for unexpected elements and records, as well as duplicated identifiers and content. The unexpected element record check can be conducted by providing the number of expected records or an additional table with the expected records. It is possible to conduct the checks by study segments or to consider only selected segments.

Indicator

Usage

int_all_datastructure_segment(
  study_data,
  label_col,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  segment_level,
  meta_data_segment = "segment_level"
)

Arguments

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

segment_level

data.frame alias for meta_data_segment

meta_data_segment

data.frame the data frame that contains the metadata for the segment level, mandatory

Value

a list with

Examples

## Not run: 
out_segment <- int_all_datastructure_segment(
  meta_data_segment = "meta_data_segment",
  study_data = "ship",
  meta_data = "ship_meta"
)

study_data <- cars
meta_data <- dataquieR::prep_create_meta(VAR_NAMES = c("speedx", "distx"),
  DATA_TYPE = c("integer", "integer"), MISSING_LIST = "|", JUMP_LIST = "|",
  STUDY_SEGMENT = c("Intro", "Ex"))

out_segment <- int_all_datastructure_segment(
  meta_data_segment = "meta_data_segment",
  study_data = study_data,
  meta_data = meta_data
)

## End(Not run)

Check declared data types of metadata in study data

Description

Checks data types of the study data and for the data type declared in the metadata

Indicator

Usage

int_datatype_matrix(
  resp_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  split_segments = FALSE,
  max_vars_per_plot = 20,
  threshold_value = 0,
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable the names of the measurement variables, if missing or NULL, all variables will be checked

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

split_segments

logical return one matrix per study segment

max_vars_per_plot

integer from=0. The maximum number of variables per single plot.

threshold_value

numeric from=0 to=100. percentage failing conversions allowed to still classify a study variable convertible.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

This is a preparatory support function that compares study data with associated metadata. A prerequisite of this function is that the no. of columns in the study data complies with the no. of rows in the metadata.

For each study variable, the function searches for its data type declared in static metadata and returns a heatmap like matrix indicating data type mismatches in the study data.

List function.

Value

a list with:


Check for duplicated content

Description

This function tests for duplicates entries in the data set. It is possible to check duplicated entries by study segments or to consider only selected segments.

Indicator

Usage

int_duplicate_content(
  level = c("dataframe", "segment"),
  study_data,
  item_level = "item_level",
  label_col,
  meta_data = item_level,
  meta_data_v2,
  ...
)

Arguments

level

character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment").

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

...

Depending on level, passed to either util_int_duplicate_content_segment or util_int_duplicate_content_dataframe

Value

a list. Depending on level, see util_int_duplicate_content_segment or util_int_duplicate_content_dataframe for a description of the outputs.


Check for duplicated IDs

Description

This function tests for duplicates entries in identifiers. It is possible to check duplicated identifiers by study segments or to consider only selected segments.

Indicator

Usage

int_duplicate_ids(
  level = c("dataframe", "segment"),
  study_data,
  item_level = "item_level",
  label_col,
  meta_data = item_level,
  meta_data_v2,
  ...
)

Arguments

level

character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment").

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

...

Depending on level, passed to either util_int_duplicate_ids_segment or util_int_duplicate_ids_dataframe

Value

a list. Depending on level, see util_int_duplicate_ids_segment or util_int_duplicate_ids_dataframe for a description of the outputs.


Encoding Errors

Description

Detects errors in the character encoding of string variables

Indicator

Usage

int_encoding_errors(
  resp_vars = NULL,
  study_data,
  label_col,
  meta_data_dataframe = "dataframe_level",
  item_level = "item_level",
  ref_encs,
  meta_data = item_level,
  meta_data_v2,
  dataframe_level
)

Arguments

resp_vars

variable the names of the measurement variables, if missing or NULL, all variables will be checked

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

meta_data_dataframe

data.frame the data frame that contains the metadata for the data frame level

item_level

data.frame the data frame that contains metadata attributes of study data

ref_encs

reference encodings (names are resp_vars)

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

dataframe_level

data.frame alias for meta_data_dataframe

Details

Strings are stored based on code tables, nowadays, typically as UTF-8. However, other code systems are still in use, so, sometimes, strings from different systems are mixed in the data. This indicator checks for such problems and returns the count of entries per variable, that do not match the reference coding system, which is estimated from the study data (addition of metadata field is planned).

If not specified in the metadata (columns ENCODING in item- or data-frame- level, the encoding is guessed from the data). Otherwise, it may be any supported encoding as returned by iconvlist().

Value

a list with:


Detect Expected Observations

Description

For each participant, check, if an observation was expected, given the PART_VARS from item-level metadata

Usage

int_part_vars_structure(
  label_col,
  study_data,
  item_level = "item_level",
  expected_observations = c("HIERARCHY", "SEGMENT"),
  disclose_problem_paprt_var_data = FALSE,
  meta_data = item_level,
  meta_data_v2
)

Arguments

label_col

character mapping attribute colnames(study_data) vs. meta_data[label_col]

study_data

study_data must have all relevant PART_VARS to avoid false-positives on PART_VARS missing from study_data

item_level

meta_data must be complete to avoid false positives on non-existing PART_VARS

expected_observations

enum HIERARCHY | SEGMENT. How should PART_VARS be handled: - SEGMENT: if PART_VAR is 1, an observation is expected - HIERARCHY: the default, if the PART_VAR is 1 for this variable and also for all PART_VARS of PART_VARS up in the hierarchy, an observation is expected.

disclose_problem_paprt_var_data

logical show the problematic data (PART_VAR only)

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

Descriptor

Value

empty list, so far – the function only warns.


Determine missing and/or superfluous data elements

Description

Depends on dataquieR.ELEMENT_MISSMATCH_CHECKTYPE option, see there

Usage

int_sts_element_dataframe(
  item_level = "item_level",
  meta_data_dataframe = "dataframe_level",
  meta_data = item_level,
  meta_data_v2,
  check_type = getOption("dataquieR.ELEMENT_MISSMATCH_CHECKTYPE",
    dataquieR.ELEMENT_MISSMATCH_CHECKTYPE_default),
  dataframe_level
)

Arguments

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data_dataframe

data.frame the data frame that contains the metadata for the data frame level

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

check_type

enum none | exact | subset_u | subset_m. See dataquieR.ELEMENT_MISSMATCH_CHECKTYPE

dataframe_level

data.frame alias for meta_data_dataframe

Details

Indicator

Value

list with names lots:

Examples

## Not run: 
prep_load_workbook_like_file("~/tmp/df_level_test.xlsx")
meta_data_dataframe <- "dataframe_level"
meta_data <- "item_level"

## End(Not run)

Checks for element set

Description

Depends on dataquieR.ELEMENT_MISSMATCH_CHECKTYPE option, see there – # TODO: Rind out, how to document and link it here using Roxygen.

Usage

int_sts_element_segment(
  study_data,
  item_level = "item_level",
  label_col,
  meta_data = item_level,
  meta_data_v2
)

Arguments

study_data

data.frame the data frame that contains the measurements, mandatory.

item_level

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

Indicator

Value

a list with

Examples

## Not run: 
study_data <- cars
meta_data <- dataquieR::prep_create_meta(VAR_NAMES = c("speedx", "distx"),
  DATA_TYPE = c("integer", "integer"), MISSING_LIST = "|", JUMP_LIST = "|",
  STUDY_SEGMENT = c("Intro", "Ex"))
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "none")
int_sts_element_segment(study_data, meta_data)
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "exact")
int_sts_element_segment(study_data, meta_data)
study_data <- cars
meta_data <- dataquieR::prep_create_meta(VAR_NAMES = c("speedx", "distx"),
  DATA_TYPE = c("integer", "integer"), MISSING_LIST = "|", JUMP_LIST = "|",
  STUDY_SEGMENT = c("Intro", "Intro"))
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "none")
int_sts_element_segment(study_data, meta_data)
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "exact")
int_sts_element_segment(study_data, meta_data)
study_data <- cars
meta_data <- dataquieR::prep_create_meta(VAR_NAMES = c("speed", "distx"),
  DATA_TYPE = c("integer", "integer"), MISSING_LIST = "|", JUMP_LIST = "|",
  STUDY_SEGMENT = c("Intro", "Intro"))
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "none")
int_sts_element_segment(study_data, meta_data)
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "exact")
int_sts_element_segment(study_data, meta_data)

## End(Not run)

Check for unexpected data element count

Description

This function contrasts the expected element number in each study in the metadata with the actual element number in each study data frame.

Indicator

Usage

int_unexp_elements(
  identifier_name_list,
  data_element_count,
  meta_data_dataframe = "dataframe_level",
  meta_data_v2,
  dataframe_level
)

Arguments

identifier_name_list

character a character vector indicating the name of each study data frame, mandatory.

data_element_count

integer an integer vector with the number of expected data elements, mandatory.

meta_data_dataframe

data.frame the data frame that contains the metadata for the data frame level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

dataframe_level

data.frame alias for meta_data_dataframe

Value

a list with


Check for unexpected data record count at the data frame level

Description

This function contrasts the expected record number in each study in the metadata with the actual record number in each study data frame.

Indicator

Usage

int_unexp_records_dataframe(
  identifier_name_list,
  data_record_count,
  meta_data_dataframe = "dataframe_level",
  meta_data_v2,
  dataframe_level
)

Arguments

identifier_name_list

character a character vector indicating the name of each study data frame, mandatory.

data_record_count

integer an integer vector with the number of expected data records per study data frame, mandatory.

meta_data_dataframe

data.frame the data frame that contains the metadata for the data frame level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

dataframe_level

data.frame alias for meta_data_dataframe

Value

a list with


Check for unexpected data record count within segments

Description

This function contrasts the expected record number in each study segment in the metadata with the actual record number in each segment data frame.

Indicator

Usage

int_unexp_records_segment(
  study_segment,
  study_data,
  label_col,
  item_level = "item_level",
  data_record_count,
  meta_data = item_level,
  meta_data_segment = "segment_level",
  meta_data_v2,
  segment_level
)

Arguments

study_segment

character a character vector indicating the name of each study data frame, mandatory.

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

data_record_count

integer an integer vector with the number of expected data records, mandatory.

meta_data

data.frame old name for item_level

meta_data_segment

data.frame – optional: Segment level metadata

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

segment_level

data.frame alias for meta_data_segment

Details

The current implementation does not take into account jump or missing codes, the function is rather based on checking whether NAs are present in the study data

Value

a list with


Check for unexpected data record set

Description

This function tests that the identifiers match a provided record set. It is possible to check for unexpected data record sets by study segments or to consider only selected segments.

Indicator

Usage

int_unexp_records_set(
  level = c("dataframe", "segment"),
  study_data,
  item_level = "item_level",
  label_col,
  meta_data = item_level,
  meta_data_v2,
  ...
)

Arguments

level

character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment").

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

...

Depending on level, passed to either util_int_unexp_records_set_segment or util_int_unexp_records_set_dataframe

Value

a list. Depending on level, see util_int_unexp_records_set_segment or util_int_unexp_records_set_dataframe for a description of the outputs.


Description

Generate the menu for a report

Arguments

pages

encapsulated list with report pages as tagList objects, its names are the desired file names

Value

the html-taglist for the menu


Description

Creates a drop-down menu

Arguments

title

name of the entry in the main menu

menu_description

description, displayed, if the main menu entry itself is clicked

...

the sub-menu-entries

id

id for the entry, defaults to modified title

Value

html div object


Create a single menu entry

Description

Create a single menu entry

Arguments

title

of the entry

id

linked href, defaults to modified title. can be a word, then a single-page-link with an anchor tag is created.

...

additional arguments for the menu link

Value

html-a-tag object


Data frame with metadata about the study data on variable level

Description

Variable level metadata.

See Also

further details on variable level metadata.

meta_data_segment

meta_data_dataframe


Well known columns on the item_computation_level sheet

Description

Computation rules TODO

See Also

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_cross


Well known columns on the cross-item_level sheet

Description

Metadata describing groups of variables, e.g., for their multivariate distribution or for defining contradiction rules.

See Also

check_table

Online Documentation

Other meta_data_cross: ASSOCIATION_DIRECTION, ASSOCIATION_FORM, ASSOCIATION_METRIC, ASSOCIATION_RANGE, CHECK_ID, CHECK_LABEL, COMPUTED_VARIABLE_ROLES, CONTRADICTION_TERM, CONTRADICTION_TYPE, DATA_PREPARATION, GOLDSTANDARD, IRV, MAHALANOBIS_THRESHOLD, MAXIMUM_LONG_STRING, MISS_RESP, MULTIVARIATE_OUTLIER_CHECK, MULTIVARIATE_OUTLIER_CHECKTYPE, RELCOMPL_SPEED, REL_VAL, RESPT_PER_ITEM, SCALE_ACRONYM, SCALE_NAME, TOTRESPT, VARIABLE_LIST, VARIABLE_LIST_ORDER, meta_data_computation


Well known columns on the meta_data_dataframe sheet

Description

Metadata describing data delivered on one data frame/table sheet, e.g., a full questionnaire, not its items.


.meta_data_env – an environment for easy metadata access

Description

used by the dq_report2-pipeline

Usage

.meta_data_env

Format

An object of class environment of length 9.

See Also

meta_data_env_id_vars() meta_data_env_co_vars() meta_data_env_time_vars() meta_data_env_group_vars()


Extract co-variables for a given item

Description

Extract co-variables for a given item

Arguments

entity

vector of item-identifiers

Value

a vector with co-variables for each entity-entry, having the explode attribute set to FALSE

See Also

meta_data_env


Well known columns on the meta_data_segment sheet

Description

Metadata describing study segments, e.g., a full questionnaire, not its items.


return the number of result slots in a report

Description

return the number of result slots in a report

Usage

nres(x)

Arguments

x

the dataquieR report (v2.0)

Value

the number of used result slots


Convert a pipeline result data frame to named encapsulated lists

Description

Deprecated

Usage

pipeline_recursive_result(...)

Arguments

...

Deprecated

Value

Deprecated


Call (nearly) one "Accuracy" function with many parameterizations at once automatically

Description

Deprecated

Usage

pipeline_vectorized(...)

Arguments

...

Deprecated

Value

Deprecated


Plot a dataquieR summary

Description

Plot a dataquieR summary

Usage

## S3 method for class 'dataquieR_summary'
plot(
  x,
  y,
  ...,
  filter,
  dont_plot = FALSE,
  stratify_by,
  vars_to_include = "study",
  disable_plotly = FALSE
)

Arguments

x

the dataquieR summary, see summary() and dq_report2()

y

not yet used

...

not yet used

filter

if given, this filters the summary, e.g., filter = call_names == "com_qualified_item_missingness"

dont_plot

suppress the actual plotting, just return a printable object derived from x

stratify_by

column to stratify the summary, may be one string.

vars_to_include

"study", "ssi" or c("study", "ssi"). variables to include

disable_plotly

logical do not use plotly, even if installed

Value

invisible html object


Utility function to plot a combined figure for distribution checks

Description

Data quality indicator checks "Unexpected location" with histograms and plots of empirical cumulative distributions for the subgroups.

Usage

prep_acc_distributions_with_ecdf(
  resp_vars = NULL,
  group_vars = NULL,
  study_data,
  label_col,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  n_group_max = getOption("dataquieR.max_group_var_levels_in_plot",
    dataquieR.max_group_var_levels_in_plot_default),
  n_obs_per_group_min = getOption("dataquieR.min_obs_per_group_var_in_plot",
    dataquieR.min_obs_per_group_var_in_plot_default)
)

Arguments

resp_vars

variable list the name of the measurement variable

group_vars

variable list the name of the observer, device or reader variable

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

n_group_max

maximum number of categories to be displayed individually for the grouping variable (group_vars, devices / examiners)

n_obs_per_group_min

minimum number of data points per group to create a graph for an individual category of the group_vars variable

Value

A SummaryPlot.


Convert missing codes in metadata format v1.0 and a missing-cause-table to v2.0 missing list / jump list assignments

Description

The function has to working modes. If replace_meta_data is TRUE, by default, if cause_label_df contains a column named resp_vars, then the missing/jump codes in meta_data[, c(MISSING_CODES, JUMP_CODES)] will be overwritten, otherwise, it will be labeled using the cause_label_df.

Usage

prep_add_cause_label_df(
  item_level = "item_level",
  cause_label_df,
  label_col = VAR_NAMES,
  assume_consistent_codes = TRUE,
  replace_meta_data = ("resp_vars" %in% colnames(cause_label_df)),
  meta_data = item_level,
  meta_data_v2
)

Arguments

item_level

data.frame the data frame that contains metadata attributes of study data

cause_label_df

data.frame missing code table. If missing codes have labels the respective data frame can be specified here, see cause_label_df

label_col

variable attribute the name of the column in the metadata with labels of variables

assume_consistent_codes

logical if TRUE and no labels are given and the same missing/jump code is used for more than one variable, the labels assigned for this code will be the same for all variables.

replace_meta_data

logical if TRUE, ignore existing missing codes and jump codes and replace them with data from the cause_label_df. Otherwise, copy the labels from cause_label_df to the existing code columns.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

If a column resp_vars exists, then rows with a value in resp_vars will only be used for the corresponding variable.

Value

data.frame updated metadata including all the code labels in missing/jump lists

See Also

prep_extract_cause_label_df


Insert missing codes for NAs based on rules

Description

Insert missing codes for NAs based on rules

Usage

prep_add_computed_variables(
  study_data,
  meta_data,
  label_col,
  rules,
  use_value_labels
)

Arguments

study_data

data.frame the data frame that contains the measurements

meta_data

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

rules

data.frame with the columns:

use_value_labels

logical In rules for factors, use the value labels, not the codes. Defaults to TRUE, if any VALUE_LABELS are given in the metadata.

Value

a list with the entry:

Examples

## Not run: 
study_data <- prep_get_data_frame("ship")
prep_load_workbook_like_file("ship_meta_v2")
meta_data <- prep_get_data_frame("item_level")
rules <- tibble::tribble(
  ~VAR_NAMES,  ~RULE,
  "BMI", '[BODY_WEIGHT_0]/(([BODY_HEIGHT_0]/100)^2)',
  "R", '[WAIST_CIRC_0]/2/[pi]', # in m^3
  "VOL_EST", '[pi]*([WAIST_CIRC_0]/2/[pi])^2*[BODY_HEIGHT_0] / 1000', # in l
 )
 r <- prep_add_computed_variables(study_data, meta_data,
   label_col = "LABEL", rules, use_value_labels = FALSE)

## End(Not run)

Add data frames to the pre-loaded / cache data frame environment

Description

These can be referred to by their names, then, wherever dataquieR expects a data.frame – just pass a character instead. If this character is not found, dataquieR would additionally look for files with the name and for URLs. You can also refer to specific sheets of a workbook or specific object from an RData by appending a pipe symbol and its name. A second pipe symbol allows to extract certain columns from such sheets (but they will remain data frames).

Usage

prep_add_data_frames(..., data_frame_list = list())

Arguments

...

data frames, if passed with names, these will be the names of these tables in the data frame environment. If not, then the names in the calling environment will be used.

data_frame_list

a named list with data frames. Also these will be added and names will be handled as for the ... argument.

Value

data.frame ⁠invisible(the cache environment)⁠

See Also

prep_load_workbook_like_file

prep_get_data_frame

Other data-frame-cache: prep_get_data_frame(), prep_list_dataframes(), prep_load_folder_with_metadata(), prep_load_workbook_like_file(), prep_purge_data_frame_cache(), prep_remove_from_cache()


Insert missing codes for NAs based on rules

Description

Insert missing codes for NAs based on rules

Usage

prep_add_missing_codes(
  resp_vars,
  study_data,
  meta_data_v2,
  item_level = "item_level",
  label_col,
  rules,
  use_value_labels,
  overwrite = FALSE,
  meta_data = item_level
)

Arguments

resp_vars

variable list the name of the measurement variables to be modified, all from rules, if omitted

study_data

data.frame the data frame that contains the measurements

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

item_level

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

rules

data.frame with the columns:

  • resp_vars: Variable, whose NA-values should be replaced by jump codes

  • CODE_CLASS: Either MISSING or JUMP: Is the currently described case an expected missing value (JUMP) or not (MISSING)

  • CODE_VALUE: The jump code or missing code

  • CODE_LABEL: A label describing the reason for the missing value

  • RULE: A rule in REDcap style (see, e.g., REDcap help, REDcap how-to), and REDcap branching logic that describes cases for the missing

use_value_labels

logical In rules for factors, use the value labels, not the codes. Defaults to TRUE, if any VALUE_LABELS are given in the metadata.

overwrite

logical Also insert missing codes, if the values are not NA

meta_data

data.frame old name for item_level attributes of study data

Value

a list with the entries:


Support function to augment metadata during data quality reporting

Description

adds an annotation to static metadata

Usage

prep_add_to_meta(
  VAR_NAMES,
  DATA_TYPE,
  LABEL,
  VALUE_LABELS,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  ...
)

Arguments

VAR_NAMES

character Names of the Variables to add

DATA_TYPE

character Data type for the added variables

LABEL

character Labels for these variables

VALUE_LABELS

character Value labels for the values of the variables as usually pipe separated and assigned with =: 1 = male | 2 = female

item_level

data.frame the metadata to extend

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

...

Further defined variable attributes, see prep_create_meta

Details

Add metadata e.g. of transformed/new variable This function is not yet considered stable, but we already export it, because it could help. Therefore, we have some inconsistencies in the formals still.

Value

a data frame with amended metadata.


Re-Code labels with their respective codes according to the meta_data

Description

Re-Code labels with their respective codes according to the meta_data

Usage

prep_apply_coding(
  study_data,
  meta_data_v2,
  item_level = "item_level",
  meta_data = item_level
)

Arguments

study_data

data.frame the data frame that contains the measurements

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

Value

data.frame modified study data with labels replaced by the codes


Check for package updates

Description

Check for package updates

Usage

prep_check_for_dataquieR_updates(
  beta = FALSE,
  deps = TRUE,
  ask = interactive()
)

Arguments

beta

logical check for beta version too

deps

logical check for missing (optional) dependencies

ask

logical ask for updates

Value

invisible(NULL)


Verify and normalize metadata on data frame level

Description

if possible, mismatching data types are converted ("true" becomes TRUE)

Usage

prep_check_meta_data_dataframe(
  meta_data_dataframe = "dataframe_level",
  meta_data_v2,
  dataframe_level
)

Arguments

meta_data_dataframe

data.frame data frame or path/url of a metadata sheet for the data frame level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

dataframe_level

data.frame alias for meta_data_dataframe

Details

missing columns are added, filled with NA, if this is valid, i.e., n.a. for DF_NAME as the key column

Value

standardized metadata sheet as data frame

Examples

## Not run: 
mds <- prep_check_meta_data_dataframe("ship_meta_dataframe|dataframe_level") # also converts
print(mds)
prep_check_meta_data_dataframe(mds)
mds1 <- mds
mds1$DF_RECORD_COUNT <- NULL
print(prep_check_meta_data_dataframe(mds1)) # fixes the missing column by NAs
mds1 <- mds
mds1$DF_UNIQUE_ROWS[[2]] <- "xxx" # not convertible
# print(prep_check_meta_data_dataframe(mds1)) # fail
mds1 <- mds
mds1$DF_UNIQUE_ID[[2]] <- 12
# print(prep_check_meta_data_dataframe(mds1)) # fail

## End(Not run)

Verify and normalize metadata on segment level

Description

if possible, mismatching data types are converted ("true" becomes TRUE)

Usage

prep_check_meta_data_segment(
  meta_data_segment = "segment_level",
  meta_data_v2,
  segment_level
)

Arguments

meta_data_segment

data.frame data frame or path/url of a metadata sheet for the segment level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

segment_level

data.frame alias for meta_data_segment

Details

missing columns are added, filled with NA, if this is valid, i.e., n.a. for STUDY_SEGMENT as the key column

Value

standardized metadata sheet as data frame

Examples

## Not run: 
mds <- prep_check_meta_data_segment("ship_meta_v2|segment_level") # also converts
print(mds)
prep_check_meta_data_segment(mds)
mds1 <- mds
mds1$SEGMENT_RECORD_COUNT <- NULL
print(prep_check_meta_data_segment(mds1)) # fixes the missing column by NAs
mds1 <- mds
mds1$SEGMENT_UNIQUE_ROWS[[2]] <- "xxx" # not convertible
# print(prep_check_meta_data_segment(mds1)) # fail

## End(Not run)

Checks the validity of metadata w.r.t. the provided column names

Description

This function verifies, if a data frame complies to metadata conventions and provides a given richness of meta information as specified by level.

Usage

prep_check_meta_names(
  item_level = "item_level",
  level,
  character.only = FALSE,
  meta_data = item_level,
  meta_data_v2
)

Arguments

item_level

data.frame the data frame that contains metadata attributes of study data

level

enum level of requirement (see also VARATT_REQUIRE_LEVELS). set to NULL to deactivate the check of richness.

character.only

logical a logical indicating whether level can be assumed to be character strings.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

Note, that only the given level is checked despite, levels are somehow hierarchical.

Value

a logical with:

Examples

## Not run: 
prep_check_meta_names(data.frame(VAR_NAMES = 1, DATA_TYPE = 2,
                      MISSING_LIST = 3))

prep_check_meta_names(
  data.frame(
    VAR_NAMES = 1, DATA_TYPE = 2, MISSING_LIST = 3,
    LABEL = "LABEL", VALUE_LABELS = "VALUE_LABELS",
    JUMP_LIST = "JUMP_LIST", HARD_LIMITS = "HARD_LIMITS",
    GROUP_VAR_OBSERVER = "GROUP_VAR_OBSERVER",
    GROUP_VAR_DEVICE = "GROUP_VAR_DEVICE",
    TIME_VAR = "TIME_VAR",
    PART_VAR = "PART_VAR",
    STUDY_SEGMENT = "STUDY_SEGMENT",
    LOCATION_RANGE = "LOCATION_RANGE",
    LOCATION_METRIC = "LOCATION_METRIC",
    PROPORTION_RANGE = "PROPORTION_RANGE",
    MISSING_LIST_TABLE = "MISSING_LIST_TABLE",
    CO_VARS = "CO_VARS",
    LONG_LABEL = "LONG_LABEL"
  ),
  RECOMMENDED
)

prep_check_meta_names(
  data.frame(
    VAR_NAMES = 1, DATA_TYPE = 2, MISSING_LIST = 3,
    LABEL = "LABEL", VALUE_LABELS = "VALUE_LABELS",
    JUMP_LIST = "JUMP_LIST", HARD_LIMITS = "HARD_LIMITS",
    GROUP_VAR_OBSERVER = "GROUP_VAR_OBSERVER",
    GROUP_VAR_DEVICE = "GROUP_VAR_DEVICE",
    TIME_VAR = "TIME_VAR",
    PART_VAR = "PART_VAR",
    STUDY_SEGMENT = "STUDY_SEGMENT",
    LOCATION_RANGE = "LOCATION_RANGE",
    LOCATION_METRIC = "LOCATION_METRIC",
    PROPORTION_RANGE = "PROPORTION_RANGE",
    DETECTION_LIMITS = "DETECTION_LIMITS", SOFT_LIMITS = "SOFT_LIMITS",
    CONTRADICTIONS = "CONTRADICTIONS", DISTRIBUTION = "DISTRIBUTION",
    DECIMALS = "DECIMALS", VARIABLE_ROLE = "VARIABLE_ROLE",
    DATA_ENTRY_TYPE = "DATA_ENTRY_TYPE",
    CO_VARS = "CO_VARS",
    END_DIGIT_CHECK = "END_DIGIT_CHECK",
    VARIABLE_ORDER = "VARIABLE_ORDER", LONG_LABEL =
      "LONG_LABEL", recode = "recode",
      MISSING_LIST_TABLE = "MISSING_LIST_TABLE"
  ),
  OPTIONAL
)

# Next one will fail
try(
  prep_check_meta_names(data.frame(VAR_NAMES = 1, DATA_TYPE = 2,
    MISSING_LIST = 3), TECHNICAL)
)

## End(Not run)

Support function to scan variable labels for applicability

Description

Adjust labels in meta_data to be valid variable names in formulas for diverse r functions, such as glm or lme4::lmer.

Usage

prep_clean_labels(
  label_col,
  item_level = "item_level",
  no_dups = FALSE,
  meta_data = item_level,
  meta_data_v2
)

Arguments

label_col

character label attribute to adjust or character vector to adjust, depending on meta_data argument is given or missing.

item_level

data.frame metadata data frame: If label_col is a label attribute to adjust, this is the metadata table to process on. If missing, label_col must be a character vector with values to adjust.

no_dups

logical disallow duplicates in input or output vectors of the function, then, prep_clean_labels would call stop() on duplicated labels.

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Details

Hint: The following is still true, but the functions should be capable of doing potentially needed fixes on-the-fly automatically, so likely you will not need this function any more.

Currently, labels as given by label_col arguments in the most functions are directly used in formula, so that they become natural part of the outputs, but different models expect differently strict syntax for such formulas, especially for valid variable names. prep_clean_labels removes all potentially inadmissible characters from variable names (no guarantee, that some exotic model still rejects the names, but minimizing the number of exotic characters). However, variable names are modified, may become unreadable or indistinguishable from other variable names. For the latter case, a stop call is possible, controlled by the no_dups argument.

A warning is emitted, if modifications were necessary.

Value

a data.frame with:

Examples

## Not run: 
meta_data1 <- data.frame(
  LABEL =
    c(
      "syst. Blood pressure (mmHg) 1",
      "1st heart frequency in MHz",
      "body surface (\\u33A1)"
    )
)
print(meta_data1)
print(prep_clean_labels(meta_data1$LABEL))
meta_data1 <- prep_clean_labels("LABEL", meta_data1)
print(meta_data1)

## End(Not run)

Combine two report summaries

Description

Combine two report summaries

Usage

prep_combine_report_summaries(..., summaries_list, amend_segment_names = FALSE)

Arguments

...

objects returned by prep_extract_summary

summaries_list

if given, list of objects returned by prep_extract_summary

amend_segment_names

logical use names of the summaries_list and argument names as segment prefixes

Value

combined summaries

See Also

Other summary_functions: prep_extract_classes_by_functions(), prep_extract_summary(), prep_extract_summary.dataquieR_result(), prep_extract_summary.dataquieR_resultset2(), prep_render_pie_chart_from_summaryclasses_ggplot2(), prep_render_pie_chart_from_summaryclasses_plotly(), prep_summary_to_classes()


Verify item-level metadata

Description

are the provided item-level meta_data plausible given study_data?

Usage

prep_compare_meta_with_study(
  study_data,
  label_col,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2
)

Arguments

study_data

data.frame the data frame that contains the measurements

label_col

variable attribute the name of the column in the metadata with labels of variables

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

an invisible() list with the entries.


Support function to create data.frames of metadata

Description

Create a metadata data frame and map names. Generally, this function only creates a data.frame, but using this constructor instead of calling data.frame(..., stringsAsFactors = FALSE), it becomes possible, to adapt the metadata data.frame in later developments, e.g. if we decide to use classes for the metadata, or if certain standard names of variable attributes change. Also, a validity check is possible to implement here.

Usage

prep_create_meta(..., stringsAsFactors = FALSE, level, character.only = FALSE)

Arguments

...

named column vectors, names will be mapped using WELL_KNOWN_META_VARIABLE_NAMES, if included in WELL_KNOWN_META_VARIABLE_NAMES can also be a data frame, then its column names will be mapped using WELL_KNOWN_META_VARIABLE_NAMES

stringsAsFactors

logical if the argument is a list of vectors, a data frame will be created. In this case, stringsAsFactors controls, whether characters will be auto-converted to Factors, which defaults here always to false independent from the default.stringsAsFactors.

level

enum level of requirement (see also VARATT_REQUIRE_LEVELS) set to NULL, if not a complete metadata frame is created.

character.only

logical a logical indicating whether level can be assumed to be character strings.

Details

For now, this calls data.frame, but it already renames variable attributes, if they have a different name assigned in WELL_KNOWN_META_VARIABLE_NAMES, e.g. WELL_KNOWN_META_VARIABLE_NAMES$RECODE maps to recode in lower case.

NB: dataquieR exports all names from WELL_KNOWN_META_VARIABLE_NAME as symbols, so RECODE also contains "recode".

Value

a data frame with:

See Also

WELL_KNOWN_META_VARIABLE_NAMES


Instantiate a new metadata file

Description

Instantiate a new metadata file

Usage

prep_create_meta_data_file(
  file_name,
  study_data,
  open = TRUE,
  overwrite = FALSE
)

Arguments

file_name

character file path to write to

study_data

data.frame optional, study data to guess metadata from

open

logical open the file after creation

overwrite

logical overwrite file, if exists

Value

invisible(NULL)


Create a factory function for storr objects for backing a dataquieR_resultset2

Description

Create a factory function for storr objects for backing a dataquieR_resultset2

Usage

prep_create_storr_factory(db_dir = tempfile(), namespace = "objects")

Arguments

db_dir

character path to the directory for the back-end, if one is created on the fly.

namespace

character namespace for the report, so that one back-end can back several reports

the returned function will try to create a storr object using a temporary folder or the folder in db_dir, if specified. The database will either be the storr_rds.

Value

storr object or NULL, if package storr is not available


Get data types from data

Description

Get data types from data

Usage

prep_datatype_from_data(
  resp_vars = colnames(study_data),
  study_data,
  .dont_cast_off_cols = FALSE,
  guess_character = getOption("dataquieR.guess_character", default =
    dataquieR.guess_character_default)
)

Arguments

resp_vars

variable names of the variables to fetch the data type from the data

study_data

data.frame the data frame that contains the measurements Hint: Only data frames supported, no URL or file names.

.dont_cast_off_cols

logical internal use, only

guess_character

logical guess a data type for character columns based on the values

Value

vector of data types

See Also

prep_robust_guess_data_type()

Examples

## Not run: 
dataquieR::prep_datatype_from_data(cars)

## End(Not run)

Convert two vectors from a code-value-table to a key-value list

Description

Convert two vectors from a code-value-table to a key-value list

Usage

prep_deparse_assignments(
  codes,
  labels = codes,
  split_char = SPLIT_CHAR,
  mode = c("numeric_codes", "string_codes")
)

Arguments

codes

codes, numeric or dates (as default, but string codes can be enabled using the option 'mode', see below)

labels

character labels, same length as codes

split_char

character split character character to split code assignments

mode

character one of two options to insist on numeric or datetime codes (default) or to allow for string codes

Value

a vector with assignment strings for each row of cbind(codes, labels)


Get the dataquieR DATA_TYPE of x

Description

Get the dataquieR DATA_TYPE of x

Usage

prep_dq_data_type_of(
  x,
  guess_character = getOption("dataquieR.guess_character", default =
    dataquieR.guess_character_default)
)

Arguments

x

object to define the dataquieR data type of

guess_character

logical guess a data type for character columns based on the values

Value

the dataquieR data type as listed in DATA_TYPES

See Also

DATA_TYPES_OF_R_TYPE


Expand code labels across variables

Description

Code labels are copied from other variables, if the code is the same and the label is set only for some variables

Usage

prep_expand_codes(
  item_level = "item_level",
  suppressWarnings = FALSE,
  mix_jumps_and_missings = FALSE,
  meta_data_v2,
  meta_data = item_level
)

Arguments

item_level

data.frame the data frame that contains metadata attributes of study data

suppressWarnings

logical show warnings, if labels are expanded

mix_jumps_and_missings

logical ignore the class of the codes for label expansion, i.e., use missing code labels as jump code labels, if the values are the same.

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

meta_data

data.frame old name for item_level

Value

data.frame an updated metadata data frame.

Examples

## Not run: 
meta_data <- prep_get_data_frame("meta_data")
meta_data$JUMP_LIST[meta_data$VAR_NAMES == "v00003"] <- "99980 = NOOP"
md <- prep_expand_codes(meta_data)
md$JUMP_LIST
md$MISSING_LIST
md <- prep_expand_codes(meta_data, mix_jumps_and_missings = TRUE)
md$JUMP_LIST
md$MISSING_LIST
meta_data <- prep_get_data_frame("meta_data")
meta_data$MISSING_LIST[meta_data$VAR_NAMES == "v00003"] <- "99980 = NOOP"
md <- prep_expand_codes(meta_data)
md$JUMP_LIST
md$MISSING_LIST

## End(Not run)

Extract all missing/jump codes from metadata and export a cause-label-data-frame

Description

Extract all missing/jump codes from metadata and export a cause-label-data-frame

Usage

prep_extract_cause_label_df(
  item_level = "item_level",
  label_col = VAR_NAMES,
  meta_data_v2,
  meta_data = item_level
)

Arguments

item_level

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

meta_data

data.frame old name for item_level

Value

list with the entries

See Also

prep_add_cause_label_df


Extract old function based summary from data quality results

Description

Extract old function based summary from data quality results

Usage

prep_extract_classes_by_functions(r)

Arguments

r

dq_report2

Value

data.frame long format, compatible with prep_summary_to_classes()

See Also

Other summary_functions: prep_combine_report_summaries(), prep_extract_summary(), prep_extract_summary.dataquieR_result(), prep_extract_summary.dataquieR_resultset2(), prep_render_pie_chart_from_summaryclasses_ggplot2(), prep_render_pie_chart_from_summaryclasses_plotly(), prep_summary_to_classes()


Extract summary from data quality results

Description

Generic function, currently supports dq_report2 and dataquieR_result

Usage

prep_extract_summary(r, ...)

Arguments

r

dq_report2 or dataquieR_result object

...

further arguments, maybe needed for some implementations

Value

list with two slots Data and Table with data.frames featuring all metrics columns from the report or result in x, the STUDY_SEGMENT and the VAR_NAMES. In case of Data, the columns are formatted nicely but still with the standardized column names – use util_translate_indicator_metrics() to rename them nicely. In case of Table, just as they are.

See Also

Other summary_functions: prep_combine_report_summaries(), prep_extract_classes_by_functions(), prep_extract_summary.dataquieR_result(), prep_extract_summary.dataquieR_resultset2(), prep_render_pie_chart_from_summaryclasses_ggplot2(), prep_render_pie_chart_from_summaryclasses_plotly(), prep_summary_to_classes()


Extract report summary from reports

Description

Extract report summary from reports

Usage

## S3 method for class 'dataquieR_result'
prep_extract_summary(r, ...)

Arguments

r

dataquieR_result a result from adq_report2 report

...

not used

Value

list with two slots Data and Table with data.frames featuring all metrics columns from the report r, the STUDY_SEGMENT and the VAR_NAMES. In case of Data, the columns are formatted nicely but still with the standardized column names – use util_translate_indicator_metrics() to rename them nicely. In case of Table, just as they are.

See Also

prep_combine_report_summaries()

Other summary_functions: prep_combine_report_summaries(), prep_extract_classes_by_functions(), prep_extract_summary(), prep_extract_summary.dataquieR_resultset2(), prep_render_pie_chart_from_summaryclasses_ggplot2(), prep_render_pie_chart_from_summaryclasses_plotly(), prep_summary_to_classes()


Extract report summary from reports

Description

Extract report summary from reports

Usage

## S3 method for class 'dataquieR_resultset2'
prep_extract_summary(r, ...)

Arguments

r

dq_report2 a dq_report2 report

...

not used

Value

list with two slots Data and Table with data.frames featuring all metrics columns from the report r, the STUDY_SEGMENT and the VAR_NAMES. In case of Data, the columns are formatted nicely but still with the standardized column names – use util_translate_indicator_metrics() to rename them nicely. In case of Table, just as they are.

See Also

prep_combine_report_summaries()

Other summary_functions: prep_combine_report_summaries(), prep_extract_classes_by_functions(), prep_extract_summary(), prep_extract_summary.dataquieR_result(), prep_render_pie_chart_from_summaryclasses_ggplot2(), prep_render_pie_chart_from_summaryclasses_plotly(), prep_summary_to_classes()


Fix metadata duplicates

Description

if VAR_NAMES have duplicates, maybe, it's because of ID-vars assigned to different study segments multiple times (they should be in one "intro"- segment, only), which is not the intended use of STUDY_SEGMENT. Naturally, they will be part of more than one data-frame, so this would also qualify for a dump duplicate, only, which can safely be removed. Only ID-vars are by default assumed to have such duplicates in item level metadata allowed.

Usage

prep_fix_meta_id_dups(
  meta_data_segment = "segment_level",
  meta_data_dataframe = "dataframe_level",
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  segment_level,
  dataframe_level
)

Arguments

meta_data_segment

data.frame – optional: Segment level metadata

meta_data_dataframe

data.frame the data frame that contains the metadata for the data frame level

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

segment_level

data.frame alias for meta_data_segment

dataframe_level

data.frame alias for meta_data_dataframe

Value

meta_data

Examples

## Not run: 
il <- prep_get_data_frame("item_level")
il <- rbind(il, il)
il$STUDY_SEGMENT[2] <- "X"
il2 <- prep_fix_meta_id_dups(meta_data_v2 = "meta_data_v2", item_level = il)
il2$STUDY_SEGMENT
il$STUDY_SEGMENT[3] <- "X"
il3 <- prep_fix_meta_id_dups(meta_data_v2 = "meta_data_v2", item_level = il)
il3$STUDY_SEGMENT

## End(Not run)

Read data from files/URLs

Description

data_frame_name can be a file path or an URL you can append a pipe and a sheet name for Excel files or object name e.g. for RData files. Numbers may also work. All file formats supported by your rio installation will work.

Usage

prep_get_data_frame(
  data_frame_name,
  .data_frame_list = .dataframe_environment(),
  keep_types = FALSE,
  column_names_only = FALSE
)

Arguments

data_frame_name

character name of the data frame to read, see details

.data_frame_list

environment cache for loaded data frames

keep_types

logical keep types as possibly defined in a file, if the data frame is loaded from one. set TRUE for study data.

column_names_only

logical if TRUE imports only headers (column names) of the data frame and no content (an empty data frame)

Details

The data frames will be cached automatically, you can define an alternative environment for this using the argument .data_frame_list, and you can purge the cache using prep_purge_data_frame_cache.

Use prep_add_data_frames to manually add data frames to the cache, e.g., if you have loaded them from more complex sources, before.

Value

data.frame a data frame

See Also

prep_add_data_frames

prep_load_workbook_like_file

Other data-frame-cache: prep_add_data_frames(), prep_list_dataframes(), prep_load_folder_with_metadata(), prep_load_workbook_like_file(), prep_purge_data_frame_cache(), prep_remove_from_cache()

Examples

## Not run: 
bl <- as.factor(prep_get_data_frame(
  paste0("https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus",
    "/Projekte_RKI/COVID-19_Todesfaelle.xlsx?__blob=",
    "publicationFile|COVID_Todesfälle_BL|Bundesland"))[[1]])

n <- as.numeric(prep_get_data_frame(paste0(
  "https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/",
  "Projekte_RKI/COVID-19_Todesfaelle.xlsx?__blob=",
  "publicationFile|COVID_Todesfälle_BL|Anzahl verstorbene",
  " COVID-19 Fälle"))[[1]])
plot(bl, n)
# Working names would be to date (2022-10-21), e.g.:
#
# https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/ \
#    Projekte_RKI/COVID-19_Todesfaelle.xlsx?__blob=publicationFile
# https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/  \
#    Projekte_RKI/COVID-19_Todesfaelle.xlsx?__blob=publicationFile|2
# https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/ \
#    Projekte_RKI/COVID-19_Todesfaelle.xlsx?__blob=publicationFile|name
# study_data
# ship
# meta_data
# ship_meta
#
prep_get_data_frame("meta_data | meta_data")

## End(Not run)

Fetch a label for a variable based on its purpose

Description

Fetch a label for a variable based on its purpose

Usage

prep_get_labels(
  resp_vars,
  item_level = "item_level",
  label_col,
  max_len,
  label_class = c("SHORT", "LONG"),
  label_lang = getOption("dataquieR.lang", dataquieR.lang_default),
  resp_vars_are_var_names_only = FALSE,
  resp_vars_match_label_col_only = FALSE,
  meta_data = item_level,
  meta_data_v2,
  force_label_col = getOption("dataquieR.force_label_col",
    dataquieR.force_label_col_default)
)

Arguments

resp_vars

variable list the variable names to fetch for

item_level

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

max_len

integer the maximum label length to return, if not possible w/o causing ambiguous labels, the labels may still be longer. For label_class == "LONG", it defaults to 200, while for label_class == "SHORT" to 30

label_class

enum SHORT | LONG. which sort of label according to the metadata model should be returned

label_lang

character optional language suffix, if available in the metadata. Can be controlled by the option dataquieR.lang.

resp_vars_are_var_names_only

logical If TRUE, do not use other labels than VAR_NAMES for finding resp_vars in meta_data

resp_vars_match_label_col_only

logical If TRUE, do not use other labels than those, referred by label_col for finding resp_vars in meta_data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

force_label_col

enum auto | FALSE | TRUE. if TRUE, always use labels according label_col, FALSE means use labels matching best the function's requirements, auto means FALSE, if in a dq_report() and TRUE, otherwise.

Value

character suitable labels for each resp_vars, names of this vector are VAR_NAMES

Examples

## Not run: 
prep_load_workbook_like_file("meta_data_v2")
prep_get_labels("SEX_0", label_class = "SHORT", max_len = 2)

## End(Not run)

Get data frame for a given segment

Description

Get data frame for a given segment

Usage

prep_get_study_data_segment(
  segment,
  study_data,
  item_level = "item_level",
  meta_data = item_level,
  meta_data_v2,
  segment_level,
  meta_data_segment = "segment_level"
)

Arguments

segment

character name of the segment to return data for

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

segment_level

data.frame alias for meta_data_segment

meta_data_segment

data.frame – optional: Segment level metadata

Value

data.frame the data for the segment


Return the logged-in User's Full Name

Description

If whoami is not installed, the user name from Sys.info() is returned.

Usage

prep_get_user_name()

Details

Can be overridden by options or environment:

options(FULLNAME = "Stephan Struckmann")

Sys.setenv(FULLNAME = "Stephan Struckmann")

Value

character the user's name


Get machine variant for snapshot tests

Description

Get machine variant for snapshot tests

Usage

prep_get_variant()

Value

character the variant


Guess encoding of text or text files

Description

Guess encoding of text or text files

Usage

prep_guess_encoding(x, file)

Arguments

x

character string to guess encoding for

file

character file to guess encoding for

Value

encoding


Description

Prepare a label as part of a link for RMD files

Usage

prep_link_escape(s, html = FALSE)

Arguments

s

the label

html

prepare the label for direct HTML output instead of RMD

Value

the escaped label


List Loaded Data Frames

Description

List Loaded Data Frames

Usage

prep_list_dataframes()

Value

names of all loaded data frames

See Also

Other data-frame-cache: prep_add_data_frames(), prep_get_data_frame(), prep_load_folder_with_metadata(), prep_load_workbook_like_file(), prep_purge_data_frame_cache(), prep_remove_from_cache()


All valid ⁠voc:⁠ vocabularies

Description

All valid ⁠voc:⁠ vocabularies

Usage

prep_list_voc()

Value

character() all ⁠voc:⁠ suffixes allowed for prep_get_data_frame().

Examples

## Not run: 
prep_list_dataframes()
prep_list_voc()
prep_get_data_frame("<ICD10>")
my_voc <-
  tibble::tribble(
    ~ voc, ~ url,
    "test", "data:datasets|iris|Species+Sepal.Length")
prep_add_data_frames(`<>` = my_voc)
prep_list_dataframes()
prep_list_voc()
prep_get_data_frame("<test>")
prep_get_data_frame("<ICD10>")
my_voc <-
  tibble::tribble(
    ~ voc, ~ url,
    "ICD10", "data:datasets|iris|Species+Sepal.Length")
prep_add_data_frames(`<>` = my_voc)
prep_list_dataframes()
prep_list_voc()
prep_get_data_frame("<ICD10>")

## End(Not run)


Pre-load a folder with named (usually more than) one table(s)

Description

The original purpose of this function is to load metadata, not study data. If you want to load study data, you should keep them in a different folder, then you can call this function once for the metadata and once for the study data but this time setting keep_types = TRUE to avoid all data being read as character().

Usage

prep_load_folder_with_metadata(folder, keep_types = FALSE, ...)

Arguments

folder

the folder name to load.

keep_types

logical keep types as possibly defined in the file. set TRUE for study data.

...

arguments passed to list.files()

Details

Note, that once loaded to the data frame cache, a file won't be read again, except you call prep_purge_data_frame_cache() or prep_remove_from_cache(). That is, if you call this function first, and prep_get_data_frame() later, of if dataquieR wants to read a file, e.g., for dq_report2(), the file will come from the cache in the way it was initially read in (keep_types may thus be used inadequately).

By default, this function works not recursively, but you can tweak that by passing ...-arguments passed through to the initially running list.files() function.

These can thereafter be referred to by their names only. Such files are, e.g., spreadsheet-workbooks or RData-files.

Note, that this function in contrast to prep_get_data_frame does neither support selecting specific sheets/columns from a file.

Value

⁠invisible(the cache environment)⁠

See Also

prep_add_data_frames

prep_get_data_frame

Other data-frame-cache: prep_add_data_frames(), prep_get_data_frame(), prep_list_dataframes(), prep_load_workbook_like_file(), prep_purge_data_frame_cache(), prep_remove_from_cache()


Load a dq_report2

Description

Load a dq_report2

Usage

prep_load_report(file)

Arguments

file

character the file name to load from

Value

dataquieR_resultset2 the report


Load a report from a back-end

Description

Load a report from a back-end

Usage

prep_load_report_from_backend(
  namespace = "objects",
  db_dir,
  storr_factory = prep_create_storr_factory(namespace = namespace, db_dir = db_dir)
)

Arguments

namespace

the namespace to read the report's results from

db_dir

character path to the directory for the back-end, if a storr_rds or storr_torr is used.

storr_factory

a function returning a storr object holding the report

Value

dataquieR_resultset2 the report

See Also

prep_create_storr_factory()

Examples

## Not run: 
r <- dataquieR::dq_report2("study_data", meta_data_v2 = "meta_data_v2",
                           dimensions = NULL)
storr_factory <- prep_create_storr_factory()
r_storr <- prep_set_backend(r, storr_factory)
r_restorr <- prep_set_backend(r_storr, NULL)
r_loaded <- prep_load_report_from_backend(storr_factory)

## End(Not run)

Pre-load a file with named (usually more than) one table(s)

Description

These can thereafter be referred to by their names only. Such files are, e.g., spreadsheet-workbooks or RData-files.

Usage

prep_load_workbook_like_file(file, keep_types = FALSE)

Arguments

file

the file name to load.

keep_types

logical keep types as possibly defined in the file. set TRUE for study data.

Details

Note, that this function in contrast to prep_get_data_frame does neither support selecting specific sheets/columns from a file.

Value

⁠invisible(the cache environment)⁠

See Also

prep_add_data_frames

prep_get_data_frame

Other data-frame-cache: prep_add_data_frames(), prep_get_data_frame(), prep_list_dataframes(), prep_load_folder_with_metadata(), prep_purge_data_frame_cache(), prep_remove_from_cache()


Support function to allocate labels to variables

Description

Map variables to certain attributes, e.g. by default their labels.

Usage

prep_map_labels(
  x,
  item_level = "item_level",
  to = LABEL,
  from = VAR_NAMES,
  ifnotfound,
  warn_ambiguous = FALSE,
  meta_data_v2,
  meta_data = item_level
)

Arguments

x

character variable names, character vector, see parameter from

item_level

data.frame metadata data frame, if, as a dataquieR developer, you do not have item-level-metadata, you should use util_map_labels() instead to avoid consistency checks on for item-level meta_data.

to

character variable attribute to map to

from

character variable identifier to map from

ifnotfound

list A list of values to be used if the item is not found: it will be coerced to a list if necessary.

warn_ambiguous

logical print a warning if mapping variables from from to to produces ambiguous identifiers.

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

meta_data

data.frame old name for item_level

Details

This function basically calls colnames(study_data) <- meta_data$LABEL, ensuring correct merging/joining of study data columns to the corresponding metadata rows, even if the orders differ. If a variable/study_data-column name is not found in meta_data[[from]] (default from = VAR_NAMES), either stop is called or, if ifnotfound has been assigned a value, that value is returned. See mget, which is internally used by this function.

The function not only maps to the LABEL column, but to can be any metadata variable attribute, so the function can also be used, to get, e.g. all HARD_LIMITS from the metadata.

Value

a character vector with:

Examples

## Not run: 
meta_data <- prep_create_meta(
  VAR_NAMES = c("ID", "SEX", "AGE", "DOE"),
  LABEL = c("Pseudo-ID", "Gender", "Age", "Examination Date"),
  DATA_TYPE = c(DATA_TYPES$INTEGER, DATA_TYPES$INTEGER, DATA_TYPES$INTEGER,
                 DATA_TYPES$DATETIME),
  MISSING_LIST = ""
)
stopifnot(all(prep_map_labels(c("AGE", "DOE"), meta_data) == c("Age",
                                                 "Examination Date")))

## End(Not run)

Merge a list of study data frames to one (sparse) study data frame

Description

Merge a list of study data frames to one (sparse) study data frame

Usage

prep_merge_study_data(study_data_list)

Arguments

study_data_list

list the list

Value

data.frame study_data


Convert item-level metadata from v1.0 to v2.0

Description

This function is idempotent..

Usage

prep_meta_data_v1_to_item_level_meta_data(
  item_level = "item_level",
  verbose = TRUE,
  label_col = LABEL,
  cause_label_df,
  meta_data = item_level
)

Arguments

item_level

data.frame the old item-level-metadata

verbose

logical display all estimated decisions, defaults to TRUE, except if called in a dq_report2 pipeline.

label_col

variable attribute the name of the column in the metadata with labels of variables

cause_label_df

data.frame missing code table, see cause_label_df. Optional. If this argument is given, you can add missing code tables.

meta_data

data.frame old name for item_level

Details

The options("dataquieR.force_item_specific_missing_codes") (default FALSE) tells the system, to always fill in res_vars columns to the MISSING_LIST_TABLE, even, if the column already exists, but is empty.

Value

data.frame the updated metadata


Support function to identify the levels of a process variable with minimum number of observations

Description

utility function to subset data based on minimum number of observation per level

Usage

prep_min_obs_level(study_data, group_vars, min_obs_in_subgroup)

Arguments

study_data

data.frame the data frame that contains the measurements

group_vars

variable list the name grouping variable

min_obs_in_subgroup

integer optional argument if a "group_var" is used. This argument specifies the minimum no. of observations that is required to include a subgroup (level) of the "group_var" in the analysis. Subgroups with less observations are excluded. The default is 30.

Details

This functions removes observations having fewer than min_obs_in_subgroup distinct values in a group variable, e.g. blood pressure measurements performed by an examiner having fewer than e.g. 50 measurements done. It displays a warning, if samples/rows are removed and returns the modified study data frame.

Value

a data frame with:


Open a data frame in Excel

Description

Open a data frame in Excel

Usage

prep_open_in_excel(dfr)

Arguments

dfr

the data frame

Details

if the file cannot be read on function exit, NULL will be returned

Value

potentially modified data frame after dialog was closed


Support function for a parallel pmap

Description

parallel version of purrr::pmap

Usage

prep_pmap(.l, .f, ..., cores = 0)

Arguments

.l

data.frame with one call per line and one function argument per column

.f

function to call with the arguments from .l

...

additional, static arguments for calling .f

cores

number of cpu cores to use or a (named) list with arguments for parallelMap::parallelStart or NULL, if parallel has already been started by the caller. Set to 0 to run without parallelization.

Value

list of results of the function calls

Author(s)

Aurèle

S Struckmann

See Also

purrr::pmap

Stack Overflow post


Prepare and verify study data with metadata

Description

This function ensures, that a data frame ds1 with suitable variable names study_data and meta_data exist as base data.frames.

Usage

prep_prepare_dataframes(
  .study_data,
  .meta_data,
  .label_col,
  .replace_hard_limits,
  .replace_missings,
  .sm_code = NULL,
  .allow_empty = FALSE,
  .adjust_data_type = TRUE,
  .amend_scale_level = TRUE,
  .apply_factor_metadata = FALSE,
  .apply_factor_metadata_inadm = FALSE,
  .internal = rlang::env_inherits(rlang::caller_env(), parent.env(environment()))
)

Arguments

.study_data

if provided, use this data set as study_data

.meta_data

if provided, use this data set as meta_data

.label_col

if provided, use this as label_col

.replace_hard_limits

replace HARD_LIMIT violations by NA, defaults to FALSE.

.replace_missings

replace missing codes, defaults to TRUE

.sm_code

missing code for NAs, if they have been re-coded by util_combine_missing_lists

.allow_empty

allow ds1 to be empty, i.e., 0 rows and/or 0 columns

.adjust_data_type

ensure that the data type of variables in the study data corresponds to their data type specified in the metadata

.amend_scale_level

ensure that SCALE_LEVEL is available in the item-level meta_data. internally used to prevent recursion, if called from prep_scalelevel_from_data_and_metadata().

.apply_factor_metadata

logical convert categorical variables to labeled factors.

.apply_factor_metadata_inadm

logical convert categorical variables to labeled factors keeping inadmissible values. Implies, that .apply_factor_metadata will be set to TRUE, too.

.internal

logical internally called, modify caller's environment.

Details

This function defines ds1 and modifies study_data and meta_data in the environment of its caller (see eval.parent). It also defines or modifies the object label_col in the calling environment. Almost all functions exported by dataquieR call this function initially, so that aspects common to all functions live here, e.g. testing, if an argument meta_data has been given and features really a data.frame. It verifies the existence of required metadata attributes (VARATT_REQUIRE_LEVELS). It can also replace missing codes by NAs, and calls prep_study2meta to generate a minimum set of metadata from the study data on the fly (should be amended, so on-the-fly-calling is not recommended for an instructive use of dataquieR).

The function also detects tibbles, which are then converted to base-R data.frames, which are expected by dataquieR.

If .internal is TRUE, differently from the other utility function that work in their caller's environment, this function modifies objects in the calling function's environment. It defines a new object ds1, it modifies study_data and/or meta_data and label_col.

Value

ds1 the study data with mapped column names, invisible(), if not .internal

See Also

acc_margins

Examples

## Not run: 
acc_test1 <- function(resp_variable, aux_variable,
                      time_variable, co_variables,
                      group_vars, study_data, meta_data) {
  prep_prepare_dataframes()
  invisible(ds1)
}
acc_test2 <- function(resp_variable, aux_variable,
                      time_variable, co_variables,
                      group_vars, study_data, meta_data, label_col) {
  ds1 <- prep_prepare_dataframes(study_data, meta_data)
  invisible(ds1)
}
environment(acc_test1) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)

environment(acc_test2) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)
acc_test3 <- function(resp_variable, aux_variable, time_variable,
                      co_variables, group_vars, study_data, meta_data,
                      label_col) {
  prep_prepare_dataframes()
  invisible(ds1)
}
acc_test4 <- function(resp_variable, aux_variable, time_variable,
                      co_variables, group_vars, study_data, meta_data,
                      label_col) {
  ds1 <- prep_prepare_dataframes(study_data, meta_data)
  invisible(ds1)
}
environment(acc_test3) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)

environment(acc_test4) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)
meta_data <- prep_get_data_frame("meta_data")
study_data <- prep_get_data_frame("study_data")
try(acc_test1())
try(acc_test2())
acc_test1(study_data = study_data)
try(acc_test1(meta_data = meta_data))
try(acc_test2(study_data = 12, meta_data = meta_data))
print(head(acc_test1(study_data = study_data, meta_data = meta_data)))
print(head(acc_test2(study_data = study_data, meta_data = meta_data)))
print(head(acc_test3(study_data = study_data, meta_data = meta_data)))
print(head(acc_test3(study_data = study_data, meta_data = meta_data,
  label_col = LABEL)))
print(head(acc_test4(study_data = study_data, meta_data = meta_data)))
print(head(acc_test4(study_data = study_data, meta_data = meta_data,
  label_col = LABEL)))
try(acc_test2(study_data = NULL, meta_data = meta_data))

## End(Not run)


Clear data frame cache

Description

Clear data frame cache

Usage

prep_purge_data_frame_cache()

Value

nothing

See Also

Other data-frame-cache: prep_add_data_frames(), prep_get_data_frame(), prep_list_dataframes(), prep_load_folder_with_metadata(), prep_load_workbook_like_file(), prep_remove_from_cache()


Materialize a lazy ggplot

Description

Evaluate the stored expression in its lean environment and cache the resulting ggplot object in the current R session, if enabled using the option dataquieR.lazy_plots_cache.

Usage

prep_realize_ggplot(x)

Arguments

x

a dq_lazy_ggplot object.

Value

A ggplot object.


Remove a specified element from the data frame cache

Description

Remove a specified element from the data frame cache

Usage

prep_remove_from_cache(object_to_remove)

Arguments

object_to_remove

character name of the object to be removed as character string (quoted), or character vector containing the names of the objects to remove from the cache

Value

nothing

See Also

Other data-frame-cache: prep_add_data_frames(), prep_get_data_frame(), prep_list_dataframes(), prep_load_folder_with_metadata(), prep_load_workbook_like_file(), prep_purge_data_frame_cache()

Examples

## Not run: 
prep_load_workbook_like_file("meta_data_v2") #load metadata in the cache
ls(.dataframe_environment()) #get the list of dataframes in the cache

#remove cross-item_level from the cache
prep_remove_from_cache("cross-item_level")

#remove dataframe_level and expected_id from the cache
prep_remove_from_cache(c("dataframe_level", "expected_id"))

#remove missing_table and segment_level from the cache
x<- c("missing_table", "segment_level")
prep_remove_from_cache(x)

## End(Not run)


Create a ggplot2 pie chart

Description

needs htmltools

Usage

prep_render_pie_chart_from_summaryclasses_ggplot2(
  data,
  meta_data = "item_level"
)

Arguments

data

data as returned by prep_summary_to_classes but summarized by one column (currently, we support indicator_metric, STUDY_SEGMENT, and VAR_NAMES)

meta_data

meta_data

Value

a htmltools compatible object or NULL, if package is missing

See Also

Other summary_functions: prep_combine_report_summaries(), prep_extract_classes_by_functions(), prep_extract_summary(), prep_extract_summary.dataquieR_result(), prep_extract_summary.dataquieR_resultset2(), prep_render_pie_chart_from_summaryclasses_plotly(), prep_summary_to_classes()


Create a plotly pie chart

Description

Create a plotly pie chart

Usage

prep_render_pie_chart_from_summaryclasses_plotly(
  data,
  meta_data = "item_level"
)

Arguments

data

data as returned by prep_summary_to_classes but summarized by one column (currently, we support indicator_metric, call_names, STUDY_SEGMENT, and VAR_NAMES)

meta_data

meta_data

Value

a htmltools compatible object

See Also

Other summary_functions: prep_combine_report_summaries(), prep_extract_classes_by_functions(), prep_extract_summary(), prep_extract_summary.dataquieR_result(), prep_extract_summary.dataquieR_resultset2(), prep_render_pie_chart_from_summaryclasses_ggplot2(), prep_summary_to_classes()


Guess the data type of a vector

Description

Guess the data type of a vector

Usage

prep_robust_guess_data_type(x, k = 50, it = 200)

Arguments

x

a vector with characters

k

numeric sample size, if less than ⁠floor(length(x) / (it/20)))⁠, minimum sample size is 1.

it

integer number of iterations when taking samples

Value

a guess of the data type of x. An attribute orig_type is also attached to give the more detailed guess returned by readr::guess_parser().

Algorithm

This function takes x and tries to guess the data type of random subsets of this vector using readr::guess_parser(). The RNG is initialized with a constant, so the function stays deterministic. It does such sub-sample based checks it times, the majority of the detected datatype determines the guessed data type.

See Also

prep_datatype_from_data()


Save a dq_report2

Description

Save a dq_report2

Usage

prep_save_report(report, file, compression_level = 3)

Arguments

report

dataquieR_resultset2 the report

file

character the file name to write to

compression_level

integer from=0 to=9. Compression level. 9 is very slow.

Value

invisible(NULL)


Heuristics to amend a SCALE_LEVEL column and a UNIT column in the metadata

Description

...if missing

Usage

prep_scalelevel_from_data_and_metadata(
  resp_vars = lifecycle::deprecated(),
  study_data,
  item_level = "item_level",
  label_col = LABEL,
  meta_data = item_level,
  meta_data_v2
)

Arguments

resp_vars

variable list deprecated, the function always addresses all variables.

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

label_col

variable attribute the name of the column in the metadata with labels of variables

meta_data

data.frame old name for item_level

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

Value

data.frame modified metadata

Examples

## Not run: 
  prep_load_workbook_like_file("meta_data_v2")
  prep_scalelevel_from_data_and_metadata(study_data = "study_data")

## End(Not run)

Change the back-end of a report

Description

with this function, you can move a report from/to a storr storage.

Usage

prep_set_backend(r, storr_factory = NULL, amend = FALSE)

Arguments

r

dataquieR_resultset2 the report

storr_factory

storr the storr storage or NULL, to move the report fully back into the RAM.

amend

logical if there is already data in.storr_factory, use it anyways – unsupported, so far!

Value

dataquieR_resultset2 but now with the desired back-end


Guess a metadata data frame from study data.

Description

Guess a minimum metadata data frame from study data. Minimum required variable attributes are:

Usage

prep_study2meta(
  study_data,
  level = c(VARATT_REQUIRE_LEVELS$REQUIRED, VARATT_REQUIRE_LEVELS$RECOMMENDED),
  cumulative = TRUE,
  convert_factors = FALSE,
  guess_missing_codes = getOption("dataquieR.guess_missing_codes",
    dataquieR.guess_missing_codes_default),
  guess_character = getOption("dataquieR.guess_character", default =
    dataquieR.guess_character_default)
)

Arguments

study_data

data.frame the data frame that contains the measurements

level

enum levels to provide (see also VARATT_REQUIRE_LEVELS)

cumulative

logical include attributes of all levels up to level

convert_factors

logical convert factor columns to coded integers. if selected, then also the study data will be updated and returned.

guess_missing_codes

logical try to guess missing codes from the data

guess_character

logical guess a data type for character columns based on the values

Details

dataquieR:::util_get_var_att_names_of_level(VARATT_REQUIRE_LEVELS$REQUIRED)
#>            VAR_NAMES            DATA_TYPE   MISSING_LIST_TABLE 
#>          "VAR_NAMES"          "DATA_TYPE" "MISSING_LIST_TABLE"

The function also tries to detect missing codes.

Value

a meta_data data frame or a list with study data and metadata, if convert_factors == TRUE.

Examples

## Not run: 
dataquieR::prep_study2meta(Orange, convert_factors = FALSE)

## End(Not run)

Classify metrics from a report summary table

Description

Classify metrics from a report summary table

Usage

prep_summary_to_classes(report_summary)

Arguments

report_summary

list() as returned by prep_extract_summary()

Value

data.frame classes for the report summary table, long format

See Also

Other summary_functions: prep_combine_report_summaries(), prep_extract_classes_by_functions(), prep_extract_summary(), prep_extract_summary.dataquieR_result(), prep_extract_summary.dataquieR_resultset2(), prep_render_pie_chart_from_summaryclasses_ggplot2(), prep_render_pie_chart_from_summaryclasses_plotly()


Prepare a label as part of a title text for RMD files

Description

Prepare a label as part of a title text for RMD files

Usage

prep_title_escape(s, html = FALSE)

Arguments

s

the label

html

prepare the label for direct HTML output instead of RMD

Value

the escaped label


Remove data disclosing details

Description

new function: no warranty, so far.

Usage

prep_undisclose(x, cores)

Arguments

x

an object to un-disclose, a

cores

can be an integer with a number of cores to use. if not specified, the function uses the default cluster, if available and falls back to serial un-disclosing, otherwise.

Value

undisclosed object


Combine all missing and value lists to one big table

Description

Combine all missing and value lists to one big table

Usage

prep_unsplit_val_tabs(meta_data = "item_level", val_tab = NULL)

Arguments

meta_data

data.frame item level meta data to be used, defaults to "item_level"

val_tab

character name of the table being created: This table will be added to the data frame cache (or overwritten). If NULL, the table will only be returned

Value

data.frame the combined table


Get value labels from data

Description

Detects factors and converts them to compatible metadata/study data.

Usage

prep_valuelabels_from_data(resp_vars = colnames(study_data), study_data)

Arguments

resp_vars

variable names of the variables to fetch the value labels from the data

study_data

data.frame the data frame that contains the measurements

Value

a list with:

Examples

## Not run: 
dataquieR::prep_datatype_from_data(iris)

## End(Not run)

Print a DataSlot object

Description

Print a DataSlot object

Usage

## S3 method for class 'DataSlot'
print(x, ...)

Arguments

x

the object

...

not used

Value

see print


print implementation for the class ReportSummaryTable

Description

Use this function to print results objects of the class ReportSummaryTable.

Usage

## S3 method for class 'ReportSummaryTable'
print(
  x,
  relative = lifecycle::deprecated(),
  dt = FALSE,
  fillContainer = FALSE,
  displayValues = FALSE,
  view = TRUE,
  drop = getOption("dataquieR.droplevels_ReportSummaryTable",
    dataquieR.droplevels_ReportSummaryTable_default),
  ...,
  flip_mode = "auto"
)

Arguments

x

ReportSummaryTable objects to print

relative

deprecated

dt

logical use DT::datatables, if installed

fillContainer

logical if dt is TRUE, control table size, see DT::datatables.

displayValues

logical if dt is TRUE, also display the actual values

view

logical if view is FALSE, do not print but return the output, only

drop

logical if drop is FALSE, keep unused levels, see dataquieR.droplevels_ReportSummaryTable

...

not used, yet

flip_mode

enum default | flip | noflip | auto. Should the plot be in default orientation, flipped, not flipped or auto-flipped. Not all options are always supported. In general, this con be controlled by setting the roptions(dataquieR.flip_mode = ...). If called from dq_report, you can also pass flip_mode to all function calls or set them specifically using specific_args.

Value

the printed object

See Also

base::print


Print a Slot object

Description

displays all warnings and stuff. then it prints x.

Usage

## S3 method for class 'Slot'
print(x, ...)

Arguments

x

the object

...

not used

Value

calls the next print method


Print a StudyDataSlot object

Description

Print a StudyDataSlot object

Usage

## S3 method for class 'StudyDataSlot'
print(x, ...)

Arguments

x

the object

...

not used

Value

see print


Print a TableSlot object

Description

Print a TableSlot object

Usage

## S3 method for class 'TableSlot'
print(x, ...)

Arguments

x

the object

...

not used

Value

see print


Print a dataquieR result returned by dq_report2

Description

Print a dataquieR result returned by dq_report2

Usage

## S3 method for class 'dataquieR_result'
print(x, ...)

Arguments

x

list a dataquieR result from dq_report2 or util_eval_to_dataquieR_result

...

passed to print. Additionally, the argument slot may be passed to print only specific sub-results.

Value

see print

See Also

util_pretty_print()


Generate a RMarkdown-based report from a dataquieR report

Description

Generate a RMarkdown-based report from a dataquieR report

Usage

## S3 method for class 'dataquieR_resultset'
print(...)

Arguments

...

deprecated

Value

deprecated


Generate a HTML-based report from a dataquieR report

Description

Generate a HTML-based report from a dataquieR report

Usage

## S3 method for class 'dataquieR_resultset2'
print(
  x,
  dir,
  view = TRUE,
  disable_plotly = FALSE,
  block_load_factor = getOption("dataquieR.print_block_load_factor",
    dataquieR.print_block_load_factor_default),
  advanced_options = list(),
  dashboard = NA,
  ...,
  cores = list(mode = "socket", logging = FALSE, cpus = util_detect_cores(),
    load.balancing = TRUE)
)

Arguments

x

dataquieR report v2.

dir

character directory to store the rendered report's files, a temporary one, if omitted. Directory will be created, if missing, files may be overwritten inside that directory

view

logical display the report

disable_plotly

logical do not use plotly, even if installed

block_load_factor

numeric see dataquieR.print_block_load_factor

advanced_options

list options to set during report computation, see options()

dashboard

logical dashboard mode: TRUE: create a dashboard only, FALSE: don't create a dashboard at all, NA or missing: create a "normal" report with a dashboard included.

...

additional arguments:

cores

integer number of cpu cores to use or a named list with arguments for parallelMap::parallelStart or NULL, if parallel has already been started by the caller. Can also be a cluster.

Value

file names of the generated report's HTML files


Print a dataquieR summary

Description

Print a dataquieR summary

Usage

## S3 method for class 'dataquieR_summary'
print(
  x,
  ...,
  grouped_by = c("call_names", "indicator_metric"),
  dont_print = FALSE,
  folder_of_report = NULL,
  vars_to_include = c("study")
)

Arguments

x

the dataquieR summary, see summary() and dq_report2()

...

not yet used

grouped_by

define the columns of the resulting matrix. It can be either "call_names", one column per function, or "indicator_metric", one column per indicator or both c("call_names", "indicator_metric"). The last combination is the default

dont_print

suppress the actual printing, just return a printable object derived from x

folder_of_report

a named vector with the location of variable and call_names

vars_to_include

"study", "ssi" or c("study", "ssi"). variables to include

Value

invisible html object


print implementation for the class interval

Description

such objects, for now, only occur in RECCap rules, so this function is meant for internal use, mostly – for now.

Usage

## S3 method for class 'interval'
print(x, ...)

Arguments

x

interval objects to print

...

not used yet

Value

the printed object

See Also

base::print


print a list of dataquieR_result objects

Description

print a list of dataquieR_result objects

Usage

## S3 method for class 'list'
print(x, ...)

Arguments

x

list() only, if all elements inherit from dataquieR_result, this implementation runs

...

passed to other implementations

Value

undefined


Print a master_result object

Description

Print a master_result object

Usage

## S3 method for class 'master_result'
print(x, template = "default", ...)

Arguments

x

the object

template

the template for the iframes, not used, so far.

...

not used

Value

invisible(NULL)


Print a number with unit

Description

Print a number with unit

Usage

## S3 method for class 'numeric_with_unit'
print(x, ...)

Arguments

x

number with unit

...

not used

Value

invisible(x)


Print method for util_pairs_ggplot_panels objects

Description

Print method for util_pairs_ggplot_panels objects

Usage

## S3 method for class 'util_pairs_ggplot_panels'
print(x, ...)

Arguments

x

An object of class util_pairs_ggplot_panels.

...

Ignored.

Value

The input object, invisibly.


Check applicability of DQ functions on study data

Description

Checks applicability of DQ functions based on study data and metadata characteristics

Usage

pro_applicability_matrix(
  study_data,
  item_level = "item_level",
  split_segments = FALSE,
  label_col,
  max_vars_per_plot = 20,
  meta_data_segment,
  meta_data_dataframe,
  flip_mode = "noflip",
  meta_data_v2,
  meta_data = item_level,
  segment_level,
  dataframe_level
)

Arguments

study_data

data.frame the data frame that contains the measurements

item_level

data.frame the data frame that contains metadata attributes of study data

split_segments

logical return one matrix per study segment

label_col

variable attribute the name of the column in the metadata with labels of variables

max_vars_per_plot

integer from=0. The maximum number of variables per single plot.

meta_data_segment

data.frame – optional: Segment level metadata

meta_data_dataframe

data.frame – optional: Data frame level metadata

flip_mode

enum default | flip | noflip | auto. Should the plot be in default orientation, flipped, not flipped or auto-flipped. Not all options are always supported. In general, this con be controlled by setting the roptions(dataquieR.flip_mode = ...). If called from dq_report, you can also pass flip_mode to all function calls or set them specifically using specific_args.

meta_data_v2

character path to workbook like metadata file, see prep_load_workbook_like_file for details. ALL LOADED DATAFRAMES WILL BE PURGED, using prep_purge_data_frame_cache, if you specify meta_data_v2.

meta_data

data.frame old name for item_level

segment_level

data.frame alias for meta_data_segment

dataframe_level

data.frame alias for meta_data_dataframe

Details

This is a preparatory support function that compares study data with associated metadata. A prerequisite of this function is that the no. of columns in the study data complies with the no. of rows in the metadata.

For each existing R-implementation, the function searches for necessary static metadata and returns a heatmap like matrix indicating the applicability of each data quality implementation.

In addition, the data type defined in the metadata is compared with the observed data type in the study data.

Value

a list with:


function to call on progress initialization

Description

has one argument, n, reporting the number of steps in the current job. needed, e.g., by packages, such as progressr. TODO

See Also

Other options: dataquieR, dataquieR.CONDITIONS_LEVEL_TRHESHOLD, dataquieR.CONDITIONS_WITH_STACKTRACE, dataquieR.ELEMENT_MISSMATCH_CHECKTYPE, dataquieR.ERRORS_WITH_CALLER, dataquieR.GAM_for_LOESS, dataquieR.MAHALANOBIS_THRESHOLD, dataquieR.MAX_LABEL_LEN, dataquieR.MAX_LONG_LABEL_LEN, dataquieR.MAX_VALUE_LABEL_LEN, dataquieR.MESSAGES_WITH_CALLER, dataquieR.MULTIVARIATE_OUTLIER_CHECK, dataquieR.VALUE_LABELS_htmlescaped, dataquieR.WARNINGS_WITH_CALLER, dataquieR.acc_loess.exclude_constant_subgroups, dataquieR.acc_loess.mark_time_points, dataquieR.acc_loess.min_bw, dataquieR.acc_loess.min_proportion, dataquieR.acc_loess.plot_format, dataquieR.acc_loess.plot_observations, dataquieR.acc_margins_num, dataquieR.acc_margins_sort, dataquieR.acc_multivariate_outlier.scale, dataquieR.col_con_con_empirical, dataquieR.col_con_con_logical, dataquieR.convert_to_list_for_lapply, dataquieR.debug, dataquieR.des_summary_hard_lim_remove, dataquieR.dontwrapresults, dataquieR.droplevels_ReportSummaryTable, dataquieR.dt_adjust, dataquieR.fix_column_type_on_read, dataquieR.flip_mode, dataquieR.force_item_specific_missing_codes, dataquieR.force_label_col, dataquieR.grading_formats, dataquieR.grading_rulesets, dataquieR.guess_character, dataquieR.guess_missing_codes, dataquieR.ignore_empty_vars, dataquieR.lang, dataquieR.lazy_plots, dataquieR.lazy_plots_cache, dataquieR.lazy_plots_gg_compatibility, dataquieR.locale, dataquieR.max_cat_resp_var_levels_in_plot, dataquieR.max_group_var_levels_in_plot, dataquieR.max_group_var_levels_with_violins, dataquieR.min_obs_per_group_var_in_plot, dataquieR.min_time_points_for_cat_resp_var, dataquieR.non_disclosure, dataquieR.old_factor_handling, dataquieR.old_type_adjust, dataquieR.precomputeStudyData, dataquieR.print_block_load_factor, dataquieR.progress_fkt_default, dataquieR.progress_msg_fkt_default, dataquieR.resume_checkpoint, dataquieR.resume_print, dataquieR.scale_level_heuristics_control_binaryrecodelimit, dataquieR.scale_level_heuristics_control_metriclevels, dataquieR.study_data_cache_max, dataquieR.study_data_cache_metrics, dataquieR.study_data_cache_metrics_env, dataquieR.study_data_cache_quick_fill, dataquieR.study_data_colnames_case_sensitive, dataquieR.testdebug, dataquieR.traceback, dataquieR.type_adjust_parallel


Combine ReportSummaryTable outputs

Description

Using this rbind implementation, you can combine different heatmap-like results of the class ReportSummaryTable.

Usage

## S3 method for class 'ReportSummaryTable'
rbind(...)

Arguments

...

ReportSummaryTable objects to combine.

See Also

base::rbind.data.frame


Return names of result slots (e.g., 3rd dimension of dataquieR results)

Description

Return names of result slots (e.g., 3rd dimension of dataquieR results)

Usage

resnames(x)

Arguments

x

the objects

Value

character vector with names


Return names of result slots (e.g., 3rd dimension of dataquieR results)

Description

Return names of result slots (e.g., 3rd dimension of dataquieR results)

Usage

## S3 method for class 'dataquieR_resultset2'
resnames(x)

Arguments

x

the objects

Value

character vector with names


Data frame with the study data whose quality is being assessed

Description

Study data is expected in wide format. If should contain all variables for all segments in one large table, even, if some variables are not measured for all observational utils (study participants).


Summarize a dataquieR report

Description

Deprecated

Usage

## S3 method for class 'dataquieR_resultset'
summary(...)

Arguments

...

Deprecated

Value

Deprecated


Generate a report summary table

Description

Generate a report summary table

Usage

## S3 method for class 'dataquieR_resultset2'
summary(
  object,
  aspect = c("applicability", "error", "anamat", "indicator_or_descriptor"),
  FUN,
  collapse = "\n<br />\n",
  ...
)

Arguments

object

a square result set

aspect

an aspect/problem category of results

FUN

function to apply to the cells of the result table

collapse

passed to FUN

...

not used

Value

a summary of a dataquieR report

Examples

## Not run: 
  util_html_table(summary(report),
       filter = "top", options = list(scrollCollapse = TRUE, scrollY = "75vh"),
       is_matrix_table = TRUE, rotate_headers = TRUE, output_format = "HTML"
  )

## End(Not run)

Delete rows from summary table for SSI or non-SSI variables

Description

Delete rows from summary table for SSI or non-SSI variables

Usage

util_filter_repsum(
  repsumtab,
  vars_to_include,
  meta_data,
  rownames_of_report,
  label_col
)

Arguments

repsumtab

data.frame the report summary table

vars_to_include

"study", "ssi" or c("study", "ssi"). variables to include

meta_data

data.frame old name for item_level

label_col

variable attribute the name of the column in the metadata with labels of variables

Value

data.frame the filtered repsumtab with attribute rownames_of_report, also filtered


Convert a dataquieR report v2 to a named list of web pages

Description

Convert a dataquieR report v2 to a named list of web pages

Usage

util_generate_pages_from_report(
  report,
  template,
  disable_plotly,
  progress = progress,
  progress_msg = progress_msg,
  block_load_factor,
  dir,
  my_dashboard
)

Arguments

report

dataquieR report v2.

template

character template to use, only the name, not the path

disable_plotly

logical do not use plotly, even if installed

progress

function lambda for progress in percent – 1-100

progress_msg

function lambda for progress messages

block_load_factor

numeric multiply size of parallel compute blocks by this factor.

dir

character output directory for potential iframes.

my_dashboard

list of class shiny.tag.list featuring a dashboard or missing or NULL

Value

named list, each entry becomes a file with the name of the entry. the contents are HTML objects as used by htmltools.

Examples

## Not run: 
devtools::load_all()
prep_load_workbook_like_file("meta_data_v2")
report <- dq_report2("study_data", dimensions = NULL, label_col = "LABEL");
save(report, file = "report_v2.RData")
report <- dq_report2("study_data", label_col = "LABEL");
save(report, file = "report_v2_short.RData")

## End(Not run)


Create a dynamic dimension related page for the report

Description

Create a dynamic dimension related page for the report

Usage

util_html_for_dims(
  report,
  use_plot_ly,
  template,
  block_load_factor,
  repsum,
  dir
)

Arguments

report

dataquieR_resultset2 a dq_report2 report

use_plot_ly

logical use plotly, if available.

template

character template to use for the dq_report2 report.

block_load_factor

numeric multiply size of parallel compute blocks by this factor.

repsum

the dataquieR summary, see summary() and dq_report2()

dir

character output directory for potential iframes.

Value

list of arguments for append_single_page() defined locally in util_generate_pages_from_report().


Create a dynamic single variable page for the report

Description

Create a dynamic single variable page for the report

Usage

util_html_for_var(
  results,
  cur_var,
  use_plot_ly,
  template,
  note_meta = c(),
  rendered_repsum,
  dir,
  meta_data,
  label_col,
  dims_in_rep,
  clls_in_rep,
  function_alias_map
)

Arguments

results

list a list of subsets of the report matching cur_var

cur_var

character variable name for single variable pages

use_plot_ly

logical use plotly, if available.

template

character template to use for the dq_report2 report.

note_meta

character notes on the metadata for a single variable (if needed)

rendered_repsum

the dataquieR summary, see summary(), dq_report2() and print.dataquieR_summary()

dir

character output directory for potential iframes.

Value

list of arguments for append_single_page() defined locally in util_generate_pages_from_report().


Check for duplicated content

Description

This function tests for duplicates entries in the data set. It is possible to check duplicated entries by study segments or to consider only selected segments.

Usage

util_int_duplicate_content_dataframe(
  level = c("dataframe"),
  identifier_name_list,
  id_vars_list,
  unique_rows,
  meta_data_dataframe = "dataframe_level",
  ...,
  dataframe_level
)

Arguments

level

character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment").

identifier_name_list

vector the vector that contains the name of the identifier to be used in the assessment. For the study level, corresponds to the names of the different data frames. For the segment level, indicates the name of the segments.

id_vars_list

list the list containing the identifier variables names to be used in the assessment.

unique_rows

vector named. for each data frame, either true/false or no_id to exclude ID variables from check

meta_data_dataframe

data.frame the data frame that contains the metadata for the data frame level

...

Not used.

dataframe_level

data.frame alias for meta_data_dataframe

Value

a list with

See Also

Other integrity_indicator_functions: util_int_duplicate_content_segment(), util_int_duplicate_ids_dataframe(), util_int_duplicate_ids_segment(), util_int_unexp_records_set_dataframe(), util_int_unexp_records_set_segment()


Check for duplicated content

Description

This function tests for duplicates entries in the data set. It is possible to check duplicated entries by study segments or to consider only selected segments.

Usage

util_int_duplicate_content_segment(
  level = c("segment"),
  identifier_name_list,
  id_vars_list,
  unique_rows,
  study_data,
  meta_data,
  meta_data_segment = "segment_level",
  segment_level
)

Arguments

level

character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment").

identifier_name_list

vector the vector that contains the name of the identifier to be used in the assessment. For the study level, corresponds to the names of the different data frames. For the segment level, indicates the name of the segments.

id_vars_list

list the list containing the identifier variables names to be used in the assessment.

unique_rows

vector named. for each segment, either true/false or no_id to exclude ID variables from check

study_data

data.frame the data frame that contains the measurements, mandatory.

meta_data

data.frame the data frame that contains metadata attributes of the study data, mandatory.

meta_data_segment

data.frame – optional: Segment level metadata

segment_level

data.frame alias for meta_data_segment

Value

a list with

See Also

Other integrity_indicator_functions: util_int_duplicate_content_dataframe(), util_int_duplicate_ids_dataframe(), util_int_duplicate_ids_segment(), util_int_unexp_records_set_dataframe(), util_int_unexp_records_set_segment()


Check for duplicated IDs

Description

This function tests for duplicates entries in identifiers. It is possible to check duplicated identifiers by study segments or to consider only selected segments.

Usage

util_int_duplicate_ids_dataframe(
  level = c("dataframe"),
  id_vars_list,
  identifier_name_list,
  repetitions,
  meta_data_dataframe = "dataframe_level",
  ...,
  dataframe_level
)

Arguments

level

character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment").

id_vars_list

list id variable names for each segment or data frame

identifier_name_list

vector the segments or data frame names being assessed

repetitions

vector an integer vector indicating the number of allowed repetitions in the id_vars.

meta_data_dataframe

data.frame the data frame that contains the metadata for the data frame level

...

not used.

dataframe_level

data.frame alias for meta_data_dataframe

Value

a list with

See Also

Other integrity_indicator_functions: util_int_duplicate_content_dataframe(), util_int_duplicate_content_segment(), util_int_duplicate_ids_segment(), util_int_unexp_records_set_dataframe(), util_int_unexp_records_set_segment()


Check for duplicated IDs

Description

This function tests for duplicates entries in identifiers. It is possible to check duplicated identifiers by study segments or to consider only selected segments.

Usage

util_int_duplicate_ids_segment(
  level = c("segment"),
  id_vars_list,
  study_segment,
  repetitions,
  study_data,
  meta_data,
  meta_data_segment = "segment_level",
  segment_level
)

Arguments

level

character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment").

id_vars_list

list id variable names for each segment or data frame

study_segment

vector the segments or data frame names being assessed

repetitions

vector an integer vector indicating the number of allowed repetitions in the id_vars. Currently, no repetitions are supported.

study_data

data.frame the data frame that contains the measurements, mandatory.

meta_data

data.frame the data frame that contains metadata attributes of the study data, mandatory.

meta_data_segment

data.frame – optional: Segment level metadata

segment_level

data.frame alias for meta_data_segment

Value

a list with

See Also

Other integrity_indicator_functions: util_int_duplicate_content_dataframe(), util_int_duplicate_content_segment(), util_int_duplicate_ids_dataframe(), util_int_unexp_records_set_dataframe(), util_int_unexp_records_set_segment()


Check for unexpected data record set

Description

This function tests that the identifiers match a provided record set. It is possible to check for unexpected data record sets by study segments or to consider only selected segments.

Usage

util_int_unexp_records_set_dataframe(
  level = c("dataframe"),
  id_vars_list,
  identifier_name_list,
  valid_id_table_list,
  meta_data_record_check_list,
  meta_data_dataframe = "dataframe_level",
  ...,
  dataframe_level
)

Arguments

level

character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment").

id_vars_list

list the list containing the identifier variables names to be used in the assessment.

identifier_name_list

list the list that contains the name of the identifier to be used in the assessment. For the study level, corresponds to the names of the different data frames. For the segment level, indicates the name of the segments.

valid_id_table_list

list the reference list with the identifier variable values.

meta_data_record_check_list

character a character vector indicating the type of check to conduct, either "subset" or "exact".

meta_data_dataframe

data.frame the data frame that contains the metadata for the data frame level

...

not used

dataframe_level

data.frame alias for meta_data_dataframe

Value

a list with

See Also

Other integrity_indicator_functions: util_int_duplicate_content_dataframe(), util_int_duplicate_content_segment(), util_int_duplicate_ids_dataframe(), util_int_duplicate_ids_segment(), util_int_unexp_records_set_segment()


Check for unexpected data record set

Description

This function tests that the identifiers match a provided record set. It is possible to check for unexpected data record sets by study segments or to consider only selected segments.

Usage

util_int_unexp_records_set_segment(
  level = c("segment"),
  id_vars_list,
  identifier_name_list,
  valid_id_table_list,
  meta_data_record_check_list,
  study_data,
  label_col,
  meta_data,
  item_level,
  meta_data_segment = "segment_level",
  segment_level
)

Arguments

level

character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment").

id_vars_list

list the list containing the identifier variables names to be used in the assessment.

identifier_name_list

list the list that contains the name of the identifier to be used in the assessment. For the study level, corresponds to the names of the different data frames. For the segment level, indicates the name of the segments.

valid_id_table_list

list the reference list with the identifier variable values.

meta_data_record_check_list

character a character vector indicating the type of check to conduct, either "subset" or "exact".

study_data

data.frame the data frame that contains the measurements, mandatory.

label_col

variable attribute the name of the column in the metadata with labels of variables

meta_data

data.frame the data frame that contains metadata attributes of the study data, mandatory.

item_level

data.frame the data frame that contains metadata attributes of study data

meta_data_segment

data.frame – optional: Segment level metadata

segment_level

data.frame alias for meta_data_segment

Value

a list with

See Also

Other integrity_indicator_functions: util_int_duplicate_content_dataframe(), util_int_duplicate_content_segment(), util_int_duplicate_ids_dataframe(), util_int_duplicate_ids_segment(), util_int_unexp_records_set_dataframe()


Operator caring for units

Description

Operator caring for units

Usage

util_op_numeric_with_unit(e1, e2)

Arguments

e1

first argument

e2

second argument

Value

result


Translate standard column names to readable ones

Description

TODO: Duplicate of util_make_data_slot_from_table_slot ??

Usage

util_translate_indicator_metrics(
  colnames,
  short = FALSE,
  long = TRUE,
  ignore_unknown = FALSE
)

Arguments

colnames

character the names to translate

short

logical include unit letter in output

long

logical include unit description in output

ignore_unknown

logical do not replace unknown indicator metrics by NA, keep them

Value

translated names


Data frame with labels for missing- and jump-codes #' Metadata about value and missing codes

Description

data.frame with the following columns:

See Also

Online

com_item_missingness()

com_segment_missingness()

com_qualified_item_missingness()

com_qualified_segment_missingness()

con_inadmissible_categorical()

con_inadmissible_vocabulary()

MISSING_LIST_TABLE

VALUE_LABEL_TABLE

STANDARDIZED_VOCABULARY_TABLE

cause_label_df