| Title: | Data Quality in Epidemiological Research |
| Version: | 2.8.2 |
| Description: | Data quality assessments guided by a 'data quality framework introduced by Schmidt and colleagues, 2021' <doi:10.1186/s12874-021-01252-7> target the data quality dimensions integrity, completeness, consistency, and accuracy. The scope of applicable functions rests on the availability of extensive metadata which can be provided in spreadsheet tables. Either standardized (e.g. as 'html5' reports) or individually tailored reports can be generated. For an introduction into the specification of corresponding metadata, please refer to the 'package website' https://dataquality.qihs.uni-greifswald.de/VIN_Annotation_of_Metadata.html. |
| License: | BSD_2_clause + file LICENSE |
| URL: | https://dataquality.qihs.uni-greifswald.de/ |
| BugReports: | https://gitlab.com/libreumg/dataquier/-/issues |
| Depends: | R (≥ 3.6.0) |
| Imports: | dplyr (≥ 1.0.2), emmeans, ggplot2 (≥ 3.5.0), lme4, lubridate, MASS, MultinomialCI, parallelMap, patchwork (≥ 1.3.0), R.devices, rlang, robustbase, qmrparser, utils, rio, readr, scales, withr, lifecycle, units, methods, hms |
| Suggests: | S7 (≥ 0.2.1), cowplot, grid, openxlsx2, grDevices, jsonlite, cli, whoami, DT (≥ 0.23), htmltools, knitr, markdown, parallel, parallelly, rmarkdown, rstudioapi, testthat (≥ 3.1.9), tibble, vdiffr, pkgload, Rdpack, callr, colorspace, plotly (≥ 4.11.0), htmlwidgets, future, processx, R6, shiny, xml2, mgcv, rvest, textutils, dbx, grImport2, rsvg, stringdist, rankICC, nnet, ordinal, storr, reticulate, stringi, lobstr, visNetwork |
| VignetteBuilder: | knitr |
| Encoding: | UTF-8 |
| KeepSource: | FALSE |
| Language: | en-US |
| RoxygenNote: | 7.3.3 |
| Config/testthat/parallel: | true |
| Config/testthat/edition: | 3 |
| Config/testthat/start-first: | dq_report_by_sm, dq_report2, dq_report_by_arguments, dq_report_by_pipesymbol_list, dq_report_by_s, dq_report_by_m, util_handle_complex_data_types, int_encoding_errors, plots, acc_loess, com_item_missingness, dq_report_by_na, dq_report_by_directories, con_limit_deviations, con_contradictions_redcap, com_segment_missingness, util_correct_variable_use |
| BuildManual: | TRUE |
| NeedsCompilation: | no |
| Packaged: | 2025-12-22 23:27:00 UTC; struckmanns |
| Author: | University Medicine Greifswald [cph],
Elisa Kasbohm |
| Maintainer: | Stephan Struckmann <stephan.struckmann@uni-greifswald.de> |
| Repository: | CRAN |
| Date/Publication: | 2025-12-22 23:50:02 UTC |
The dataquieR package about Data Quality in
Epidemiological Research
Description
For a quick start please read dq_report2 and maybe the vignettes or the package's website.
Options
This package features the following options():
Author(s)
Maintainer: Stephan Struckmann stephan.struckmann@uni-greifswald.de (ORCID)
Authors:
Elisa Kasbohm elisa.kasbohm@uni-greifswald.de (ORCID)
Elena Salogni elena.salogni@uni-greifswald.de (ORCID)
Joany Marino joany.marino@uni-greifswald.de (ORCID)
Adrian Richter richtera@uni-greifswald.de (ORCID)
Carsten Oliver Schmidt carsten.schmidt@uni-greifswald.de (ORCID)
Other contributors:
University Medicine Greifswald [copyright holder]
German Research Foundation (DFG SCHM 2744/3-1, SCHM 2744/9-1, SCHM 2744/3-4) [funder]
National Research Data Infrastructure for Personal Health Data: (NFDI 13/1) [funder]
European Union’s Horizon 2020 programme (euCanSHare, grant agreement No. 825903) [funder]
References
See Also
Useful links:
Report bugs at https://gitlab.com/libreumg/dataquier/-/issues
Other options:
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Write single results from a dataquieR_resultset2 report
Description
Write single results from a dataquieR_resultset2 report
Usage
## S3 replacement method for class 'dataquieR_resultset2'
x$el <- value
Arguments
x |
the report |
el |
the index |
value |
the single result |
Value
the dataquieR result object
Access single results from a dataquieR_resultset2 report
Description
Access single results from a dataquieR_resultset2 report
Usage
## S3 method for class 'dataquieR_resultset2'
x$el
Arguments
x |
the report |
el |
the index |
Value
the dataquieR result object
Operator caring for units
Description
Operator caring for units
Usage
## S3 method for class 'numeric_with_unit'
e1 %% e2
Arguments
e1 |
first argument |
e2 |
second argument |
Value
result
Operator caring for units
Description
Operator caring for units
Usage
## S3 method for class 'numeric_with_unit'
e1 %/% e2
Arguments
e1 |
first argument |
e2 |
second argument |
Value
result
Operator caring for units
Description
Operator caring for units
Usage
## S3 method for class 'numeric_with_unit'
e1 * e2
Arguments
e1 |
first argument |
e2 |
second argument |
Value
result
Operator caring for units
Description
Operator caring for units
Usage
## S3 method for class 'numeric_with_unit'
e1 + e2
Arguments
e1 |
first argument |
e2 |
second argument |
Value
result
Operator caring for units
Description
Operator caring for units
Usage
## S3 method for class 'numeric_with_unit'
e1 - e2
Arguments
e1 |
first argument |
e2 |
second argument |
Value
result
Get Access to Utility Functions
Description
Usage
.get_internal_api(fkt, version = API_VERSION, or_newer = TRUE)
Arguments
fkt |
function name |
version |
version number to get |
Value
an API object
Roxygen-Template for indicator functions
Description
Roxygen-Template for indicator functions
Usage
.template_function_indicator(
resp_vars,
study_data,
label_col,
item_level,
meta_data,
meta_data_v2,
meta_data_dataframe,
meta_data_segment,
dataframe_level,
segment_level
)
Arguments
resp_vars |
variable the names of the measurement variables, if
missing or |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
meta_data_dataframe |
data.frame the data frame that contains the metadata for the data frame level |
meta_data_segment |
data.frame – optional: Segment level metadata |
dataframe_level |
data.frame alias for |
segment_level |
data.frame alias for |
Value
invisible(NULL)
Variable-argument roles
Description
A Variable-argument role is the intended use of an argument of a indicator
function – an argument that refers variables.
In general for the table .variable_arg_roles, the suffix _var means one
variable allowed,
while _vars means more than one. The default sets of arguments
for util_correct_variable_use/util_correct_variable_use2 are defined
from the point of usage, e.g. if it could be, that NAs are in
the list of variable names, the function should be able to remove certain
response variables
from the output and not disallow them by setting allow_na to FALSE.
Usage
.variable_arg_roles
Format
An object of class tbl_df (inherits from tbl, data.frame) with 14 rows and 9 columns.
See Also
util_correct_variable_use()
util_correct_variable_use2()
Operator caring for units
Description
Operator caring for units
Usage
## S3 method for class 'numeric_with_unit'
e1 / e2
Arguments
e1 |
first argument |
e2 |
second argument |
Value
result
Version of the API
Description
Version of the API
Usage
API_VERSION
Format
An object of class package_version (inherits from numeric_version) of length 1.
See Also
.get_internal_api()
Cross-item level metadata attribute name
Description
The allowable direction of an association. The input is a string that can be either "positive" or "negative".
Usage
ASSOCIATION_DIRECTION
Format
An object of class character of length 1.
See Also
Other meta_data_cross:
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
The allowable form of association. The string specifies the form based on a selected list.
Usage
ASSOCIATION_FORM
Format
An object of class character of length 1.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
The metric underlying the association in ASSOCIATION_RANGE. The input is a string that specifies the analysis algorithm to be used.
Usage
ASSOCIATION_METRIC
Format
An object of class character of length 1.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
Specifies the allowable range of an association. The inclusion of the endpoints follows standard mathematical notation using round brackets for open intervals and square brackets for closed intervals. Values must be separated by a semicolon.
Usage
ASSOCIATION_RANGE
Format
An object of class character of length 1.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
Specifies the unique IDs for cross-item level metadata records
Usage
CHECK_ID
Format
An object of class character of length 1.
Details
if missing, dataquieR will create such IDs
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
Specifies the unique labels for cross-item level metadata records
Usage
CHECK_LABEL
Format
An object of class character of length 1.
Details
if missing, dataquieR will create such labels
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
types of value codes
Description
types of value codes
Usage
CODE_CLASSES
Format
An object of class list of length 3.
Default Name of the Table featuring Code Lists
Description
Default Name of the Table featuring Code Lists
Metadata sheet name containing VALUE_LABEL_TABLES This metadata sheet can contain both value labels of several VALUE_LABEL_TABLE and also Missing and JUMP tables
Usage
CODE_LIST_TABLE
CODE_LIST_TABLE
Format
An object of class character of length 1.
An object of class character of length 1.
Only existence is checked, order not yet used
Description
Only existence is checked, order not yet used
Usage
CODE_ORDER
Format
An object of class character of length 1.
Cross-item level metadata attribute name
Description
Cross-item level metadata attribute name
Usage
COMPUTATION_RULE
Format
An object of class character of length 1.
See Also
SSI related Cross-item level metadata attribute names
Computed Variable roles can be one of the following:
Description
-
MAXIMUM_LONG_STRINGSocial Science: Computed Indicator Variable, maximum long string -
IRVSocial Science: Computed Indicator Variable,IRV -
TOTRESPTSocial Science: Computed Indicator Variable,TOTRESPT -
RESPT_PER_ITEMSocial Science: Computed Indicator Variable,RESPT_PER_ITEM -
RELCOMPL_SPEEDSocial Science: Computed Indicator Variable,RELCOMPL_SPEED -
MISS_RESPSocial Science: Computed Indicator Variable,MISS_RESP -
NASocial Science: Computed Indicator Variable – N/A
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Other SSI:
IRV,
MAXIMUM_LONG_STRING,
MISS_RESP,
RELCOMPL_SPEED,
RESPT_PER_ITEM,
TOTRESPT
Cross-item level metadata attribute name
Description
Note: in some prep_-functions, this field is named RULE
Usage
CONTRADICTION_TERM
Format
An object of class character of length 1.
Details
Specifies a contradiction rule. Use REDCap like syntax, see
online vignette
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
Specifies the type of a contradiction. According to the data quality concept, there are logical and empirical contradictions, see online vignette
Usage
CONTRADICTION_TYPE
Format
An object of class character of length 1.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
For contradiction rules, the required pre-processing steps that can be given.
Note: MISSING_LABEL, MISSING_INTERPRET may not work for non-factor
variables
Usage
DATA_PREPARATION
Format
An object of class character of length 1.
Details
LABEL LIMITS MISSING_NA MISSING_LABEL MISSING_INTERPRET
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Data Types
Description
Data Types of Study Data
In the metadata, the following entries are allowed for the variable attribute DATA_TYPE:
Usage
DATA_TYPES
Format
An object of class list of length 5.
Details
-
integerfor integer numbers -
stringfor text/string/character data -
floatfor decimal/floating point numbers -
datetimefor timepoints -
timefor time of day
Data Types of Function Arguments
As function arguments, dataquieR uses additional type specifications:
-
numericis a numerical value (float or integer), but it is not an allowedDATA_TYPEin the metadata. However, some functions may acceptfloatorintegerfor specific function arguments. This is, where we use the termnumeric. -
enumallows one element out of a set of allowed options similar to match.arg -
setallows a subset out of a set of allowed options similar to match.arg withseveral.ok = TRUE. -
variableFunction arguments of this type expect a character scalar that specifies one variable using the variable identifier given in the metadata attributeVAR_NAMESor, iflabel_colis set, given in the metadata attribute given in that argument. Labels can easily be translated using prep_map_labels -
variable listFunction arguments of this type expect a character vector that specifies variables using the variable identifiers given in the metadata attributeVAR_NAMESor, iflabel_colis set, given in the metadata attribute given in that argument. Labels can easily be translated using prep_map_labels
See Also
All available data types, mapped from their respective R types
Description
All available data types, mapped from their respective R types
Usage
DATA_TYPES_OF_R_TYPE
Format
An object of class list of length 17.
See Also
Data frame level metadata attribute name
Description
Name of the data frame
Usage
DF_CODE
Format
An object of class character of length 1.
See Also
Data frame level metadata attribute name
Description
Number of expected data elements in a data frame. numeric. Check only conducted if number entered
Usage
DF_ELEMENT_COUNT
Format
An object of class character of length 1.
See Also
Data frame level metadata attribute name
Description
The name of the data frame containing the reference IDs to be compared with the IDs in the study data set.
Usage
DF_ID_REF_TABLE
Format
An object of class character of length 1.
See Also
Data frame level metadata attribute name
Description
All variables that are to be used as one single ID variable (combined key) in a data frame.
Usage
DF_ID_VARS
Format
An object of class character of length 1.
See Also
Data frame level metadata attribute name
Description
Name of the data frame
Usage
DF_NAME
Format
An object of class character of length 1.
See Also
Data frame level metadata attribute name
Description
The type of check to be conducted when comparing the reference ID table with the IDs delivered in the study data files.
Usage
DF_RECORD_CHECK
Format
An object of class character of length 1.
See Also
Data frame level metadata attribute name
Description
Number of expected data records in a data frame. numeric. Check only conducted if number entered
Usage
DF_RECORD_COUNT
Format
An object of class character of length 1.
See Also
Data frame level metadata attribute name
Description
Defines expectancies on the uniqueness of the IDs across the rows of a data frame, or the number of times some ID can be repeated.
Usage
DF_UNIQUE_ID
Format
An object of class character of length 1.
See Also
Data frame level metadata attribute name
Description
Specifies whether identical data is permitted across rows in a data frame (excluding ID variables)
Usage
DF_UNIQUE_ROWS
Format
An object of class character of length 1.
See Also
All available probability distributions for acc_shape_or_scale
Description
-
uniformFor uniform distribution -
normalFor Gaussian distribution -
gammaFor a gamma distribution
Usage
DISTRIBUTIONS
Format
An object of class list of length 3.
Descriptor Function
Description
A function that returns some figure or table to assess data quality, but it does not return a value correlating with the magnitude of a data quality problem. It's the opposite of an Indicator.
The object Descriptor only contains the name used internally to tag
such functions.
Usage
Descriptor
Format
An object of class character of length 1.
See Also
Cross-item level metadata attribute name
Description
Defines the measurement variable to be used as a known gold standard. Only one variable can be defined as the gold standard.
Usage
GOLDSTANDARD
Format
An object of class character of length 1.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
TODO
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Other SSI:
COMPUTED_VARIABLE_ROLES,
MAXIMUM_LONG_STRING,
MISS_RESP,
RELCOMPL_SPEED,
RESPT_PER_ITEM,
TOTRESPT
Indicator Function
Description
A function that returns some value that correlates with the magnitude of
a certain class of data quality problems. Typically, in dataquieR, such
functions return a SummaryTable that features columns with names, that
start with a short abbreviation that describes the specific semantics of
the value (e.g., PCT for a percentage or COR for a correlation) and
the public name of the indicator according to the data quality concept
DQ_OBS, e.g., com_qum_nonresp for item-non-response-rate. A name could
therefore be PCT_com_qum_nonresp.
The object Indicator only contains the name used internally to tag
such functions.
Usage
Indicator
Format
An object of class character of length 1.
See Also
Cross-item level metadata attribute name
Description
Select, whether to compute acc_mahalanobis.
Usage
MAHALANOBIS_THRESHOLD
Format
An object of class character of length 1.
Details
You can leave the cell empty, then the depends on the setting of the
option dataquieR.MULTIVARIATE_OUTLIER_CHECK. If this column is missing,
all this is the same as having all cells empty and
dataquieR.MULTIVARIATE_OUTLIER_CHECK set to "auto".
See also MULTIVARIATE_OUTLIER_CHECKTYPE.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
TODO
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Other SSI:
COMPUTED_VARIABLE_ROLES,
IRV,
MISS_RESP,
RELCOMPL_SPEED,
RESPT_PER_ITEM,
TOTRESPT
Cross-item level metadata attribute name
Description
TODO
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Other SSI:
COMPUTED_VARIABLE_ROLES,
IRV,
MAXIMUM_LONG_STRING,
RELCOMPL_SPEED,
RESPT_PER_ITEM,
TOTRESPT
Cross-item level metadata attribute name
Description
Select, whether to compute acc_multivariate_outlier.
Usage
MULTIVARIATE_OUTLIER_CHECK
Format
An object of class character of length 1.
Details
You can leave the cell empty, then the depends on the setting of the
option dataquieR.MULTIVARIATE_OUTLIER_CHECK. If this column is missing,
all this is the same as having all cells empty and
dataquieR.MULTIVARIATE_OUTLIER_CHECK set to "auto".
See also MULTIVARIATE_OUTLIER_CHECKTYPE.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
Select, which outlier criteria to compute, see acc_multivariate_outlier.
Usage
MULTIVARIATE_OUTLIER_CHECKTYPE
Format
An object of class character of length 1.
Details
You can leave the cell empty, then, all checks will apply. If you enter
a set of methods, the maximum for N_RULES changes. See also
UNIVARIATE_OUTLIER_CHECKTYPE.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
TODO
TODO
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Other SSI:
COMPUTED_VARIABLE_ROLES,
IRV,
MAXIMUM_LONG_STRING,
MISS_RESP,
RESPT_PER_ITEM,
TOTRESPT
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Other SSI:
COMPUTED_VARIABLE_ROLES,
IRV,
MAXIMUM_LONG_STRING,
MISS_RESP,
RESPT_PER_ITEM,
TOTRESPT
Cross-item level metadata attribute name
Description
Specifies the type of reliability or validity analysis. The string specifies the analysis algorithm to be used, and can be either "inter-class" or "intra-class".
Usage
REL_VAL
Format
An object of class character of length 1.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name
Description
TODO
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Other SSI:
COMPUTED_VARIABLE_ROLES,
IRV,
MAXIMUM_LONG_STRING,
MISS_RESP,
RELCOMPL_SPEED,
TOTRESPT
Cross-item level metadata attribute name TODO
Description
Cross-item level metadata attribute name TODO
Usage
SCALE_ACRONYM
Format
An object of class character of length 1.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Scale Levels
Description
Scale Levels of Study Data according to Stevens's Typology
In the metadata, the following entries are allowed for the variable attribute SCALE_LEVEL:
Usage
SCALE_LEVELS
Format
An object of class list of length 5.
Details
-
nominalfor categorical variables -
ordinalfor ordinal variables (i.e., comparison of values is possible) -
intervalfor interval scales, i.e., distances are meaningful -
ratiofor ratio scales, i.e., ratios are meaningful -
nafor variables, that contain e.g. unstructured texts,json,xml, ... to distinguish them from variables, that still need to have theSCALE_LEVELestimated byprep_scalelevel_from_data_and_metadata()
Examples
sex, eye color –
nominalincome group, education level –
ordinaltemperature in degree Celsius –
intervalbody weight, temperature in Kelvin –
ratio
See Also
Cross-item level metadata attribute name TODO
Description
Cross-item level metadata attribute name TODO
Usage
SCALE_NAME
Format
An object of class character of length 1.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Segment level metadata attribute name
Description
The name of the data frame containing the reference IDs to be compared with the IDs in the targeted segment.
Usage
SEGMENT_ID_REF_TABLE
Format
An object of class character of length 1.
See Also
Deprecated segment level metadata attribute name
Description
The name of the data frame containing the reference IDs to be compared with the IDs in the targeted segment.
Usage
SEGMENT_ID_TABLE
Format
An object of class character of length 1.
Details
Please use SEGMENT_ID_REF_TABLE
Segment level metadata attribute name
Description
All variables that are to be used as one single ID variable (combined key) in a segment.
Usage
SEGMENT_ID_VARS
Format
An object of class character of length 1.
See Also
Segment level metadata attribute name
Description
true or false to suppress crude segment missingness output
(Completeness/Misg. Segments in the report). Defaults to compute
the output, if more than one segment is available in the item-level
metadata.
Usage
SEGMENT_MISS
Format
An object of class character of length 1.
See Also
Segment level metadata attribute name
Description
The name of the segment participation status variable
Usage
SEGMENT_PART_VARS
Format
An object of class character of length 1.
See Also
Segment level metadata attribute name
Description
The type of check to be conducted when comparing the reference ID table with the IDs in a segment.
Usage
SEGMENT_RECORD_CHECK
Format
An object of class character of length 1.
See Also
Segment level metadata attribute name
Description
Number of expected data records in each segment. numeric. Check only conducted if number entered
Usage
SEGMENT_RECORD_COUNT
Format
An object of class character of length 1.
See Also
Segment level metadata attribute name
Description
Segment level metadata attribute name
Usage
SEGMENT_UNIQUE_ID
Format
An object of class character of length 1.
See Also
Segment level metadata attribute name
Description
Specifies whether identical data is permitted across rows in a segment (excluding ID variables)
Usage
SEGMENT_UNIQUE_ROWS
Format
An object of class character of length 1.
See Also
Character used by default as a separator in metadata such as missing codes
Description
This 1 character is according to our metadata concept "|".
Usage
SPLIT_CHAR
Format
An object of class character of length 1.
Cross-item level metadata attribute name
Description
TODO
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Other SSI:
COMPUTED_VARIABLE_ROLES,
IRV,
MAXIMUM_LONG_STRING,
MISS_RESP,
RELCOMPL_SPEED,
RESPT_PER_ITEM
Valid unit symbols according to units::valid_udunits()
Description
like m, g, N, ...
See Also
Other UNITS:
UNIT_IS_COUNT,
UNIT_PREFIXES,
UNIT_PREFIX_FACTORS,
UNIT_SOURCES,
WELL_KNOWN_META_VARIABLE_NAMES
Is a unit a count according to units::valid_udunits()
Description
see column def, therein
Details
like %, ppt, ppm
See Also
Other UNITS:
UNITS,
UNIT_PREFIXES,
UNIT_PREFIX_FACTORS,
UNIT_SOURCES,
WELL_KNOWN_META_VARIABLE_NAMES
Valid unit prefixes according to units::valid_udunits_prefixes()
Description
like k, m, M, c, ...
See Also
Other UNITS:
UNITS,
UNIT_IS_COUNT,
UNIT_PREFIX_FACTORS,
UNIT_SOURCES,
WELL_KNOWN_META_VARIABLE_NAMES
Factors related to unit prefixes units::valid_udunits_prefixes()
Description
named numeric vector
Details
translates k, m, M, c, ... to 1000, 0.001, ...
See Also
Other UNITS:
UNITS,
UNIT_IS_COUNT,
UNIT_PREFIXES,
UNIT_SOURCES,
WELL_KNOWN_META_VARIABLE_NAMES
Maturity stage of a unit according to units::valid_udunits()
Description
see column source_xml therein, i.e., base, derived, accepted, or common
See Also
Other UNITS:
UNITS,
UNIT_IS_COUNT,
UNIT_PREFIXES,
UNIT_PREFIX_FACTORS,
WELL_KNOWN_META_VARIABLE_NAMES
Requirement levels of certain metadata columns
Description
These levels are cumulatively used by the function prep_create_meta and
related in the argument level therein.
Usage
VARATT_REQUIRE_LEVELS
Format
An object of class list of length 5.
Details
currently available:
'COMPATIBILITY' = "compatibility"
'REQUIRED' = "required"
'RECOMMENDED' = "recommended"
'OPTIONAL' = "optional"
'TECHNICAL' = "technical"
Cross-item level metadata attribute name
Description
Specifies a group of variables for multivariate analyses. Separated
by |, please use variable names from VAR_NAMES or
a label as specified in label_col, usually LABEL or LONG_LABEL.
Usage
VARIABLE_LIST
Format
An object of class character of length 1.
Details
if missing, dataquieR will create such IDs from CONTRADICTION_TERM,
if specified.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST_ORDER,
meta_data_computation,
meta_data_cross
Cross-item level metadata attribute name TODO internal use, only
Description
Cross-item level metadata attribute name TODO internal use, only
Usage
VARIABLE_LIST_ORDER
Format
An object of class character of length 1.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
meta_data_computation,
meta_data_cross
Variable roles can be one of the following:
Description
-
introa variable holding consent-data -
primarya primary outcome variable -
secondarya secondary outcome variable -
processa variable describing the measurement process -
suppressa variable added on the fly computing sub-reports, i.e., by dq_report_by to have all referred variables available, even if they are not part of the currently processed segment. But they will only be fully assessed in their real segment's report.
Usage
VARIABLE_ROLES
Format
An object of class list of length 5.
Well-known metadata column names, names of metadata columns
Description
names of the variable attributes in the metadata frame holding the names of the respective observers, devices, lower limits for plausible values, upper limits for plausible values, lower limits for allowed values, upper limits for allowed values, the variable name (column name, e.g. v0020349) used in the study data, the variable name used for processing (readable name, e.g. RR_DIAST_1) and in parameters of the QA-Functions, the variable label, variable long label, variable short label, variable data type (see also DATA_TYPES), re-code for definition of lists of event categories, missing lists and jump lists as CSV strings. For valid units see UNITS.
Usage
WELL_KNOWN_META_VARIABLE_NAMES
Format
An object of class list of length 63.
Details
all entries of this list will be mapped to the package's exported NAMESPACE environment directly, i.e. they are available directly by their names too:
See Also
meta_data_segment for STUDY_SEGMENT
Other UNITS:
UNITS,
UNIT_IS_COUNT,
UNIT_PREFIXES,
UNIT_PREFIX_FACTORS,
UNIT_SOURCES
Examples
print(WELL_KNOWN_META_VARIABLE_NAMES$VAR_NAMES)
# print(VAR_NAMES) # should usually also work
Write to a report
Description
Overwriting of elements only list-wise supported
Usage
## S3 replacement method for class 'dataquieR_resultset2'
x[...] <- value
Arguments
x |
a 'dataquieR_resultset2 |
... |
if this contains only one entry and this entry is not named
or its name is |
value |
new value to write |
Value
nothing, stops
Get a subset of a dataquieR dq_report2 report
Description
Get a subset of a dataquieR dq_report2 report
Usage
## S3 method for class 'dataquieR_resultset2'
x[row, col, res, drop = FALSE, els = row, as_raw = FALSE]
Arguments
x |
the report |
row |
the variable names, must be unique |
col |
the function-call-names, must be unique |
res |
the result slot, must be unique |
drop |
drop, if length is 1 |
els |
used, if in list-mode with named argument |
as_raw |
retrieve the result maybe as compressed |
Value
a list with results, depending on drop and the number of results,
the list may contain all requested results in sub-lists. The order
of the results follows the order of the row/column/result-names given
Set a single result from a dataquieR 2 report
Description
Set a single result from a dataquieR 2 report
Usage
## S3 replacement method for class 'dataquieR_resultset2'
x[[el]] <- value
Arguments
x |
the report |
el |
the index |
value |
the single result |
Value
the dataquieR result object
Get a single result from a dataquieR 2 report
Description
Get a single result from a dataquieR 2 report
Usage
## S3 method for class 'dataquieR_resultset2'
x[[el]]
Arguments
x |
the report |
el |
the index |
Value
the dataquieR result object
Operator caring for units
Description
Operator caring for units
Usage
## S3 method for class 'numeric_with_unit'
e1 ^ e2
Arguments
e1 |
first argument |
e2 |
second argument |
Value
result
Plots and checks for distributions for categorical variables
Description
This function creates distribution plots for categorical variables.
Usage
acc_cat_distributions(
resp_vars = NULL,
group_vars = NULL,
study_data,
label_col,
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
n_cat_max = getOption("dataquieR.max_cat_resp_var_levels_in_plot",
dataquieR.max_cat_resp_var_levels_in_plot_default),
n_group_max = getOption("dataquieR.max_group_var_levels_in_plot",
dataquieR.max_group_var_levels_in_plot_default),
n_data_min = getOption("dataquieR.min_time_points_for_cat_resp_var",
dataquieR.min_time_points_for_cat_resp_var_default)
)
Arguments
resp_vars |
variable the name of the measurement variable |
group_vars |
variable the name of the observer, device or reader variable |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
n_cat_max |
maximum number of categories to be displayed individually
for the categorical variable ( |
n_group_max |
maximum number of categories to be displayed individually
for the grouping variable ( |
n_data_min |
minimum number of data points to create a time course plot
for an individual category of the |
Details
To complete
Value
A list with:
-
SummaryPlot: ggplot2::ggplot for the response variable inresp_vars.
See Also
Plots and checks for distributions
Description
Data quality indicator checks "Unexpected location" and "Unexpected proportion" with histograms.
Usage
acc_distributions(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
check_param = c("any", "location", "proportion"),
plot_ranges = TRUE,
flip_mode = "noflip",
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the names of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
check_param |
enum any | location | proportion. Which type of check should be conducted (if possible): a check on the location of the mean or median value of the study data, a check on proportions of categories, or either of them if the necessary metadata is available. |
plot_ranges |
logical Should the plot show ranges and results from the data quality checks? (default: TRUE) |
flip_mode |
enum default | flip | noflip | auto. Should the plot be
in default orientation, flipped, not flipped or
auto-flipped. Not all options are always supported.
In general, this con be controlled by
setting the |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Value
A list with:
-
SummaryTable: data.frame containing data quality checks for "Unexpected location" (FLG_acc_ud_loc) and "Unexpected proportion" (FLG_acc_ud_prop) for each response variable inresp_vars. -
SummaryData: a data.frame containing data quality checks for "Unexpected location" and / or "Unexpected proportion" for a report -
SummaryPlotList: list of ggplot2::ggplots for each response variable inresp_vars.
Algorithm of this implementation:
If no response variable is defined, select all variables of type float or integer in the study data.
Remove missing codes from the study data (if defined in the metadata).
Remove measurements deviating from (hard) limits defined in the metadata (if defined).
Exclude variables containing only
NAor only one unique value (excludingNAs).Perform check for "Unexpected location" if defined in the metadata (needs a LOCATION_METRIC (mean or median) and LOCATION_RANGE (range of expected values for the mean and median, respectively)).
Perform check for "Unexpected proportion" if defined in the metadata (needs PROPORTION_RANGE (range of expected values for the proportions of the categories)).
Plot histogram(s).
See Also
ECDF plots for distribution checks
Description
Data quality indicator checks "Unexpected location" and "Unexpected proportion" if a grouping variable is included: Plots of empirical cumulative distributions for the subgroups.
Usage
acc_distributions_ecdf(
resp_vars = NULL,
group_vars = NULL,
study_data,
label_col,
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
n_group_max = getOption("dataquieR.max_group_var_levels_in_plot",
dataquieR.max_group_var_levels_in_plot_default),
n_obs_per_group_min = getOption("dataquieR.min_obs_per_group_var_in_plot",
dataquieR.min_obs_per_group_var_in_plot_default)
)
Arguments
resp_vars |
variable list the names of the measurement variables |
group_vars |
variable list the name of the observer, device or reader variable |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
n_group_max |
maximum number of categories to be displayed individually
for the grouping variable ( |
n_obs_per_group_min |
minimum number of data points per group to create
a graph for an individual category of the |
Value
A list with:
-
SummaryPlotList: list of ggplot2::ggplots for each response variable inresp_vars.
See Also
Plots and checks for distributions – Location
Description
Data quality indicator checks "Unexpected location" and "Unexpected proportion" with histograms.
Usage
acc_distributions_loc(
resp_vars = NULL,
study_data,
label_col = VAR_NAMES,
item_level = "item_level",
check_param = "location",
plot_ranges = TRUE,
flip_mode = "noflip",
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the names of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
check_param |
enum any | location | proportion. Which type of check should be conducted (if possible): a check on the location of the mean or median value of the study data, a check on proportions of categories, or either of them if the necessary metadata is available. |
plot_ranges |
logical Should the plot show ranges and results from the data quality checks? (default: TRUE) |
flip_mode |
enum default | flip | noflip | auto. Should the plot be
in default orientation, flipped, not flipped or
auto-flipped. Not all options are always supported.
In general, this con be controlled by
setting the |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Value
A list with:
-
SummaryTable: data.frame containing data quality checks for "Unexpected location" (FLG_acc_ud_loc) and "Unexpected proportion" (FLG_acc_ud_prop) for each response variable inresp_vars. -
SummaryData: a data.frame containing data quality checks for "Unexpected location" and / or "Unexpected proportion" for a report -
SummaryPlotList: list of ggplot2::ggplots for each response variable inresp_vars.
Algorithm of this implementation:
If no response variable is defined, select all variables of type float or integer in the study data.
Remove missing codes from the study data (if defined in the metadata).
Remove measurements deviating from (hard) limits defined in the metadata (if defined).
Exclude variables containing only
NAor only one unique value (excludingNAs).Perform check for "Unexpected location" if defined in the metadata (needs a LOCATION_METRIC (mean or median) and LOCATION_RANGE (range of expected values for the mean and median, respectively)).
Perform check for "Unexpected proportion" if defined in the metadata (needs PROPORTION_RANGE (range of expected values for the proportions of the categories)).
Plot histogram(s).
See Also
Plots and checks for distributions – only
Description
Usage
acc_distributions_only(
resp_vars = NULL,
study_data,
label_col = VAR_NAMES,
item_level = "item_level",
flip_mode = "noflip",
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the names of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
flip_mode |
enum default | flip | noflip | auto. Should the plot be
in default orientation, flipped, not flipped or
auto-flipped. Not all options are always supported.
In general, this con be controlled by
setting the |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Value
A list with:
-
SummaryTable: data.frame containing data quality checks for "Unexpected location" (FLG_acc_ud_loc) and "Unexpected proportion" (FLG_acc_ud_prop) for each response variable inresp_vars. -
SummaryData: a data.frame containing data quality checks for "Unexpected location" and / or "Unexpected proportion" for a report -
SummaryPlotList: list of ggplot2::ggplots for each response variable inresp_vars.
Algorithm of this implementation:
If no response variable is defined, select all variables of type float or integer in the study data.
Remove missing codes from the study data (if defined in the metadata).
Remove measurements deviating from (hard) limits defined in the metadata (if defined).
Exclude variables containing only
NAor only one unique value (excludingNAs).Perform check for "Unexpected location" if defined in the metadata (needs a LOCATION_METRIC (mean or median) and LOCATION_RANGE (range of expected values for the mean and median, respectively)).
Perform check for "Unexpected proportion" if defined in the metadata (needs PROPORTION_RANGE (range of expected values for the proportions of the categories)).
Plot histogram(s).
See Also
Plots and checks for distributions – Proportion
Description
Data quality indicator checks "Unexpected location" and "Unexpected proportion" with histograms.
Usage
acc_distributions_prop(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
check_param = "proportion",
plot_ranges = TRUE,
flip_mode = "noflip",
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the names of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
check_param |
enum any | location | proportion. Which type of check should be conducted (if possible): a check on the location of the mean or median value of the study data, a check on proportions of categories, or either of them if the necessary metadata is available. |
plot_ranges |
logical Should the plot show ranges and results from the data quality checks? (default: TRUE) |
flip_mode |
enum default | flip | noflip | auto. Should the plot be
in default orientation, flipped, not flipped or
auto-flipped. Not all options are always supported.
In general, this con be controlled by
setting the |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Value
A list with:
-
SummaryTable: data.frame containing data quality checks for "Unexpected location" (FLG_acc_ud_loc) and "Unexpected proportion" (FLG_acc_ud_prop) for each response variable inresp_vars. -
SummaryData: a data.frame containing data quality checks for "Unexpected location" and / or "Unexpected proportion" for a report -
SummaryPlotList: list of ggplot2::ggplots for each response variable inresp_vars.
Algorithm of this implementation:
If no response variable is defined, select all variables of type float or integer in the study data.
Remove missing codes from the study data (if defined in the metadata).
Remove measurements deviating from (hard) limits defined in the metadata (if defined).
Exclude variables containing only
NAor only one unique value (excludingNAs).Perform check for "Unexpected location" if defined in the metadata (needs a LOCATION_METRIC (mean or median) and LOCATION_RANGE (range of expected values for the mean and median, respectively)).
Perform check for "Unexpected proportion" if defined in the metadata (needs PROPORTION_RANGE (range of expected values for the proportions of the categories)).
Plot histogram(s).
See Also
Extension of acc_shape_or_scale to examine uniform distributions of end digits
Description
This implementation contrasts the empirical distribution of a measurement variables against assumed distributions. The approach is adapted from the idea of rootograms (Tukey (1977)) which is also applicable for count data (Kleiber and Zeileis (2016)).
Usage
acc_end_digits(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable the names of the measurement variables, mandatory |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Value
a list with:
-
SummaryTable: data.frame with the columnsVariablesandFLG_acc_ud_shape -
SummaryPlot: ggplot2 distribution plot comparing expected with observed distribution
ALGORITHM OF THIS IMPLEMENTATION:
This implementation is restricted to data of type float or integer.
Missing codes are removed from resp_vars (if defined in the metadata)
The user must specify the column of the metadata containing probability distribution (currently only: normal, uniform, gamma)
Parameters of each distribution can be estimated from the data or are specified by the user
A histogram-like plot contrasts the empirical vs. the technical distribution
See Also
Smoothes and plots adjusted longitudinal measurements and longitudinal trends from logistic regression models
Description
The following R implementation executes calculations for quality indicator "Unexpected location" (see here. Local regression (LOESS) is a versatile statistical method to explore an averaged course of time series measurements (Cleveland, Devlin, and Grosse 1988). In context of epidemiological data, repeated measurements using the same measurement device or by the same examiner can be considered a time series. LOESS allows to explore changes in these measurements over time.
Usage
acc_loess(
resp_vars,
group_vars = NULL,
time_vars,
co_vars = NULL,
study_data,
label_col = VAR_NAMES,
item_level = "item_level",
min_obs_in_subgroup = 30,
resolution = 80,
comparison_lines = list(type = c("mean/sd", "quartiles"), color = "grey30", linetype =
2, sd_factor = 0.5),
mark_time_points = getOption("dataquieR.acc_loess.mark_time_points",
dataquieR.acc_loess.mark_time_points_default),
plot_observations = getOption("dataquieR.acc_loess.plot_observations",
dataquieR.acc_loess.plot_observations_default),
plot_format = getOption("dataquieR.acc_loess.plot_format",
dataquieR.acc_loess.plot_format_default),
meta_data = item_level,
meta_data_v2,
n_group_max = getOption("dataquieR.max_group_var_levels_in_plot",
dataquieR.max_group_var_levels_in_plot_default),
enable_GAM = getOption("dataquieR.GAM_for_LOESS", dataquieR.GAM_for_LOESS_default),
exclude_constant_subgroups =
getOption("dataquieR.acc_loess.exclude_constant_subgroups",
dataquieR.acc_loess.exclude_constant_subgroups_default),
min_bandwidth = getOption("dataquieR.acc_loess.min_bw",
dataquieR.acc_loess.min_bw_default),
min_proportion = getOption("dataquieR.acc_loess.min_proportion",
dataquieR.acc_loess.min_proportion_default)
)
Arguments
resp_vars |
variable the name of the continuous measurement variable |
group_vars |
variable the name of the observer, device or reader variable |
time_vars |
variable the name of the variable giving the time of measurement |
co_vars |
variable list a vector of covariables for adjustment, for example age and sex. Can be NULL (default) for no adjustment. |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
min_obs_in_subgroup |
integer (optional argument) If |
resolution |
numeric the maximum number of time points used for plotting the trend lines |
comparison_lines |
list type and style of lines with which trend
lines are to be compared. Can be mean +/- 0.5
standard deviation (the factor can be specified
differently in |
mark_time_points |
logical mark time points with observations (caution, there may be many marks) |
plot_observations |
logical show observations as scatter plot in the
background. If there are |
plot_format |
enum AUTO | COMBINED | FACETS | BOTH. Return the plot
as one combined plot for all groups or as
facet plots (one figure per group). |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
n_group_max |
integer maximum number of categories to be displayed
individually for the grouping variable ( |
enable_GAM |
logical Can LOESS computations be replaced by general additive models to reduce memory consumption for large datasets? |
exclude_constant_subgroups |
logical Should subgroups with constant values be excluded? |
min_bandwidth |
numeric lower limit for the LOESS bandwidth, should be greater than 0 and less than or equal to 1. In general, increasing the bandwidth leads to a smoother trend line. |
min_proportion |
numeric lower limit for the proportion of the smaller group (cases or controls) for creating a LOESS figure, should be greater than 0 and less than 0.4. |
Details
If mark_time_points or plot_observations is selected, but would result in
plotting more than 400 points, only a sample of the data will be displayed.
Limitations
The application of LOESS requires model fitting, i.e. the smoothness
of a model is subject to a smoothing parameter (span).
Particularly in the presence of interval-based missing data, high
variability of measurements combined with a low number of
observations in one level of the group_vars may distort the fit.
Since our approach handles data without knowledge
of such underlying characteristics, finding the best fit is complicated if
computational costs should be minimal. The default of
LOESS in R uses a span of 0.75, which provides in most cases reasonable fits.
The function acc_loess adapts the span for each level of the group_vars
(with at least as many observations as specified in min_obs_in_subgroup
and with at least three time points) based on the respective
number of observations.
LOESS consumes a lot of memory for larger datasets. That is why acc_loess
switches to a generalized additive model with integrated smoothness
estimation (gam by mgcv) if there are 1000 observations or more for
at least one level of the group_vars (similar to geom_smooth
from ggplot2).
Value
a list with:
-
SummaryPlotList: list with two plots ifplot_format = "BOTH", otherwise one of the two figures described below:-
Loess_fits_facets: The plot contains LOESS-smoothed curves for each level of thegroup_varsin a separate panel. Added trend lines represent mean and standard deviation or quartiles (specified incomparison_lines) for moving windows over the whole data. -
Loess_fits_combined: This plot combines all curves into one panel. Given a low number of levels in thegroup_vars, this plot eases comparisons. However, if the number increases this plot may be too crowded and unclear.
-
See Also
Calculate and plot Mahalanobis distances for social science indices
Description
A standard tool to calculate Mahalanobis distance. In this approach the Mahalanobis distance is calculated for ordinal variables (treated as continuous) to identify inattentive responses. It calculates the distance for each observational unit from the sample mean. The greater the distance, the atypical the responses.
Usage
acc_mahalanobis(
variable_group = NULL,
label_col = VAR_NAMES,
study_data,
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
mahalanobis_threshold =
suppressWarnings(as.numeric(getOption("dataquieR.MAHALANOBIS_THRESHOLD",
dataquieR.MAHALANOBIS_THRESHOLD_default)))
)
Arguments
variable_group |
variable list the names of the continuous measurement variables building a group, for that multivariate outliers make sense. |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
mahalanobis_threshold |
numeric TODO: ES |
Value
a list with:
-
SummaryTable: data.frame underlying the plot -
SummaryPlot: ggplot2::ggplot2 outlier plot -
FlaggedStudyDatadata.frame contains the original data frame with the additional columnstukey,3SD,hubert, andsigmagap. Every observation is coded 0 if no outlier was detected in the respective column and 1 if an outlier was detected. This can be used to exclude observations with outliers.
ALGORITHM OF THIS IMPLEMENTATION:
Implementation is restricted to variables of type integer
Remove missing codes from the study data (if defined in the metadata)
The covariance matrix is estimated for all variables from
variable_groupThe Mahalanobis distance of each observation is calculated
MD^2_i = (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)The default to consider a value an outlier is "use the 0.975 quantile of a chi-square distribution with p degrees of freedom" (Mayrhofer and Filzmoser, 2023) List function.
See Also
Estimate marginal means, see emmeans::emmeans
Description
This function examines the impact of so-called process variables on a measurement variable. This implementation combines a descriptive and a model-based approach. Process variables that can be considered in this implementation must be categorical. It is currently not possible to consider more than one process variable within one function call. The measurement variable can be adjusted for (multiple) covariables, such as age or sex, for example.
Marginal means rests on model-based results, i.e. a significantly different marginal mean depends on sample size. Particularly in large studies, small and irrelevant differences may become significant. The contrary holds if sample size is low.
Usage
acc_margins(
resp_vars = NULL,
group_vars = NULL,
co_vars = NULL,
study_data,
label_col,
item_level = "item_level",
threshold_type = "empirical",
threshold_value,
min_obs_in_subgroup = 5,
min_obs_in_cat = 5,
dichotomize_categorical_resp = TRUE,
cut_off_linear_model_for_ord = 10,
meta_data = item_level,
meta_data_v2,
sort_group_var_levels = getOption("dataquieR.acc_margins_sort",
dataquieR.acc_margins_sort_default),
include_numbers_in_figures = getOption("dataquieR.acc_margins_num",
dataquieR.acc_margins_num_default),
n_violin_max = getOption("dataquieR.max_group_var_levels_with_violins",
dataquieR.max_group_var_levels_with_violins_default)
)
Arguments
resp_vars |
variable the name of the measurement variable |
group_vars |
variable list len=1-1. the name of the observer, device or reader variable |
co_vars |
variable list a vector of covariables, e.g. age and sex for adjustment |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
threshold_type |
enum empirical | user | none. In case |
threshold_value |
numeric a multiplier or absolute value (see
|
min_obs_in_subgroup |
integer from=0. This optional argument specifies
the minimum number of observations that is required to
include a subgroup (level) of the |
min_obs_in_cat |
integer This optional argument specifies the minimum
number of observations that is required to include
a category (level) of the outcome ( |
dichotomize_categorical_resp |
logical Should nominal response variables always be transformed to binary variables? |
cut_off_linear_model_for_ord |
integer from=0. This optional argument
specifies the minimum number of observations for
individual levels of an ordinal outcome ( |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
sort_group_var_levels |
logical Should the levels of the grouping variable be sorted descending by the number of observations? Note that ordinal grouping variables will not be reordered. |
include_numbers_in_figures |
logical Should the figure report the number of observations for each level of the grouping variable? |
n_violin_max |
integer from=0. This optional argument specifies
the maximum number of levels of the |
Details
Limitations
Selecting the appropriate distribution is complex. Dozens of continuous,
discrete or mixed distributions are conceivable in the context of
epidemiological data. Their exact exploration is beyond the scope of this
data quality approach. The present function uses the help function
util_dist_selection, the assigned SCALE_LEVEL and the DATA_TYPE
to discriminate the following cases:
continuous data
binary data
count data with <= 20 distinct values
count data with > 20 distinct values (treated as continuous)
nominal data
ordinal data
Continuous data and count data with more than 20 distinct values are analyzed
by linear models. Count data with up to 20 distinct values are modeled by a
Poisson regression. For binary data, the implementation uses logistic
regression.
Nominal response variables will either be transformed to binary variables or
analyzed by multinomial logistic regression models. The latter option is only
available if the argument dichotomize_categorical_resp is set to FALSE
and if the package nnet is installed. The transformation to a binary
variable can be user-specified using the metadata columns RECODE_CASES
and/or RECODE_CONTROL. Otherwise, the most frequent category will be
assigned to cases and the remaining categories to control.
For ordinal response variables, the argument cut_off_linear_model_for_ord
controls whether the data is analyzed in the same way as continuous data:
If every level of the variable has at least as many observations as specified
in the argument, the data will be analyzed by a linear model. Otherwise,
the data will be modeled by a ordered regression, if the package ordinal
is installed.
Value
a list with:
-
SummaryTable: data.frame underlying the plot -
ResultData: data.frame -
SummaryPlot:ggplot2::ggplot()margins plot
See Also
Calculate and plot Mahalanobis distances
Description
A standard tool to detect multivariate outliers is the Mahalanobis distance. This approach is very helpful for the interpretation of the plausibility of a measurement given the value of another. In this approach the Mahalanobis distance is used as a univariate measure itself. We apply the same rules for the identification of outliers as in univariate outliers:
the classical approach from Tukey:
1.5 * IQRfrom the 1st (Q_{25}) or 3rd (Q_{75}) quartile.the 3SD approach, i.e. any measurement of the Mahalanobis distance not in the interval of
\bar{x} \pm 3*\sigmais considered an outlier.the approach from Hubert for skewed distributions which is embedded in the R package robustbase
a completely heuristic approach named
\sigma-gap.
For further details, please see the vignette for univariate outlier.
Usage
acc_multivariate_outlier(
variable_group = NULL,
id_vars = NULL,
label_col = VAR_NAMES,
study_data,
item_level = "item_level",
n_rules = 4,
max_non_outliers_plot = 10000,
criteria = c("tukey", "3sd", "hubert", "sigmagap"),
meta_data = item_level,
meta_data_v2,
scale = getOption("dataquieR.acc_multivariate_outlier.scale",
dataquieR.acc_multivariate_outlier.scale_default),
multivariate_outlier_check = TRUE
)
Arguments
variable_group |
variable list the names of the continuous measurement variables building a group, for that multivariate outliers make sense. |
id_vars |
variable optional, an ID variable of the study data. If not specified row numbers are used. |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
n_rules |
numeric from=1 to=4. the no. of rules that must be violated to classify as outlier |
max_non_outliers_plot |
integer from=0. Maximum number of non-outlier points to be plot. If more points exist, a subsample will be plotted only. Note, that sampling is not deterministic. |
criteria |
set tukey | 3SD | hubert | sigmagap. a vector with methods to be used for detecting outliers. |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
scale |
logical Should min-max-scaling be applied per variable? |
multivariate_outlier_check |
logical really check, pipeline use, only. |
Value
a list with:
-
SummaryTable: data.frame underlying the plot -
SummaryPlot: ggplot2::ggplot2 outlier plot -
FlaggedStudyDatadata.frame contains the original data frame with the additional columnstukey,3SD,hubert, andsigmagap. Every observation is coded 0 if no outlier was detected in the respective column and 1 if an outlier was detected. This can be used to exclude observations with outliers.
ALGORITHM OF THIS IMPLEMENTATION:
Implementation is restricted to variables of type float
Remove missing codes from the study data (if defined in the metadata)
The covariance matrix is estimated for all variables from
variable_groupThe Mahalanobis distance of each observation is calculated
MD^2_i = (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)The four rules mentioned above are applied on this distance for each observation in the study data
An output data frame is generated that flags each outlier
A parallel coordinate plot indicates respective outliers
List function.
See Also
Identify univariate outliers by four different approaches
Description
A classical but still popular approach to detect univariate outlier is the
boxplot method introduced by Tukey 1977. The boxplot is a simple graphical
tool to display information about continuous univariate data (e.g., median,
lower and upper quartile). Outliers are defined as values deviating more
than 1.5 \times IQR from the 1st (Q25) or 3rd (Q75) quartile. The
strength of Tukey's method is that it makes no distributional assumptions
and thus is also applicable to skewed or non mound-shaped data
Marsh and Seo, 2006. Nevertheless, this method tends to identify frequent
measurements which are falsely interpreted as true outliers.
A somewhat more conservative approach in terms of symmetric and/or normal
distributions is the 3SD approach, i.e. any measurement not in
the interval of mean(x) +/- 3 * \sigma is considered an outlier.
Both methods mentioned above are not ideally suited to skewed distributions.
As many biomarkers such as laboratory measurements represent in skewed
distributions the methods above may be insufficient. The approach of Hubert
and Vandervieren 2008 adjusts the boxplot for the skewness of the
distribution. This approach is implemented in several R packages such as
robustbase::mc which is used in this implementation of dataquieR.
Another completely heuristic approach is also included to identify outliers. The approach is based on the assumption that the distances between measurements of the same underlying distribution should homogeneous. For comprehension of this approach:
consider an ordered sequence of all measurements.
between these measurements all distances are calculated.
the occurrence of larger distances between two neighboring measurements may than indicate a distortion of the data. For the heuristic definition of a large distance
1 * \sigmahas been been chosen.
Note, that the plots are not deterministic, because they use ggplot2::geom_jitter.
Usage
acc_robust_univariate_outlier(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
exclude_roles,
n_rules = length(unique(criteria)),
max_non_outliers_plot = 10000,
criteria = c("tukey", "3sd", "hubert", "sigmagap"),
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the name of the continuous measurement variable |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
exclude_roles |
variable roles a character (vector) of variable roles not included |
n_rules |
integer from=1 to=4. the no. rules that must be violated to flag a variable as containing outliers. The default is 4, i.e. all. |
max_non_outliers_plot |
integer from=0. Maximum number of non-outlier points to be plot. If more points exist, a subsample will be plotted only. Note, that sampling is not deterministic. |
criteria |
set tukey | 3SD | hubert | sigmagap. a vector with methods to be used for detecting outliers. |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
Hint: The function is designed for unimodal data only.
Value
a list with:
-
SummaryTable:data.framewith the columnsVariables,Mean,SD,Median,Skewness,Tukey (N),3SD (N),Hubert (N),Sigma-gap (N),NUM_acc_ud_outlu,Outliers, low (N),Outliers, high (N)Grading-
SummaryData:data.framewith the columnsVariables,Mean,SD,Median,Skewness,Tukey (N),3SD (N),Hubert (N),Sigma-gap (N),Outliers (N),Outliers, low (N),Outliers, high (N) -
SummaryPlotList:ggplot2::ggplotunivariate outlier plots
-
ALGORITHM OF THIS IMPLEMENTATION:
Select all variables of type float in the study data
Remove missing codes from the study data (if defined in the metadata)
Remove measurements deviating from limits defined in the metadata
Identify outliers according to the approaches of Tukey (Tukey 1977), 3SD (Saleem et al. 2021), Hubert (Hubert and Vandervieren 2008), and SigmaGap (heuristic)
An output data frame is generated which indicates the no. possible outliers, the direction of deviations (Outliers, low; Outliers, high) for all methods and a summary score which sums up the deviations of the different rules
A scatter plot is generated for all examined variables, flagging observations according to the no. violated rules (step 5).
See Also
Compare observed versus expected distributions
Description
This implementation contrasts the empirical distribution of a measurement variables against assumed distributions. The approach is adapted from the idea of rootograms (Tukey 1977) which is also applicable for count data (Kleiber and Zeileis 2016).
Usage
acc_shape_or_scale(
resp_vars,
study_data,
label_col,
item_level = "item_level",
dist_col,
guess,
par1,
par2,
end_digits,
flip_mode = "noflip",
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable the name of the continuous measurement variable |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
dist_col |
variable attribute the name of the variable attribute in meta_data that provides the expected distribution of a study variable |
guess |
logical estimate parameters |
par1 |
numeric first parameter of the distribution if applicable |
par2 |
numeric second parameter of the distribution if applicable |
end_digits |
logical internal use. check for end digits preferences |
flip_mode |
enum default | flip | noflip | auto. Should the plot be
in default orientation, flipped, not flipped or
auto-flipped. Not all options are always supported.
In general, this con be controlled by
setting the |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Value
a list with:
-
ResultData: data.frame underlying the plot -
SummaryPlot: ggplot2::ggplot2 probability distribution plot -
SummaryTable: data.frame with the columnsVariablesandFLG_acc_ud_shape
ALGORITHM OF THIS IMPLEMENTATION:
This implementation is restricted to data of type float or integer.
Missing codes are removed from resp_vars (if defined in the metadata)
The user must specify the column of the metadata containing probability distribution (currently only: normal, uniform, gamma)
Parameters of each distribution can be estimated from the data or are specified by the user
A histogram-like plot contrasts the empirical vs. the technical distribution
See Also
Identify univariate outliers by four different approaches
Description
A classical but still popular approach to detect univariate outlier is the
boxplot method introduced by Tukey 1977. The boxplot is a simple graphical
tool to display information about continuous univariate data (e.g., median,
lower and upper quartile). Outliers are defined as values deviating more
than 1.5 \times IQR from the 1st (Q25) or 3rd (Q75) quartile. The
strength of Tukey's method is that it makes no distributional assumptions
and thus is also applicable to skewed or non mound-shaped data
Marsh and Seo, 2006. Nevertheless, this method tends to identify frequent
measurements which are falsely interpreted as true outliers.
A somewhat more conservative approach in terms of symmetric and/or normal
distributions is the 3SD approach, i.e. any measurement not in
the interval of mean(x) +/- 3 * \sigma is considered an outlier.
Both methods mentioned above are not ideally suited to skewed distributions.
As many biomarkers such as laboratory measurements represent in skewed
distributions the methods above may be insufficient. The approach of Hubert
and Vandervieren 2008 adjusts the boxplot for the skewness of the
distribution. This approach is implemented in several R packages such as
robustbase::mc which is used in this implementation of dataquieR.
Another completely heuristic approach is also included to identify outliers. The approach is based on the assumption that the distances between measurements of the same underlying distribution should homogeneous. For comprehension of this approach:
consider an ordered sequence of all measurements.
between these measurements all distances are calculated.
the occurrence of larger distances between two neighboring measurements may than indicate a distortion of the data. For the heuristic definition of a large distance
1 * \sigmahas been been chosen.
Note, that the plots are not deterministic, because they use ggplot2::geom_jitter.
Usage
acc_univariate_outlier(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
exclude_roles,
n_rules = length(unique(criteria)),
max_non_outliers_plot = 10000,
criteria = c("tukey", "3sd", "hubert", "sigmagap"),
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the name of the continuous measurement variable |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
exclude_roles |
variable roles a character (vector) of variable roles not included |
n_rules |
integer from=1 to=4. the no. rules that must be violated to flag a variable as containing outliers. The default is 4, i.e. all. |
max_non_outliers_plot |
integer from=0. Maximum number of non-outlier points to be plot. If more points exist, a subsample will be plotted only. Note, that sampling is not deterministic. |
criteria |
set tukey | 3SD | hubert | sigmagap. a vector with methods to be used for detecting outliers. |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
Hint: The function is designed for unimodal data only.
Value
a list with:
-
SummaryTable:data.framewith the columnsVariables,Mean,SD,Median,Skewness,Tukey (N),3SD (N),Hubert (N),Sigma-gap (N),NUM_acc_ud_outlu,Outliers, low (N),Outliers, high (N)Grading-
SummaryData:data.framewith the columnsVariables,Mean,SD,Median,Skewness,Tukey (N),3SD (N),Hubert (N),Sigma-gap (N),Outliers (N),Outliers, low (N),Outliers, high (N) -
SummaryPlotList:ggplot2::ggplotunivariate outlier plots
-
ALGORITHM OF THIS IMPLEMENTATION:
Select all variables of type float in the study data
Remove missing codes from the study data (if defined in the metadata)
Remove measurements deviating from limits defined in the metadata
Identify outliers according to the approaches of Tukey (Tukey 1977), 3SD (Saleem et al. 2021), Hubert (Hubert and Vandervieren 2008), and SigmaGap (heuristic)
An output data frame is generated which indicates the no. possible outliers, the direction of deviations (Outliers, low; Outliers, high) for all methods and a summary score which sums up the deviations of the different rules
A scatter plot is generated for all examined variables, flagging observations according to the no. violated rules (step 5).
See Also
Utility function to compute model-based ICC depending on the (statistical) data type
Description
This function is still under construction. It is designed to run for any statistical data type as follows:
Variables with only two distinct values will be modeled by mixed effects logistic regression.
Nominal variables will be transformed to binary variables. This can be user-specified using the metadata columns
RECODE_CASESand/orRECODE_CONTROL. Otherwise, the most frequent category will be assigned to cases and the remaining categories to control. As for other binary variables, the ICC will be computed using a mixed effects logistic regression.Ordinal variables will be analyzed by linear mixed effects models, if every level of the variable has at least as many observations as specified in the argument
cut_off_linear_model_for_ord. Otherwise, the data will be modeled by a mixed effects ordered regression, if the packageordinalis available.Metric variables with integer values are analyzed by linear mixed effects models.
For variables with data type
float, the existing implementationacc_varcompis called, which also uses linear mixed effects models.
Usage
acc_varcomp(
resp_vars = NULL,
group_vars = NULL,
co_vars = NULL,
study_data,
label_col,
item_level = "item_level",
min_obs_in_subgroup = 10,
min_subgroups = 5,
cut_off_linear_model_for_ord = 10,
threshold_value = lifecycle::deprecated(),
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable the name of the measurement variable |
group_vars |
variable the name of the examiner, device or reader variable |
co_vars |
variable list a vector of covariables, e.g. age and sex, for adjustment |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
min_obs_in_subgroup |
integer from=0. This optional argument specifies
the minimum number of observations that is
required to include a subgroup (level) of the
|
min_subgroups |
integer from=0. This optional argument specifies
the minimum number of subgroups (level) of the
|
cut_off_linear_model_for_ord |
integer from=0. This optional argument
specifies the minimum number of observations for
individual levels of an ordinal outcome
( |
threshold_value |
Deprecated. |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
Not yet described
Value
The function returns two data frames, 'SummaryTable' and 'SummaryData', that differ only in the names of the columns.
as.character implementation for the class interval
Description
such objects, for now, only occur in RECCap rules, so this function
is meant for internal use, mostly – for now.
Usage
## S3 method for class 'interval'
as.character(x, ...)
Arguments
x |
|
... |
not used yet |
Value
interval as character
See Also
base::as.character
Convert a full dataquieR report to a data.frame
Description
Deprecated
Usage
## S3 method for class 'dataquieR_resultset'
as.data.frame(x, ...)
Arguments
x |
Deprecated |
... |
Deprecated |
Value
Deprecated
Convert a full dataquieR report to a list
Description
Deprecated
Usage
## S3 method for class 'dataquieR_resultset'
as.list(x, ...)
Arguments
x |
Deprecated |
... |
Deprecated |
Value
Deprecated
inefficient way to convert a report to a list. try prep_set_backend()
Description
inefficient way to convert a report to a list. try prep_set_backend()
Usage
## S3 method for class 'dataquieR_resultset2'
as.list(x, ...)
Arguments
x |
|
... |
no used |
Value
Data frame with contradiction rules
Description
Two versions exist, the newer one is used by con_contradictions_redcap and is described here., the older one used by con_contradictions is described here.
See Also
Summarize missingness columnwise (in variable)
Description
Item-Missingness (also referred to as item nonresponse (De Leeuw et al. 2003)) describes the missingness of single values, e.g. blanks or empty data cells in a data set. Item-Missingness occurs for example in case a respondent does not provide information for a certain question, a question is overlooked by accident, a programming failure occurs or a provided answer were missed while entering the data.
Usage
com_item_missingness(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
show_causes = TRUE,
cause_label_df,
include_sysmiss = TRUE,
threshold_value,
suppressWarnings = FALSE,
assume_consistent_codes = TRUE,
expand_codes = assume_consistent_codes,
drop_levels = FALSE,
expected_observations = c("HIERARCHY", "ALL", "SEGMENT"),
pretty_print = lifecycle::deprecated(),
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the name of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
show_causes |
logical if TRUE, then the distribution of missing codes is shown |
cause_label_df |
data.frame missing code table. If missing codes have labels the respective data frame can be specified here or in the metadata as assignments, see cause_label_df |
include_sysmiss |
logical Optional, if TRUE system missingness (NAs) is evaluated in the summary plot |
threshold_value |
numeric from=0 to=100. a numerical value ranging from 0-100 |
suppressWarnings |
logical warn about consistency issues with missing and jump lists |
assume_consistent_codes |
logical if TRUE and no labels are given and the same missing/jump code is used for more than one variable, the labels assigned for this code are treated as being be the same for all variables. |
expand_codes |
logical if TRUE, code labels are copied from other variables, if the code is the same and the label is set somewhere |
drop_levels |
logical if TRUE, do not display unused missing codes in the figure legend. |
expected_observations |
enum HIERARCHY | ALL | SEGMENT. If ALL, all
observations are expected to comprise
all study segments. If SEGMENT, the
|
pretty_print |
logical deprecated. If you want to have a human
readable output, use |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Value
a list with:
-
SummaryTable: data frame about item missingness per response variable -
SummaryData: data frame about item missingness per response variable formatted for user -
SummaryPlot: ggplot2 heatmap plot, if show_causes was TRUE -
ReportSummaryTable: data frame underlyingSummaryPlot
ALGORITHM OF THIS IMPLEMENTATION:
Lists of missing codes and, if applicable, jump codes are selected from the metadata
The no. of system missings (NA) in each variable is calculated
The no. of used missing codes is calculated for each variable
The no. of used jump codes is calculated for each variable
Two result dataframes (1: on the level of observations, 2: a summary for each variable) are generated
-
OPTIONAL: if
show_causesis selected, one summary plot for allresp_varsis provided
See Also
Compute Indicators for Qualified Item Missingness
Description
Usage
com_qualified_item_missingness(
resp_vars,
study_data,
label_col = NULL,
item_level = "item_level",
expected_observations = c("HIERARCHY", "ALL", "SEGMENT"),
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the name of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
expected_observations |
enum HIERARCHY | ALL | SEGMENT. Report the
number of observations expected using
the old |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Value
A list with:
-
SummaryTable: data.frame containing data quality checks for "Non-response rate" (PCT_com_qum_nonresp) and "Refusal rate" (PCT_com_qum_refusal) for each response variable inresp_vars. -
SummaryData: a data.frame containing data quality checks for “Non-response rate” and "Refusal rate" for a report
Compute Indicators for Qualified Segment Missingness
Description
Usage
com_qualified_segment_missingness(
label_col = NULL,
study_data,
item_level = "item_level",
expected_observations = c("HIERARCHY", "ALL", "SEGMENT"),
meta_data = item_level,
meta_data_v2,
meta_data_segment,
segment_level
)
Arguments
label_col |
variable attribute the name of the column in the metadata with labels of variables |
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
expected_observations |
enum HIERARCHY | ALL | SEGMENT. Report the
number of observations expected using
the old |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
meta_data_segment |
data.frame Segment level metadata |
segment_level |
data.frame alias for |
Value
A list with:
-
SegmentTable: data.frame containing data quality checks for "Non-response rate" (PCT_com_qum_nonresp) and "Refusal rate" (PCT_com_qum_refusal) for each segment. -
SegmentData: a data.frame containing data quality checks for "Unexpected location" and "Unexpected proportion" per segment for a report
Summarizes missingness for individuals in specific segments
Description
This implementation can be applied in two use cases:
participation in study segments is not recorded by respective variables, e.g. a participant's refusal to attend a specific examination is not recorded.
participation in study segments is recorded by respective variables.
Use case (1) will be common in smaller studies. For the calculation of segment missingness it is assumed that study variables are nested in respective segments. This structure must be specified in the static metadata. The R-function identifies all variables within each segment and returns TRUE if all variables within a segment are missing, otherwise FALSE.
Use case (2) assumes a more complex structure of study data and metadata.
The study data comprise so-called intro-variables (either TRUE/FALSE or codes
for non-participation). The column PART_VAR in the metadata is
filled by variable-IDs indicating for each variable the respective
intro-variable. This structure has the benefit that subsequent calculation of
item missingness obtains correct denominators for the calculation of
missingness rates.
Usage
com_segment_missingness(
study_data,
item_level = "item_level",
strata_vars = NULL,
group_vars = NULL,
label_col,
threshold_value,
direction,
color_gradient_direction,
expected_observations = c("HIERARCHY", "ALL", "SEGMENT"),
exclude_roles = c(VARIABLE_ROLES$PROCESS),
meta_data = item_level,
meta_data_v2,
segment_level,
meta_data_segment
)
Arguments
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
strata_vars |
variable the name of a variable used for stratification, defaults to NULL for not grouping output |
group_vars |
variable the name of a variable used for grouping, defaults to NULL for not grouping output |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
threshold_value |
numeric from=0 to=100. a numerical value ranging from 0-100 |
direction |
enum low | high. "high" or "low", i.e. are deviations above/below the threshold critical. This argument is deprecated and replaced by color_gradient_direction. |
color_gradient_direction |
enum above | below. "above" or "below", i.e. are deviations above or below the threshold critical? (default: above) |
expected_observations |
enum HIERARCHY | ALL | SEGMENT. If ALL, all
observations are expected to comprise
all study segments. If SEGMENT, the
|
exclude_roles |
variable roles a character (vector) of variable roles not included |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
segment_level |
data.frame alias for |
meta_data_segment |
data.frame Segment level metadata. Optional. |
Details
Implementation and use of thresholds
This implementation uses one threshold to discriminate critical from non-critical values. If direction is above than all values below the threshold_value are normal (displayed in dark blue in the plot and flagged with GRADING = 0 in the dataframe). All values above the threshold_value are considered critical. The more they deviate from the threshold the displayed color shifts to dark red. All critical values are highlighted with GRADING = 1 in the summary data frame. By default, highest values are always shown in dark red irrespective of the absolute deviation.
If direction is below than all values above the threshold_value are normal (displayed in dark blue, GRADING = 0).
Hint
This function does not support a resp_vars argument but exclude_roles to
specify variables not relevant for detecting a missing segment.
List function.
Value
a list with:
-
ResultData: data frame about segment missingness -
SummaryPlot: ggplot2 heatmap plot: a heatmap-like graphic that highlights critical values depending on the respective threshold_value and direction. -
ReportSummaryTable: data frame underlyingSummaryPlot
See Also
Counts all individuals with no measurements at all
Description
This implementation examines a crude version of unit missingness or unit-nonresponse (Kalton and Kasprzyk 1986), i.e. if all measurement variables in the study data are missing for an observation it has unit missingness.
The function can be applied on stratified data. In this case strata_vars must be specified.
Usage
com_unit_missingness(
id_vars = NULL,
strata_vars = NULL,
label_col,
study_data,
item_level = "item_level",
meta_data = item_level,
meta_data_v2
)
Arguments
id_vars |
variable list optional, a (vectorized) call of ID-variables that should not be considered in the calculation of unit- missingness |
strata_vars |
variable optional, a string or integer variable used for stratification |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
This implementations calculates a crude rate of unit-missingness. This type of missingness may have several causes and is an important research outcome. For example, unit-nonresponse may be selective regarding the targeted study population or technical reasons such as record-linkage may cause unit-missingness.
It has to be discriminated form segment and item missingness, since different causes and mechanisms may be the reason for unit-missingness.
Hint
This function does not support a resp_vars argument but id_vars, which
have a roughly inverse logic behind: id_vars with values do not prevent a row
from being considered missing, because an ID is the only hint for a unit that
elsewise would not occur in the data at all.
List function.
Value
A list with:
-
FlaggedStudyData: data.frame with id-only-rows flagged in a columnUnit_missing -
SummaryData: data.frame with numbers and percentages of unit missingness
See Also
Checks user-defined contradictions in study data
Description
This approach considers a contradiction if impossible combinations of data are observed in one participant. For example, if age of a participant is recorded repeatedly the value of age is (unfortunately) not able to decline. Most cases of contradictions rest on comparison of two variables.
Important to note, each value that is used for comparison may represent a possible characteristic but the combination of these two values is considered to be impossible. The approach does not consider implausible or inadmissible values.
Usage
con_contradictions(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
threshold_value,
check_table,
summarize_categories = FALSE,
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the name of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
threshold_value |
numeric from=0 to=100. a numerical value ranging from 0-100 |
check_table |
data.frame contradiction rules table. Table defining contradictions. See details for its required structure. |
summarize_categories |
logical Needs a column 'tag' in the
|
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
Algorithm of this implementation:
Select all variables in the data with defined contradiction rules (static metadata column CONTRADICTIONS)
Remove missing codes from the study data (if defined in the metadata)
Remove measurements deviating from limits defined in the metadata
Assign label to levels of categorical variables (if applicable)
Apply contradiction checks on predefined sets of variables
Identification of measurements fulfilling contradiction rules. Therefore two output data frames are generated:
on the level of observation to flag each contradictory value combination, and
a summary table for each contradiction check.
A summary plot illustrating the number of contradictions is generated.
List function.
Value
If summarize_categories is FALSE:
A list with:
-
FlaggedStudyData: The first output of the contradiction function is a data frame of similar dimension regarding the number of observations in the study data. In addition, for each applied check on the variables an additional column is added which flags observations with a contradiction given the applied check. -
SummaryTable: The second output summarizes this information into one data frame. This output can be used to provide an executive overview on the amount of contradictions. This output is meant for automatic digestion within pipelines. -
SummaryData: The third output is the same asSummaryTablebut for human readers. -
SummaryPlot: The fourth output visualizes summarized information ofSummaryData.
if summarize_categories is TRUE, other objects are returned:
one per category named by that category (e.g. "Empirical") containing a
result for contradictions within that category only. Additionally, in the
slot all_checks a result as it would have been returned with
summarize_categories set to FALSE. Finally, a slot SummaryData is
returned containing sums per Category and an according ggplot2::ggplot in
SummaryPlot.
See Also
Checks user-defined contradictions in study data
Description
This approach considers a contradiction if impossible combinations of data are observed in one participant. For example, if age of a participant is recorded repeatedly the value of age is (unfortunately) not able to decline. Most cases of contradictions rest on comparison of two variables.
Important to note, each value that is used for comparison may represent a possible characteristic but the combination of these two values is considered to be impossible. The approach does not consider implausible or inadmissible values.
Usage
con_contradictions_redcap(
study_data,
item_level = "item_level",
label_col,
threshold_value,
meta_data_cross_item = "cross-item_level",
use_value_labels,
summarize_categories = FALSE,
meta_data = item_level,
cross_item_level,
`cross-item_level`,
meta_data_v2
)
Arguments
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
threshold_value |
numeric from=0 to=100. a numerical value ranging from 0-100 |
meta_data_cross_item |
data.frame contradiction rules table. Table defining contradictions. See online documentation for its required structure. |
use_value_labels |
logical Deprecated in favor of DATA_PREPARATION.
If set to |
summarize_categories |
logical Needs a column |
meta_data |
data.frame old name for |
cross_item_level |
data.frame alias for |
meta_data_v2 |
character path to workbook like metadata file, see
|
`cross-item_level` |
data.frame alias for |
Details
Algorithm of this implementation:
Remove missing codes from the study data (if defined in the metadata)
Remove measurements deviating from limits defined in the metadata
Assign label to levels of categorical variables (if applicable)
Apply contradiction checks (given as
REDCap-like rules in a separate metadata table)Identification of measurements fulfilling contradiction rules. Therefore two output data frames are generated:
on the level of observation to flag each contradictory value combination, and
a summary table for each contradiction check.
A summary plot illustrating the number of contradictions is generated.
List function.
Value
If summarize_categories is FALSE:
A list with:
-
FlaggedStudyData: The first output of the contradiction function is a data frame of similar dimension regarding the number of observations in the study data. In addition, for each applied check on the variables an additional column is added which flags observations with a contradiction given the applied check. -
VariableGroupData: The second output summarizes this information into one data frame. This output can be used to provide an executive overview on the amount of contradictions. -
VariableGroupTable: A subset ofVariableGroupDataused within the pipeline. -
SummaryPlot: The third output visualizes summarized information ofSummaryData.
If summarize_categories is TRUE, other objects are returned:
A list with one element Other, a list with the following entries:
One per category named by that category (e.g. "Empirical") containing a
result for contradiction checks within that category only. Additionally, in the
slot all_checks, a result as it would have been returned with
summarize_categories set to FALSE. Finally, in
the top-level list, a slot SummaryData is
returned containing sums per Category and an according ggplot2::ggplot in
SummaryPlot.
See Also
Online Documentation for the function meta_data_cross Online Documentation for the required cross-item-level metadata
Detects variable levels not specified in metadata
Description
For each categorical variable, value lists should be defined in the metadata. This implementation will examine, if all observed levels in the study data are valid.
Usage
con_inadmissible_categorical(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
threshold_value = 0,
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the name of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
threshold_value |
numeric from=0 to=100. a numerical value ranging from 0-100. |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
Algorithm of this implementation:
Remove missing codes from the study data (if defined in the metadata)
Interpretation of variable specific VALUE_LABELS as supplied in the metadata.
Identification of measurements not corresponding to the expected categories. Therefore two output data frames are generated:
on the level of observation to flag each undefined category, and
a summary table for each variable.
Values not corresponding to defined categories are removed in a data frame of modified study data
Value
a list with:
-
SummaryData: data frame summarizing inadmissible categories with the columns:-
Variables: variable name/label -
OBSERVED_CATEGORIES: the categories observed in the study data -
DEFINED_CATEGORIES: the categories defined in the metadata -
NON_MATCHING: the categories observed but not defined -
NON_MATCHING_N: the number of observations with categories not defined -
NON_MATCHING_N_PER_CATEGORY: the number of observations for each of the unexpected categories
-
-
SummaryTable: data frame for thedataquieRpipeline reporting the number and percentage of inadmissible categorical values -
ModifiedStudyData: study data having inadmissible categories removed -
FlaggedStudyData: study data having cases with inadmissible categories flagged
See Also
Detects variable levels not specified in standardized vocabulary
Description
For each categorical variable, value lists should be defined in the metadata. This implementation will examine, if all observed levels in the study data are valid.
Usage
con_inadmissible_vocabulary(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
threshold_value = 0,
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list the name of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
threshold_value |
numeric from=0 to=100. a numerical value ranging from 0-100. |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
Algorithm of this implementation:
Remove missing codes from the study data (if defined in the metadata)
Interpretation of variable specific VALUE_LABELS as supplied in the metadata.
Identification of measurements not corresponding to the expected categories. Therefore two output data frames are generated:
on the level of observation to flag each undefined category, and
a summary table for each variable.
Values not corresponding to defined categories are removed in a data frame of modified study data
Value
a list with:
-
SummaryData: data frame summarizing inadmissible categories with the columns:-
Variables: variable name/label -
OBSERVED_CATEGORIES: the categories observed in the study data -
DEFINED_CATEGORIES: the categories defined in the metadata -
NON_MATCHING: the categories observed but not defined -
NON_MATCHING_N: the number of observations with categories not defined -
NON_MATCHING_N_PER_CATEGORY: the number of observations for each of the unexpected categories -
GRADING: indicator TRUE/FALSE if inadmissible categorical values were observed (more than indicated by thethreshold_value)
-
-
SummaryTable: data frame for thedataquieRpipeline reporting the number and percentage of inadmissible categorical values -
ModifiedStudyData: study data having inadmissible categories removed -
FlaggedStudyData: study data having cases with inadmissible categories flagged
See Also
Examples
## Not run:
sdt <- data.frame(DIAG = c("B050", "B051", "B052", "B999"),
MED0 = c("S01XA28", "N07XX18", "ABC", NA), stringsAsFactors = FALSE)
mdt <- tibble::tribble(
~ VAR_NAMES, ~ DATA_TYPE, ~ STANDARDIZED_VOCABULARY_TABLE, ~ SCALE_LEVEL, ~ LABEL,
"DIAG", "string", "<ICD10>", "nominal", "Diagnosis",
"MED0", "string", "<ATC>", "nominal", "Medication"
)
con_inadmissible_vocabulary(NULL, sdt, mdt, label_col = LABEL)
prep_load_workbook_like_file("meta_data_v2")
il <- prep_get_data_frame("item_level")
il$STANDARDIZED_VOCABULARY_TABLE[[11]] <- "<ICD10GM>"
il$DATA_TYPE[[11]] <- DATA_TYPES$INTEGER
il$SCALE_LEVEL[[11]] <- SCALE_LEVELS$NOMINAL
prep_add_data_frames(item_level = il)
r <- dq_report2("study_data", dimensions = "con")
r <- dq_report2("study_data", dimensions = "con",
advanced_options = list(dataquieR.non_disclosure = TRUE))
r
## End(Not run)
Detects variable values exceeding limits defined in metadata
Description
Inadmissible numerical values can be of type integer or float. This implementation requires the definition of intervals in the metadata to examine the admissibility of numerical study data.
This helps identify inadmissible measurements according to hard limits (for multiple variables).
Usage
con_limit_deviations(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
meta_data_cross_item = "cross-item_level",
limits = NULL,
flip_mode = "noflip",
return_flagged_study_data = FALSE,
return_limit_categorical = TRUE,
meta_data = item_level,
cross_item_level,
`cross-item_level`,
meta_data_v2,
show_obs = TRUE
)
Arguments
resp_vars |
variable list the name of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data_cross_item |
|
limits |
enum HARD_LIMITS | SOFT_LIMITS | DETECTION_LIMITS. what limits from metadata to check for |
flip_mode |
enum default | flip | noflip | auto. Should the plot be
in default orientation, flipped, not flipped or
auto-flipped. Not all options are always supported.
In general, this con be controlled by
setting the |
return_flagged_study_data |
logical return |
return_limit_categorical |
logical if TRUE return limit deviations also for categorical variables |
meta_data |
data.frame old name for |
cross_item_level |
data.frame alias for |
meta_data_v2 |
character path to workbook like metadata file, see
|
show_obs |
logical Should (selected) individual observations be marked in the figure for continuous variables? |
`cross-item_level` |
data.frame alias for |
Details
Algorithm of this implementation:
Remove missing codes from the study data (if defined in the metadata)
Interpretation of variable specific intervals as supplied in the metadata.
Identification of measurements outside defined limits. Therefore two output data frames are generated:
on the level of observation to flag each deviation, and
a summary table for each variable.
A list of plots is generated for each variable examined for limit deviations. The histogram-like plots indicate respective limits as well as deviations.
Values exceeding limits are removed in a data frame of modified study data
Value
a list with:
-
FlaggedStudyDatadata.frame related to the study data by a 1:1 relationship, i.e. for each observation is checked whether the value is below or above the limits. Optional, seereturn_flagged_study_data. -
SummaryTabledata.frame summarizing limit deviations for each variable. -
SummaryDatadata.frame summarizing limit deviations for each variable for a report. -
SummaryPlotListlist of ggplot2::ggplots The plots for each variable are either a histogram (continuous) or a barplot (discrete). -
ReportSummaryTable: heatmap-like data frame about limit violations
See Also
contradiction_functions
Description
Detect abnormalities help functions
Usage
contradiction_functions
Format
An object of class list of length 11.
Details
2 variables:
-
A_not_equal_B, ifA != B -
A_greater_equal_B, ifA >= B -
A_greater_than_B, ifA > B -
A_less_than_B, ifA < B -
A_less_equal_B, ifA <= B -
A_present_not_B, ifA & is.na(B) -
A_present_and_B, ifA & !(is.na(B)) -
A_present_and_B_levels, ifA & B %in% {set of levels} -
A_levels_and_B_gt_value, ifA %in% {set of levels} & B > value -
A_levels_and_B_lt_value, ifA %in% {set of levels} & B < value -
A_levels_and_B_levels, ifA %in% {set of levels} & B %in% {set of levels}
description of the contradiction functions
Description
description of the contradiction functions
Usage
contradiction_functions_descriptions
Format
An object of class list of length 11.
Log Level
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Add stack-trace in condition messages (to be deprecated)
Description
to be deprecated
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Metadata describes more than the current study data
Description
-
none: no check will be provided about the match of variables and records available in the study data and described in the metadata -
exact: There must be a 1:1 match between the study data and metadata regarding data frames and segments variables and records -
subset_u: study data are a subset of metadata. All variables from the study data are expected to be present in the metadata, but one or more variables in the metadata are not expected to be present in the study data. In this case a variable present in the study data but not in the metadata would produce an issue. -
subset_m: metadata are a subset of study data. All variables in the metadata are expected to be present in the study data, but one or more variables in the study data are not expected to be present in the metadata.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Set caller for error conditions (to be deprecated)
Description
to be deprecated
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Enable to switch to a general additive model instead of LOESS
Description
If this option is set to TRUE, time course plots will use general additive
models (GAM) instead of LOESS when the number of observations exceeds a
specified threshold. LOESS computations for large datasets have a high
memory consumption.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Default availability of Mahalanobis based multivariate outlier checks in reports
Description
a number, see corresponding argument in acc_mahalanobis()
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Maximum length for variable labels LABEL
Description
All variable labels will be shortened to fit this maximum length. Cannot be larger than 200 for technical reasons.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Maximum length for long variable labels LONG_LABEL
Description
All long variable labels will be shortened to fit this maximum length. Cannot be larger than 200 for technical reasons.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Maximum length for value labels
Description
value labels are restricted to this length
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Set caller for message conditions (to be deprecated)
Description
to be deprecated
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Default availability of multivariate outlier checks in reports
Description
can be
-
TRUE: forcross-item_level-groups withMULTIVARIATE_OUTLIER_CHECKempty, do a multivariate outlier check -
FALSE: forcross-item_level-groups withMULTIVARIATE_OUTLIER_CHECKempty, don't do a multivariate outlier check -
"auto": forcross-item_level-groups withMULTIVARIATE_OUTLIER_CHECKempty, do multivariate outlier checks, if there is no entry in the column CONTRADICTION_TERM.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Assume, all VALUE_LABELS are HTML escaped
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Set caller for warning conditions (to be deprecated)
Description
to be deprecated
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Exclude subgroups with constant values from LOESS figure
Description
If this option is set to TRUE, time course plots will only show subgroups
with more than one distinct value. This might improve the readability of
the figure.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Display time-points in LOESS plots
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Lower limit for the LOESS bandwidth
Description
The value should be greater than 0 and less than or equal to 1. In general, increasing the bandwidth leads to a smoother trend line.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Lower limit for the proportion of cases or controls to create a smoothed time trend figure
Description
The value should be greater than 0 and less than 0.4. If the proportion of cases or controls is lower than the specified value, the LOESS figure will not be created for the specified binary outcome.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
default for Plot-Format in acc_loess()
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Display observations in LOESS plots
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Include number of observations for each level of the grouping variable in the 'margins' figure
Description
If this option is set to FALSE, the figures created by acc_margins will
not include the number of observations for each level of the grouping
variable. This can be used to obtain clean static plots.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Sort levels of the grouping variable in the 'margins' figures
Description
If this option is set to TRUE, the levels of the grouping variable in the
figure are sorted in descending order according to the number of
observations so that levels with more observations are easier to identify.
Otherwise, the original order of the levels is retained.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Apply min-max scaling in parallel coordinates figure to inspect multivariate outliers
Description
boolean, TRUE or FALSE
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Color for empirical contradictions
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Color for logical contradictions
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
If report uses a storr back-end, do not convert to base-list
Description
if TRUE and a report uses a storr-back-end, convert it to a base list,
i.e., copy to the RAM, even if this would likely not be really needed for
apply-calls
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Call browser() on errors
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Removal of hard limits from data before calculating descriptive statistics.
Description
can be
-
TRUE: values outside hard limits will be removed from the data before calculating descriptive statistics -
FALSE: values outside hard limits will not be removed from the original data
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Disable automatic post-processing of dataquieR function results
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Show also unused levels in heatmaps
Description
if TRUE, levels not taken will not be displayed when printing/plotting
heatmap tables
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
character Adjust data types according to metadata
Description
also reports inadmissible data types. can be turned off for performance reasons, if the data source is already type-safe (e.g., a database) use with care, may cause pipelines breaking (maybe only in the final rendering step), if the data type is incorrectly set for some columns.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Try to avoid fallback to string columns when reading files
Description
If a file does not feature column data types or features data types cell-based, choose that type which matches the majority of the sampled cells of a column for the column's data type.
Details
This may make you miss data type problems but it could fix them, so
prep_get_data_frame() works better.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Flip-Mode to Use for figures
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Converting MISSING_LIST/JUMP_LIST to a MISSING_LIST_TABLE create on list per item
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Control, how the label_col argument is used.
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Name of the data.frame featuring a format for grading-values
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Name of the data.frame featuring GRADING_RULESET
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
For metadata guessing, try to guess DATA_TYPE from the data values
Description
By default, the DATA_TYPE is derived from the R data type of the study
data. However, when data are imported from plain text files, it can be more
appropriate to examine the actual values and infer the data type based on
their content. This option enables that behavior: set
dataquieR.guess_character to TRUE to infer data types from the observed
values rather than relying solely on the column’s class in the data frame.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Control, if dataquieR tries to guess missing-codes from the study data in absence of metadata
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
character remove variables with only empty values
Description
remove variables with only empty values (NA, ". ",
"" or similar) from reports. auto means, such variables are removed, if
we have more than 20% of the variables empty.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Other study_data_cache:
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_metrics_env_default,
dataquieR.study_data_cache_quick_fill
Language-Suffix for metadata Label-Columns
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
character plots realized lazy
Description
if TRUE, plots are not realized until needed in side reports to save
memory.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
character cache realizations
Description
if TRUE, realized plots are cached, may need more memory.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
character be as compatible with ggplot2 objects as possible
Description
if TRUE, plot promises are blessed in an S7 class so they behave almost
like "real" ggplot2 objects, so you normally do not need to call
prep_realize_ggplot() on them. However, this comes with a small memory
overhead, so, you can disable this.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
character default language for type conversion
Description
the language to use for type conversions (en, de, fr, cn, ca, ...)
only used by util_adjust_data_type2(), currently
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Maximum number of levels of the categorical response variable shown individually in figures
Description
If there are more levels of a categorical response variable than can be shown individually, they will be collapsed into "other".
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Maximum number of levels of the grouping variable shown individually in figures
Description
If there are more examiners or devices than can be shown individually, they will be collapsed into "other".
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Maximum number of levels of the grouping variable shown with individual histograms ('violins') in 'margins' figures
Description
If there are more examiners or devices, the figure will be reduced to box-plots to save space.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Minimum number of observations per grouping variable that is required to include an individual level of the grouping variable in a figure
Description
Levels of the grouping variable with fewer observations than specified here will be excluded from the figure.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Minimum number of data points to create a time course plot for an individual level of a categorical response variable
Description
If there are less observations for an individual level of a categorical variable, it will not be shown in the time course plot.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Remove all observation-level-real-data from reports
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
character use the old handling of study data already featuring factors
Description
if study_data comes as a data frame, it may already feature factors. if
a column has the DATA_TYPE integer in the meta data, the factor was
converted to integer using as.integer(), which caused unexpected behavior.
if this option is set to "FALSE" (the new default), the conversion will now
try to apply as.character(column_data), first.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
character use the old type conversion code (slower)
Description
character use the old type conversion code (slower)
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Pre-compute different curation levels of study data
Description
as described in dataquieR.study_data_cache_max, different flavors of the study data are cached. With this option, you control, if before a report is computed, a frequently needed bunch of such flavors are pre-computed and distributed to the compute nodes. However, this may be time- and RAM- consuming, so, you can turn the pre-computation off, which will still allow the individual compute nodes to maintain such a cache but then growing on demand on individual nodes separately, only. If dataquieR.study_data_cache_max cannot handle all flavors, they may still be pre-computed but immediately discarded.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Other study_data_cache:
dataquieR.ignore_empty_vars,
dataquieR.print_block_load_factor,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_metrics_env_default,
dataquieR.study_data_cache_quick_fill
numeric
Description
multiply size of parallel compute blocks by this factor. the higher it is set, the less smooth progress bar grows, but setting it to a huge number can really speed up the rendering process by approx. 10%. Either set to 1 for full progress control or large (e.g., 1000000) for maximum speed.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Other study_data_cache:
dataquieR.ignore_empty_vars,
dataquieR.precomputeStudyData,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_metrics_env_default,
dataquieR.study_data_cache_quick_fill
function to call on progress increase
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
function to call on progress message update
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
If result already exists in a storr back-end, re-use it
Description
if TRUE, computation won't be repeated, if a result already exist in the
output storr
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
If output folder is not empty, try to resume stopped print()
Description
if TRUE and a report was already partially printed with also this option
TRUE, then, a second call to print() will resume the printing.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Number of levels to consider a variable ordinal in absence of SCALE_LEVEL
Description
If SCALE_LEVEL is not specified in the meta_data, it will be inferred
using a heuristic. This option defines, for numeric variables, the maximum
number of distinct data values for a variable to be considered ordinal.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Number of levels to consider a variable metric in absence of SCALE_LEVEL
Description
If SCALE_LEVEL is not specified in the meta_data, it will be inferred
using a heuristic. This option defines, for numeric variables, the maximum
number of distinct data values for a variable to be considered categorical,
not ordinal.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Maximum size of cache for curated study data
Description
dataquieR caches all used flavors of curated study data, e.g., having
missing codes replaced by NAs, having hard limits replaced by NA, ...
For larger sets of study data this can be very RAM consuming, so you can
control here the maximum size for this cache. Also, this cache is distributed
to all compute nodes in case of parallel computation, which may be very time-
consuming, and, on single-node-parallelization, also, it may be even more
RAM-consuming then.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Other study_data_cache:
dataquieR.ignore_empty_vars,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_metrics_env_default,
dataquieR.study_data_cache_quick_fill
Collect metrics on cache usage of study data cache
Description
if TRUE, collect metrics on the usage of the study data cache
described here: dataquieR.study_data_cache_max. Won't work, fully,
if running in parallel.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Other study_data_cache:
dataquieR.ignore_empty_vars,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_metrics_env_default,
dataquieR.study_data_cache_quick_fill
environment for storing metrics on the study data cache
Description
this is the environment, where metrics will be stored, if
dataquieR.study_data_cache_metrics-option() has been set TRUE.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Other study_data_cache:
dataquieR.ignore_empty_vars,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env_default,
dataquieR.study_data_cache_quick_fill
Default space for some metrics during report computation
Description
Usage
dataquieR.study_data_cache_metrics_env_default
Format
An object of class environment of length 0.
See Also
Other study_data_cache:
dataquieR.ignore_empty_vars,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill
Control the pre-computation of curation levels of study data
Description
as described in dataquieR.precomputeStudyData, different flavors of
the study data are cached. With this option, you control, if before a report
is computed, only frequently needed bunch of such flavors are pre-computed,
or simply all possible flavors. Won't have any effect, if pre-computation
has been turned off.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Other study_data_cache:
dataquieR.ignore_empty_vars,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_metrics_env_default
character Are column names in study data considered case-sensitive for mapping
Description
if TRUE, colnames(study_data) replaced by the capitalization used in the
metadata using a case-insensitive matching, first.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Disable all interactively used metadata-based function argument provision
Description
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.traceback,
dataquieR.type_adjust_parallel,
progress_init_fkt
Include full trace-back in captured conditions
Description
Caveat: Needs really much memory
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.type_adjust_parallel,
progress_init_fkt
character try to do type adjustments in parallel
only, if dq_report2() was called with cores = 2 or higher.
Description
character try to do type adjustments in parallel
only, if dq_report2() was called with cores = 2 or higher.
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
progress_init_fkt
Internal constructor for the internal class dataquieR_resultset.
Description
creates an object of the class dataquieR_resultset.
Usage
dataquieR_resultset(...)
Arguments
... |
properties stored in the object |
Details
The class features the following methods:
-
as.data.frame.dataquieR_resultset, * as.list.dataquieR_resultset, * print.dataquieR_resultset, * summary.dataquieR_resultset
Value
an object of the class dataquieR_resultset.
See Also
Class dataquieR_resultset2.
Description
Class dataquieR_resultset2.
See Also
Verify an object of class dataquieR_resultset
Description
Deprecated
Usage
dataquieR_resultset_verify(...)
Arguments
... |
Deprecated |
Value
Deprecated
Compute Pairwise Correlations
Description
works on variable groups (cross-item_level), which are expected to show
a Pearson correlation
Usage
des_scatterplot_matrix(
label_col,
study_data,
item_level = "item_level",
meta_data_cross_item = "cross-item_level",
meta_data = item_level,
meta_data_v2,
cross_item_level,
`cross-item_level`
)
Arguments
label_col |
variable attribute the name of the column in the metadata with labels of variables |
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data_cross_item |
|
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
cross_item_level |
data.frame alias for |
`cross-item_level` |
data.frame alias for |
Details
Descriptor # TODO: This can be an indicator
Value
a list with the slots:
-
SummaryPlotList: for each variable group a ggplot2::ggplot object with pairwise correlation plots -
SummaryData: table with columnsVARIABLE_LIST,cors,max_cor,min_cor -
SummaryTable: likeSummaryData, but machine readable and with stable column names.
Examples
## Not run:
devtools::load_all()
prep_load_workbook_like_file("meta_data_v2")
des_scatterplot_matrix("study_data")
## End(Not run)
Compute Descriptive Statistics
Description
generates a descriptive overview of the variables in resp_vars.
Usage
des_summary(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
hard_limits_removal = getOption("dataquieR.des_summary_hard_lim_remove",
dataquieR.des_summary_hard_lim_remove_default),
...
)
Arguments
resp_vars |
variable the name of the measurement variables |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
hard_limits_removal |
logical if TRUE values outside hard limits are removed from the data before calculating descriptive statistics. The default is FALSE |
... |
arguments to be passed to all called indicator functions if applicable. |
Details
TODO
Value
a list with:
-
SummaryTable: data.frame -
SummaryData: data.frame
See Also
Examples
## Not run:
xx <- des_summary(study_data = "study_data", meta_data_v2 = "meta_data_v2")
xx$SummaryData
## End(Not run)
Compute Descriptive Statistics - categorical variables
Description
generates a descriptive overview of the categorical variables (nominal and
ordinal) in resp_vars.
Usage
des_summary_categorical(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
hard_limits_removal = getOption("dataquieR.des_summary_hard_lim_remove",
dataquieR.des_summary_hard_lim_remove_default),
...
)
Arguments
resp_vars |
variable the name of the categorical measurement variable |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
hard_limits_removal |
logical if TRUE values outside hard limits are removed from the data before calculating descriptive statistics. The default is FALSE |
... |
arguments to be passed to all called indicator functions if applicable. |
Details
TODO
Value
a list with:
-
SummaryTable: data.frame -
SummaryData: data.frame
See Also
Examples
## Not run:
prep_load_workbook_like_file("meta_data_v2")
xx <- des_summary_categorical(study_data = "study_data", meta_data =
prep_get_data_frame("item_level"))
util_html_table(xx$SummaryData)
util_html_table(des_summary_categorical(study_data = prep_get_data_frame("study_data"),
meta_data = prep_get_data_frame("item_level"))$SummaryData)
## End(Not run)
Compute Descriptive Statistics - continuous variables
Description
generates a descriptive overview of continuous variables (ratio and interval) in resp_vars.
Usage
des_summary_continuous(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
hard_limits_removal = getOption("dataquieR.des_summary_hard_lim_remove",
dataquieR.des_summary_hard_lim_remove_default),
...
)
Arguments
resp_vars |
variable the name of the continuous measurement variable |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
hard_limits_removal |
logical if TRUE values outside hard limits are removed from the data before calculating descriptive statistics. The default is FALSE |
... |
arguments to be passed to all called indicator functions if applicable. |
Details
TODO
Value
a list with:
-
SummaryTable: data.frame -
SummaryData: data.frame
See Also
Examples
## Not run:
prep_load_workbook_like_file("meta_data_v2")
xx <- des_summary_continuous(study_data = "study_data", meta_data =
prep_get_data_frame("item_level"))
xx$SummaryData
## End(Not run)
Get the dimensions of a dq_report2 result
Description
Get the dimensions of a dq_report2 result
Usage
## S3 method for class 'dataquieR_resultset2'
dim(x)
Arguments
x |
a |
Value
dimensions
Names of DQ dimensions
Description
a vector of data quality dimensions. The supported dimensions are Completeness, Consistency and Accuracy.
Usage
dimensions
Format
An object of class character of length 3.
Value
Only a definition, not a function, so no return value
See Also
Names of a dataquieR report object (v2.0)
Description
Names of a dataquieR report object (v2.0)
Usage
## S3 method for class 'dataquieR_resultset2'
dimnames(x)
Arguments
x |
the result object |
Value
the names
Dimension Titles for Prefixes
Description
order does matter, because it defines the order in the dq_report2.
Usage
dims
Format
An object of class character of length 5.
See Also
util_html_for_var()
util_html_for_dims()
Generate a full DQ report
Description
Deprecated
Usage
dq_report(...)
Arguments
... |
Deprecated |
Value
Deprecated
Generate a full DQ report, v2
Description
Generate a full DQ report, v2
Usage
dq_report2(
study_data,
item_level = "item_level",
label_col = LABEL,
meta_data_segment = "segment_level",
meta_data_dataframe = "dataframe_level",
meta_data_cross_item = "cross-item_level",
meta_data_item_computation = "item_computation_level",
meta_data = item_level,
meta_data_v2,
...,
dimensions = c("Completeness", "Consistency"),
cores = list(mode = "socket", logging = FALSE, cpus = util_detect_cores(),
load.balancing = TRUE),
ignore_empty_vars = getOption("dataquieR.ignore_empty_vars",
dataquieR.ignore_empty_vars_default),
specific_args = list(),
advanced_options = list(),
author = prep_get_user_name(),
title = "Data quality report",
subtitle = as.character(Sys.Date()),
user_info = NULL,
debug_parallel = FALSE,
resp_vars = character(0),
filter_indicator_functions = character(0),
filter_result_slots = c("^Summary", "^Segment", "^DataTypePlotList",
"^ReportSummaryTable", "^Dataframe", "^Result", "^VariableGroup"),
mode = c("default", "futures", "queue", "parallel"),
mode_args = list(),
notes_from_wrapper = list(),
storr_factory = NULL,
amend = FALSE,
cross_item_level,
`cross-item_level`,
segment_level,
dataframe_level,
item_computation_level,
.internal = rlang::env_inherits(rlang::caller_env(), parent.env(environment())),
checkpoint_resumed = getOption("dataquieR.resume_checkpoint",
dataquieR.resume_checkpoint_default),
name_of_study_data,
dt_adjust = as.logical(getOption("dataquieR.dt_adjust", dataquieR.dt_adjust_default))
)
Arguments
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
meta_data_segment |
data.frame – optional: Segment level metadata |
meta_data_dataframe |
data.frame – optional: Data frame level metadata |
meta_data_cross_item |
data.frame – optional: Cross-item level metadata |
meta_data_item_computation |
data.frame optional. computation rules for computed variables. |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
... |
arguments to be passed to all called indicator functions if applicable. |
dimensions |
dimensions Vector of dimensions to address in the report. Allowed values in the vector are Completeness, Consistency, and Accuracy. The generated report will only cover the listed data quality dimensions. Accuracy is computational expensive, so this dimension is not enabled by default. Completeness should be included, if Consistency is included, and Consistency should be included, if Accuracy is included to avoid misleading detections of e.g. missing codes as outliers, please refer to the data quality concept for more details. Integrity is always included. If dimensions is equal to NULL or "all", all dimensions will be covered. |
cores |
integer number of cpu cores to use or a named list with arguments for parallelMap::parallelStart or NULL, if parallel has already been started by the caller. Can also be a cluster. |
ignore_empty_vars |
enum TRUE | FALSE | auto. See dataquieR.ignore_empty_vars. |
specific_args |
list named list of arguments specifically for one of the called functions, the of the list elements correspond to the indicator functions whose calls should be modified. The elements are lists of arguments. |
advanced_options |
list options to set during report computation,
see |
author |
character author for the report documents. |
title |
character optional argument to specify the title for the data quality report |
subtitle |
character optional argument to specify a subtitle for the data quality report |
user_info |
list additional info stored with the report, e.g., comments, title, ... |
debug_parallel |
logical print blocks currently evaluated in parallel |
resp_vars |
variable list the name of the measurement variables for the report. If missing, all variables will be used. Only item level indicator functions are filtered, so far. |
filter_indicator_functions |
character regular expressions, only if an indicator function's name matches one of these, it'll be used for the report. If of length zero, no filtering is performed. |
filter_result_slots |
character regular expressions, only if an indicator function's result's name matches one of these, it'll be used for the report. If of length zero, no filtering is performed. |
mode |
character work mode for parallel execution. default is
"default", the values mean:
- default: use |
mode_args |
list of arguments for the selected |
notes_from_wrapper |
list a list containing notes about changed labels
by |
storr_factory |
function |
amend |
logical if there is already data in. |
cross_item_level |
data.frame alias for |
segment_level |
data.frame alias for |
dataframe_level |
data.frame alias for |
item_computation_level |
data.frame alias for
|
.internal |
logical internal use, only. |
checkpoint_resumed |
logical if using a |
name_of_study_data |
character name for study data inside the report, internal use. |
dt_adjust |
logical whether to trust data types in the study data. if
|
`cross-item_level` |
data.frame alias for |
Details
See dq_report_by for a way to generate stratified or splitted reports easily.
Value
a dataquieR_resultset2 that can be
printed creating a HTML-report.
See Also
Generate a stratified full DQ report
Description
Generate a stratified full DQ report
Usage
dq_report_by(
study_data,
item_level = "item_level",
meta_data_segment = "segment_level",
meta_data_dataframe = "dataframe_level",
meta_data_cross_item = "cross-item_level",
meta_data_item_computation = "item_computation_level",
missing_tables = NULL,
label_col,
meta_data_v2,
segment_column = NULL,
strata_column = NULL,
strata_select = NULL,
selection_type = NULL,
segment_select = NULL,
segment_exclude = NULL,
strata_exclude = NULL,
subgroup = NULL,
resp_vars = character(0),
id_vars = NULL,
advanced_options = list(),
storr_factory = NULL,
amend = FALSE,
checkpoint_resumed = getOption("dataquieR.resume_checkpoint",
dataquieR.resume_checkpoint_default),
...,
output_dir = NULL,
input_dir = NULL,
also_print = FALSE,
disable_plotly = FALSE,
view = TRUE,
meta_data = item_level,
cross_item_level,
`cross-item_level`,
segment_level,
dataframe_level,
item_computation_level
)
Arguments
study_data |
data.frame the data frame that contains the measurements:
it can be an R object (e.g., |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data_segment |
data.frame – optional: Segment level metadata |
meta_data_dataframe |
data.frame – optional if |
meta_data_cross_item |
data.frame – optional: Cross-item level metadata |
meta_data_item_computation |
data.frame – optional: Computed items metadata |
missing_tables |
character the name of the data frame containing the
missing codes, it can be a vector if more
than one table is provided. Example:
|
label_col |
variable attribute the name of the column in the metadata containing the labels of the variables |
meta_data_v2 |
character path or file name of the workbook like
metadata file, see
|
segment_column |
variable attribute name of a metadata attribute usable to split the report in sections of variables, e.g. all blood-pressure related variables. By default, reports are split by STUDY_SEGMENT if available and no segment_column nor strata_column or subgroup are defined. To create an un-split report please write explicitly the argument 'segment_column = NULL' |
strata_column |
variable name of a study variable to stratify the
report by, e.g. the study centers.
Both labels and |
strata_select |
character if given, the strata of strata_column are limited to the content of this vector. A character vector or a regular expression can be provided (e.g., "^a.*$"). This argument can not be used if no strata_column is provided |
selection_type |
character optional, can only be specified if a
|
segment_select |
character if given, the levels of segment_column are limited to the content of this vector. A character vector or a regular expression (e.g., ".*_EXAM$") can be provided. This argument can not be used if no segment_column is provided. |
segment_exclude |
character optional, can only be specified if a
|
strata_exclude |
character optional, can only be specified if a
|
subgroup |
character optional, to define subgroups of cases. Rules are
to be written as |
resp_vars |
variable the names of the measurement variables, if
missing or |
id_vars |
variable a vector containing the name/s of the variables
containing ids, to
be used to merge multiple data frames if provided
in |
advanced_options |
list options to set during report computation,
see |
storr_factory |
function |
amend |
logical if there is already data in. |
checkpoint_resumed |
logical if using a |
... |
arguments to be passed through to dq_report or dq_report2 |
output_dir |
character if given, the output is not returned but saved in this directory |
input_dir |
character if given, the study data files that have
no path and that are not URL are searched in
this directory. Also |
also_print |
logical if |
disable_plotly |
logical do not use |
view |
logical open the returned report |
meta_data |
data.frame old name for |
cross_item_level |
data.frame alias for |
segment_level |
data.frame alias for |
dataframe_level |
data.frame alias for |
item_computation_level |
data.frame alias for
|
`cross-item_level` |
data.frame alias for |
Value
A named list of named lists of dq_report2 reports, returned
invisibly unless view = TRUE. If output_dir is given, the result
is still returned (invisibly), and optionally opened in a browser
(view = TRUE, also_print = TRUE).
See Also
Examples
## Not run: # really long-running example.
prep_load_workbook_like_file("meta_data_v2")
rep <- dq_report_by("study_data", label_col =
LABEL, strata_column = "CENTER_0")
rep <- dq_report_by("study_data",
label_col = LABEL, strata_column = "CENTER_0",
segment_column = NULL
)
unlink("/tmp/testRep/", force = TRUE, recursive = TRUE)
dq_report_by("study_data",
label_col = LABEL, strata_column = "CENTER_0",
segment_column = STUDY_SEGMENT, output_dir = "/tmp/testRep"
)
unlink("/tmp/testRep/", force = TRUE, recursive = TRUE)
dq_report_by("study_data",
label_col = LABEL, strata_column = "CENTER_0",
segment_column = NULL, output_dir = "/tmp/testRep"
)
dq_report_by("study_data",
label_col = LABEL,
segment_column = STUDY_SEGMENT, output_dir = "/tmp/testRep"
)
dq_report_by("study_data",
label_col = LABEL,
segment_column = STUDY_SEGMENT, output_dir = "/tmp/testRep",
also_print = TRUE
)
dq_report_by(study_data = "study_data", meta_data_v2 = "meta_data_v2",
advanced_options = list(dataquieR.study_data_cache_max = 0,
dataquieR.study_data_cache_metrics = TRUE,
dataquieR.study_data_cache_metrics_env = environment()),
cores = NULL, dimensions = "int")
dq_report_by(study_data = "study_data", meta_data_v2 = "meta_data_v2",
advanced_options = list(dataquieR.study_data_cache_max = 0),
cores = NULL, dimensions = "int")
## End(Not run)
Remove unused levels from ReportSummaryTable
Description
Remove unused levels from ReportSummaryTable
Usage
## S3 method for class 'ReportSummaryTable'
droplevels(x, ...)
Arguments
x |
|
... |
no used. |
Value
ReportSummaryTable with all (NA or 0)-columns removed
S3/S7 methods for lazy ggplot objects
Description
These S3/S7 methods make dq_lazy_ggplot/dq_lazy_ggplot_s7
objects work smoothly with
functions from ggplot2 and plotly. They simply materialize
the underlying ggplot object and then delegate to the respective
generic.
Usage
ggplotGrob.dq_lazy_ggplot(x, ...)
ggplotly.dq_lazy_ggplot_s7(p, ...)
plotly_build.dq_lazy_ggplot_s7(p, ...)
ggplotly.dq_lazy_ggplot(p, ...)
plotly_build.dq_lazy_ggplot(p, ...)
ggplotGrob.dq_lazy_ggplot_s7(x, ...)
Arguments
x, p |
A |
... |
Further arguments passed on to the underlying generic. |
Value
The return value is the same as for the corresponding generic:
-
ggplotGrob()returns agtableobject. -
ggplotly()returns aplotlyobject. -
plotly_build()returns aplotly_proxyor similar.
See Also
ggplotGrob,
plotly::ggplotly
plotly::plotly_build
grid.draw method for util_pairs_ggplot_panels objects
Description
grid.draw method for util_pairs_ggplot_panels objects
Usage
## S3 method for class 'util_pairs_ggplot_panels'
grid.draw(x, ...)
Arguments
x |
An object of class |
... |
Ignored. |
HTML Dependency for report headers in clipboard
Description
HTML Dependency for report headers in clipboard
Usage
html_dependency_clipboard()
Value
the dependency
HTML Dependency for dataquieR
Description
generate all dependencies used in static dataquieR reports
Usage
html_dependency_dataquieR(iframe = FALSE)
Arguments
iframe |
logical |
Value
the dependency
HTML dependency for jsPDF
Description
Provides jsPDF for use in Shiny or RMarkdown via htmltools.
Usage
html_dependency_jspdf()
Value
An htmltools::htmlDependency() object
HTML Dependency for report headers in DT::datatable
Description
HTML Dependency for report headers in DT::datatable
Usage
html_dependency_report_dt()
Value
the dependency
HTML Dependency for tippy
Description
HTML Dependency for tippy
Usage
html_dependency_tippy()
Value
the dependency
HTML Dependency for vertical headers in DT::datatable
Description
HTML Dependency for vertical headers in DT::datatable
Usage
html_dependency_vert_dt()
Value
the dependency
Wrapper function to check for studies data structure
Description
This function tests for unexpected elements and records, as well as duplicated identifiers and content. The unexpected element record check can be conducted by providing the number of expected records or an additional table with the expected records. It is possible to conduct the checks by study segments or to consider only selected segments.
Usage
int_all_datastructure_dataframe(
meta_data_dataframe = "dataframe_level",
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
dataframe_level
)
Arguments
meta_data_dataframe |
data.frame the data frame that contains the metadata for the data frame level |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
dataframe_level |
data.frame alias for |
Value
a list with
-
DataframeTable: data frame with selected check results, used for the data quality report.
Examples
## Not run:
out_dataframe <- int_all_datastructure_dataframe(
meta_data_dataframe = "meta_data_dataframe",
meta_data = "ship_meta"
)
md0 <- prep_get_data_frame("ship_meta")
md0
md0$VAR_NAMES
md0$VAR_NAMES[[1]] <- "Id" # is this missmatch reported -- is the data frame
# also reported, if nothing is wrong with it
out_dataframe <- int_all_datastructure_dataframe(
meta_data_dataframe = "meta_data_dataframe",
meta_data = md0
)
# This is the "normal" procedure for inside pipeline
# but outside this function checktype is exact by default
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "subset_u")
lapply(setNames(nm = prep_get_data_frame("meta_data_dataframe")$DF_NAME),
int_sts_element_dataframe, meta_data = md0)
md0$VAR_NAMES[[1]] <-
"id" # is this missmatch reported -- is the data frame also reported,
# if nothing is wrong with it
lapply(setNames(nm = prep_get_data_frame("meta_data_dataframe")$DF_NAME),
int_sts_element_dataframe, meta_data = md0)
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "exact")
## End(Not run)
Wrapper function to check for segment data structure
Description
This function tests for unexpected elements and records, as well as duplicated identifiers and content. The unexpected element record check can be conducted by providing the number of expected records or an additional table with the expected records. It is possible to conduct the checks by study segments or to consider only selected segments.
Usage
int_all_datastructure_segment(
study_data,
label_col,
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
segment_level,
meta_data_segment = "segment_level"
)
Arguments
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
segment_level |
data.frame alias for |
meta_data_segment |
data.frame the data frame that contains the metadata for the segment level, mandatory |
Value
a list with
-
SegmentTable: data frame with selected check results, used for the data quality report.
Examples
## Not run:
out_segment <- int_all_datastructure_segment(
meta_data_segment = "meta_data_segment",
study_data = "ship",
meta_data = "ship_meta"
)
study_data <- cars
meta_data <- dataquieR::prep_create_meta(VAR_NAMES = c("speedx", "distx"),
DATA_TYPE = c("integer", "integer"), MISSING_LIST = "|", JUMP_LIST = "|",
STUDY_SEGMENT = c("Intro", "Ex"))
out_segment <- int_all_datastructure_segment(
meta_data_segment = "meta_data_segment",
study_data = study_data,
meta_data = meta_data
)
## End(Not run)
Check declared data types of metadata in study data
Description
Checks data types of the study data and for the data type declared in the metadata
Usage
int_datatype_matrix(
resp_vars = NULL,
study_data,
label_col,
item_level = "item_level",
split_segments = FALSE,
max_vars_per_plot = 20,
threshold_value = 0,
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable the names of the measurement variables, if
missing or |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
split_segments |
logical return one matrix per study segment |
max_vars_per_plot |
integer from=0. The maximum number of variables per single plot. |
threshold_value |
numeric from=0 to=100. percentage failing conversions allowed to still classify a study variable convertible. |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
This is a preparatory support function that compares study data with associated metadata. A prerequisite of this function is that the no. of columns in the study data complies with the no. of rows in the metadata.
For each study variable, the function searches for its data type declared in static metadata and returns a heatmap like matrix indicating data type mismatches in the study data.
List function.
Value
a list with:
-
SummaryTable: data frame containing data quality check for "data type mismatch" (CLS_int_vfe_type,PCT_int_vfe_type). The following categories are possible: categories: "Non-matching datatype", "Non-Matching datatype, convertible", "Matching datatype" -
SummaryData: data frame containing data quality check for "data type mismatch" for a report -
SummaryPlot: ggplot2::ggplot2 heatmap plot, graphical representation ofSummaryTable -
DataTypePlotList: list of plots per (maybe artificial) segment -
ReportSummaryTable: data frame underlyingSummaryPlot
Check for duplicated content
Description
This function tests for duplicates entries in the data set. It is possible to check duplicated entries by study segments or to consider only selected segments.
Usage
int_duplicate_content(
level = c("dataframe", "segment"),
study_data,
item_level = "item_level",
label_col,
meta_data = item_level,
meta_data_v2,
...
)
Arguments
level |
character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment"). |
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
... |
Depending on |
Value
a list. Depending on level, see
util_int_duplicate_content_segment or
util_int_duplicate_content_dataframe for a description of the outputs.
Check for duplicated IDs
Description
This function tests for duplicates entries in identifiers. It is possible to check duplicated identifiers by study segments or to consider only selected segments.
Usage
int_duplicate_ids(
level = c("dataframe", "segment"),
study_data,
item_level = "item_level",
label_col,
meta_data = item_level,
meta_data_v2,
...
)
Arguments
level |
character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment"). |
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
... |
Depending on |
Value
a list. Depending on level, see
util_int_duplicate_ids_segment or
util_int_duplicate_ids_dataframe for a description of the outputs.
Encoding Errors
Description
Detects errors in the character encoding of string variables
Usage
int_encoding_errors(
resp_vars = NULL,
study_data,
label_col,
meta_data_dataframe = "dataframe_level",
item_level = "item_level",
ref_encs,
meta_data = item_level,
meta_data_v2,
dataframe_level
)
Arguments
resp_vars |
variable the names of the measurement variables, if
missing or |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
meta_data_dataframe |
data.frame the data frame that contains the metadata for the data frame level |
item_level |
data.frame the data frame that contains metadata attributes of study data |
ref_encs |
reference encodings (names are |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
dataframe_level |
data.frame alias for |
Details
Strings are stored based on code tables, nowadays, typically as UTF-8. However, other code systems are still in use, so, sometimes, strings from different systems are mixed in the data. This indicator checks for such problems and returns the count of entries per variable, that do not match the reference coding system, which is estimated from the study data (addition of metadata field is planned).
If not specified in the metadata (columns ENCODING in item- or data-frame-
level, the encoding is guessed from the data). Otherwise, it may be any
supported encoding as returned by iconvlist().
Value
a list with:
-
SummaryTable: data.frame with information on such problems -
SummaryData: data.frame human readable version ofSummaryTable -
FlaggedStudyData: data.frame tells for each entry in study data if its encoding is OK. has the same dimensions asstudy_data
Detect Expected Observations
Description
For each participant, check, if an observation was expected, given the
PART_VARS from item-level metadata
Usage
int_part_vars_structure(
label_col,
study_data,
item_level = "item_level",
expected_observations = c("HIERARCHY", "SEGMENT"),
disclose_problem_paprt_var_data = FALSE,
meta_data = item_level,
meta_data_v2
)
Arguments
label_col |
character mapping attribute |
study_data |
study_data must have all relevant |
item_level |
meta_data must be complete to avoid false positives on
non-existing |
expected_observations |
enum HIERARCHY | SEGMENT. How should
|
disclose_problem_paprt_var_data |
logical show the problematic data
( |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
Value
empty list, so far – the function only warns.
Determine missing and/or superfluous data elements
Description
Depends on dataquieR.ELEMENT_MISSMATCH_CHECKTYPE option, see there
Usage
int_sts_element_dataframe(
item_level = "item_level",
meta_data_dataframe = "dataframe_level",
meta_data = item_level,
meta_data_v2,
check_type = getOption("dataquieR.ELEMENT_MISSMATCH_CHECKTYPE",
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE_default),
dataframe_level
)
Arguments
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data_dataframe |
data.frame the data frame that contains the metadata for the data frame level |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
check_type |
enum none | exact | subset_u | subset_m. See dataquieR.ELEMENT_MISSMATCH_CHECKTYPE |
dataframe_level |
data.frame alias for |
Details
Value
list with names lots:
-
DataframeData: data frame with the unexpected elements check results. -
DataframeTable: data.frame table with all errors, used for the data quality report: -PCT_int_sts_element: Percentage of element mismatches -NUM_int_sts_element: Number of element mismatches -resp_vars: affected element names
Examples
## Not run:
prep_load_workbook_like_file("~/tmp/df_level_test.xlsx")
meta_data_dataframe <- "dataframe_level"
meta_data <- "item_level"
## End(Not run)
Checks for element set
Description
Depends on dataquieR.ELEMENT_MISSMATCH_CHECKTYPE option,
see there – # TODO: Rind out, how to document and link
it here using Roxygen.
Usage
int_sts_element_segment(
study_data,
item_level = "item_level",
label_col,
meta_data = item_level,
meta_data_v2
)
Arguments
study_data |
data.frame the data frame that contains the measurements, mandatory. |
item_level |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
Value
a list with
-
SegmentData: data frame with the unexpected elements check results. -Segment: name of the corresponding segment, if applicable,ALLotherwise -
SegmentTable: data frame with the unexpected elements check results, used for the data quality report. -Segment: name of the corresponding segment, if applicable,ALLotherwise
Examples
## Not run:
study_data <- cars
meta_data <- dataquieR::prep_create_meta(VAR_NAMES = c("speedx", "distx"),
DATA_TYPE = c("integer", "integer"), MISSING_LIST = "|", JUMP_LIST = "|",
STUDY_SEGMENT = c("Intro", "Ex"))
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "none")
int_sts_element_segment(study_data, meta_data)
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "exact")
int_sts_element_segment(study_data, meta_data)
study_data <- cars
meta_data <- dataquieR::prep_create_meta(VAR_NAMES = c("speedx", "distx"),
DATA_TYPE = c("integer", "integer"), MISSING_LIST = "|", JUMP_LIST = "|",
STUDY_SEGMENT = c("Intro", "Intro"))
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "none")
int_sts_element_segment(study_data, meta_data)
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "exact")
int_sts_element_segment(study_data, meta_data)
study_data <- cars
meta_data <- dataquieR::prep_create_meta(VAR_NAMES = c("speed", "distx"),
DATA_TYPE = c("integer", "integer"), MISSING_LIST = "|", JUMP_LIST = "|",
STUDY_SEGMENT = c("Intro", "Intro"))
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "none")
int_sts_element_segment(study_data, meta_data)
options(dataquieR.ELEMENT_MISSMATCH_CHECKTYPE = "exact")
int_sts_element_segment(study_data, meta_data)
## End(Not run)
Check for unexpected data element count
Description
This function contrasts the expected element number in each study in the metadata with the actual element number in each study data frame.
Usage
int_unexp_elements(
identifier_name_list,
data_element_count,
meta_data_dataframe = "dataframe_level",
meta_data_v2,
dataframe_level
)
Arguments
identifier_name_list |
character a character vector indicating the name of each study data frame, mandatory. |
data_element_count |
integer an integer vector with the number of expected data elements, mandatory. |
meta_data_dataframe |
data.frame the data frame that contains the metadata for the data frame level |
meta_data_v2 |
character path to workbook like metadata file, see
|
dataframe_level |
data.frame alias for |
Value
a list with
-
DataframeData: data frame with the results of the quality check for unexpected data elements -
DataframeTable: data frame with selected unexpected data elements check results, used for the data quality report.
Check for unexpected data record count at the data frame level
Description
This function contrasts the expected record number in each study in the metadata with the actual record number in each study data frame.
Usage
int_unexp_records_dataframe(
identifier_name_list,
data_record_count,
meta_data_dataframe = "dataframe_level",
meta_data_v2,
dataframe_level
)
Arguments
identifier_name_list |
character a character vector indicating the name of each study data frame, mandatory. |
data_record_count |
integer an integer vector with the number of expected data records per study data frame, mandatory. |
meta_data_dataframe |
data.frame the data frame that contains the metadata for the data frame level |
meta_data_v2 |
character path to workbook like metadata file, see
|
dataframe_level |
data.frame alias for |
Value
a list with
-
DataframeData: data frame with the results of the quality check for unexpected data elements -
DataframeTable: data frame with selected unexpected data elements check results, used for the data quality report.
Check for unexpected data record count within segments
Description
This function contrasts the expected record number in each study segment in the metadata with the actual record number in each segment data frame.
Usage
int_unexp_records_segment(
study_segment,
study_data,
label_col,
item_level = "item_level",
data_record_count,
meta_data = item_level,
meta_data_segment = "segment_level",
meta_data_v2,
segment_level
)
Arguments
study_segment |
character a character vector indicating the name of each study data frame, mandatory. |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
data_record_count |
integer an integer vector with the number of expected data records, mandatory. |
meta_data |
data.frame old name for |
meta_data_segment |
data.frame – optional: Segment level metadata |
meta_data_v2 |
character path to workbook like metadata file, see
|
segment_level |
data.frame alias for |
Details
The current implementation does not take into account jump or missing codes, the function is rather based on checking whether NAs are present in the study data
Value
a list with
-
SegmentData: data frame with the results of the quality check for unexpected data elements -
SegmentTable: data frame with selected unexpected data elements check results, used for the data quality report.
Check for unexpected data record set
Description
This function tests that the identifiers match a provided record set. It is possible to check for unexpected data record sets by study segments or to consider only selected segments.
Usage
int_unexp_records_set(
level = c("dataframe", "segment"),
study_data,
item_level = "item_level",
label_col,
meta_data = item_level,
meta_data_v2,
...
)
Arguments
level |
character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment"). |
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
... |
Depending on |
Value
a list. Depending on level, see
util_int_unexp_records_set_segment or
util_int_unexp_records_set_dataframe for a description of the outputs.
Generate the menu for a report
Description
Generate the menu for a report
Arguments
pages |
encapsulated |
Value
the html-taglist for the menu
Creates a drop-down menu
Description
Creates a drop-down menu
Arguments
title |
name of the entry in the main menu |
menu_description |
description, displayed, if the main menu entry itself is clicked |
... |
the sub-menu-entries |
id |
id for the entry, defaults to modified title |
Value
html div object
Create a single menu entry
Description
Create a single menu entry
Arguments
title |
of the entry |
id |
linked |
... |
additional arguments for the menu link |
Value
html-a-tag object
Data frame with metadata about the study data on variable level
Description
Variable level metadata.
See Also
further details on variable level metadata.
Well known columns on the item_computation_level sheet
Description
Computation rules TODO
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_cross
Well known columns on the cross-item_level sheet
Description
Metadata describing groups of variables, e.g., for their multivariate distribution or for defining contradiction rules.
See Also
Other meta_data_cross:
ASSOCIATION_DIRECTION,
ASSOCIATION_FORM,
ASSOCIATION_METRIC,
ASSOCIATION_RANGE,
CHECK_ID,
CHECK_LABEL,
COMPUTED_VARIABLE_ROLES,
CONTRADICTION_TERM,
CONTRADICTION_TYPE,
DATA_PREPARATION,
GOLDSTANDARD,
IRV,
MAHALANOBIS_THRESHOLD,
MAXIMUM_LONG_STRING,
MISS_RESP,
MULTIVARIATE_OUTLIER_CHECK,
MULTIVARIATE_OUTLIER_CHECKTYPE,
RELCOMPL_SPEED,
REL_VAL,
RESPT_PER_ITEM,
SCALE_ACRONYM,
SCALE_NAME,
TOTRESPT,
VARIABLE_LIST,
VARIABLE_LIST_ORDER,
meta_data_computation
Well known columns on the meta_data_dataframe sheet
Description
Metadata describing data delivered on one data frame/table sheet, e.g., a full questionnaire, not its items.
.meta_data_env – an environment for easy metadata access
Description
used by the dq_report2-pipeline
Usage
.meta_data_env
Format
An object of class environment of length 9.
See Also
meta_data_env_id_vars() meta_data_env_co_vars()
meta_data_env_time_vars() meta_data_env_group_vars()
Extract co-variables for a given item
Description
Extract co-variables for a given item
Arguments
entity |
vector of item-identifiers |
Value
a vector with co-variables for each entity-entry, having the
explode attribute set to FALSE
See Also
Well known columns on the meta_data_segment sheet
Description
Metadata describing study segments, e.g., a full questionnaire, not its items.
return the number of result slots in a report
Description
return the number of result slots in a report
Usage
nres(x)
Arguments
x |
the |
Value
the number of used result slots
Convert a pipeline result data frame to named encapsulated lists
Description
Deprecated
Usage
pipeline_recursive_result(...)
Arguments
... |
Deprecated |
Value
Deprecated
Call (nearly) one "Accuracy" function with many parameterizations at once automatically
Description
Deprecated
Usage
pipeline_vectorized(...)
Arguments
... |
Deprecated |
Value
Deprecated
Plot a dataquieR summary
Description
Plot a dataquieR summary
Usage
## S3 method for class 'dataquieR_summary'
plot(
x,
y,
...,
filter,
dont_plot = FALSE,
stratify_by,
vars_to_include = "study",
disable_plotly = FALSE
)
Arguments
x |
the |
y |
not yet used |
... |
not yet used |
filter |
if given, this filters the summary, e.g.,
|
dont_plot |
suppress the actual plotting, just return a printable
object derived from |
stratify_by |
column to stratify the summary, may be one string. |
vars_to_include |
|
disable_plotly |
logical do not use |
Value
invisible html object
Utility function to plot a combined figure for distribution checks
Description
Data quality indicator checks "Unexpected location" with histograms and plots of empirical cumulative distributions for the subgroups.
Usage
prep_acc_distributions_with_ecdf(
resp_vars = NULL,
group_vars = NULL,
study_data,
label_col,
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
n_group_max = getOption("dataquieR.max_group_var_levels_in_plot",
dataquieR.max_group_var_levels_in_plot_default),
n_obs_per_group_min = getOption("dataquieR.min_obs_per_group_var_in_plot",
dataquieR.min_obs_per_group_var_in_plot_default)
)
Arguments
resp_vars |
variable list the name of the measurement variable |
group_vars |
variable list the name of the observer, device or reader variable |
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
n_group_max |
maximum number of categories to be displayed individually
for the grouping variable ( |
n_obs_per_group_min |
minimum number of data points per group to create
a graph for an individual category of the |
Value
A SummaryPlot.
Convert missing codes in metadata format v1.0 and a missing-cause-table to v2.0 missing list / jump list assignments
Description
The function has to working modes. If replace_meta_data is TRUE, by
default, if cause_label_df contains a column
named resp_vars, then the missing/jump codes in
meta_data[, c(MISSING_CODES, JUMP_CODES)] will be overwritten, otherwise,
it will be labeled using the cause_label_df.
Usage
prep_add_cause_label_df(
item_level = "item_level",
cause_label_df,
label_col = VAR_NAMES,
assume_consistent_codes = TRUE,
replace_meta_data = ("resp_vars" %in% colnames(cause_label_df)),
meta_data = item_level,
meta_data_v2
)
Arguments
item_level |
data.frame the data frame that contains metadata attributes of study data |
cause_label_df |
data.frame missing code table. If missing codes have labels the respective data frame can be specified here, see cause_label_df |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
assume_consistent_codes |
logical if TRUE and no labels are given and the same missing/jump code is used for more than one variable, the labels assigned for this code will be the same for all variables. |
replace_meta_data |
logical if |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
If a column resp_vars exists, then rows with a value in resp_vars will
only be used for the corresponding variable.
Value
data.frame updated metadata including all the code labels in missing/jump lists
See Also
Insert missing codes for NAs based on rules
Description
Insert missing codes for NAs based on rules
Usage
prep_add_computed_variables(
study_data,
meta_data,
label_col,
rules,
use_value_labels
)
Arguments
study_data |
data.frame the data frame that contains the measurements |
meta_data |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
rules |
data.frame with the columns:
|
use_value_labels |
logical In rules for factors, use the value labels,
not the codes. Defaults to |
Value
a list with the entry:
-
ModifiedStudyData: Study data with the new variables
Examples
## Not run:
study_data <- prep_get_data_frame("ship")
prep_load_workbook_like_file("ship_meta_v2")
meta_data <- prep_get_data_frame("item_level")
rules <- tibble::tribble(
~VAR_NAMES, ~RULE,
"BMI", '[BODY_WEIGHT_0]/(([BODY_HEIGHT_0]/100)^2)',
"R", '[WAIST_CIRC_0]/2/[pi]', # in m^3
"VOL_EST", '[pi]*([WAIST_CIRC_0]/2/[pi])^2*[BODY_HEIGHT_0] / 1000', # in l
)
r <- prep_add_computed_variables(study_data, meta_data,
label_col = "LABEL", rules, use_value_labels = FALSE)
## End(Not run)
Add data frames to the pre-loaded / cache data frame environment
Description
These can be referred to by their names, then, wherever dataquieR expects
a data.frame – just pass a character instead. If this character is not
found, dataquieR would additionally look for files with the name and for
URLs. You can also refer to specific sheets of a workbook or specific
object from an RData by appending a pipe symbol and its name. A second
pipe symbol allows to extract certain columns from such sheets (but
they will remain data frames).
Usage
prep_add_data_frames(..., data_frame_list = list())
Arguments
... |
data frames, if passed with names, these will be the names of these tables in the data frame environment. If not, then the names in the calling environment will be used. |
data_frame_list |
a named list with data frames. Also these will be
added and names will be handled as for the |
Value
data.frame invisible(the cache environment)
See Also
Other data-frame-cache:
prep_get_data_frame(),
prep_list_dataframes(),
prep_load_folder_with_metadata(),
prep_load_workbook_like_file(),
prep_purge_data_frame_cache(),
prep_remove_from_cache()
Insert missing codes for NAs based on rules
Description
Insert missing codes for NAs based on rules
Usage
prep_add_missing_codes(
resp_vars,
study_data,
meta_data_v2,
item_level = "item_level",
label_col,
rules,
use_value_labels,
overwrite = FALSE,
meta_data = item_level
)
Arguments
resp_vars |
variable list the name of the measurement variables to be
modified, all from |
study_data |
data.frame the data frame that contains the measurements |
meta_data_v2 |
character path to workbook like metadata file, see
|
item_level |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
rules |
data.frame with the columns:
|
use_value_labels |
logical In rules for factors, use the value labels,
not the codes. Defaults to |
overwrite |
logical Also insert missing codes, if the values are not
|
meta_data |
data.frame old name for |
Value
a list with the entries:
-
ModifiedStudyData: Study data withNAs replaced by theCODE_VALUE -
ModifiedMetaData: Metadata having the new codes amended in the columnsJUMP_LISTorMISSING_LIST, respectively
Support function to augment metadata during data quality reporting
Description
adds an annotation to static metadata
Usage
prep_add_to_meta(
VAR_NAMES,
DATA_TYPE,
LABEL,
VALUE_LABELS,
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
...
)
Arguments
VAR_NAMES |
character Names of the Variables to add |
DATA_TYPE |
character Data type for the added variables |
LABEL |
character Labels for these variables |
VALUE_LABELS |
character Value labels for the values of the variables
as usually pipe separated and assigned with
|
item_level |
data.frame the metadata to extend |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
... |
Further defined variable attributes, see prep_create_meta |
Details
Add metadata e.g. of transformed/new variable This function is not yet considered stable, but we already export it, because it could help. Therefore, we have some inconsistencies in the formals still.
Value
a data frame with amended metadata.
Re-Code labels with their respective codes according to the meta_data
Description
Re-Code labels with their respective codes according to the meta_data
Usage
prep_apply_coding(
study_data,
meta_data_v2,
item_level = "item_level",
meta_data = item_level
)
Arguments
study_data |
data.frame the data frame that contains the measurements |
meta_data_v2 |
character path to workbook like metadata file, see
|
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
Value
data.frame modified study data with labels replaced by the codes
Check for package updates
Description
Check for package updates
Usage
prep_check_for_dataquieR_updates(
beta = FALSE,
deps = TRUE,
ask = interactive()
)
Arguments
beta |
logical check for beta version too |
deps |
logical check for missing (optional) dependencies |
ask |
logical ask for updates |
Value
invisible(NULL)
Verify and normalize metadata on data frame level
Description
if possible, mismatching data types are converted ("true" becomes TRUE)
Usage
prep_check_meta_data_dataframe(
meta_data_dataframe = "dataframe_level",
meta_data_v2,
dataframe_level
)
Arguments
meta_data_dataframe |
data.frame data frame or path/url of a metadata sheet for the data frame level |
meta_data_v2 |
character path to workbook like metadata file, see
|
dataframe_level |
data.frame alias for |
Details
missing columns are added, filled with NA, if this is valid, i.e., n.a.
for DF_NAME as the key column
Value
standardized metadata sheet as data frame
Examples
## Not run:
mds <- prep_check_meta_data_dataframe("ship_meta_dataframe|dataframe_level") # also converts
print(mds)
prep_check_meta_data_dataframe(mds)
mds1 <- mds
mds1$DF_RECORD_COUNT <- NULL
print(prep_check_meta_data_dataframe(mds1)) # fixes the missing column by NAs
mds1 <- mds
mds1$DF_UNIQUE_ROWS[[2]] <- "xxx" # not convertible
# print(prep_check_meta_data_dataframe(mds1)) # fail
mds1 <- mds
mds1$DF_UNIQUE_ID[[2]] <- 12
# print(prep_check_meta_data_dataframe(mds1)) # fail
## End(Not run)
Verify and normalize metadata on segment level
Description
if possible, mismatching data types are converted ("true" becomes TRUE)
Usage
prep_check_meta_data_segment(
meta_data_segment = "segment_level",
meta_data_v2,
segment_level
)
Arguments
meta_data_segment |
data.frame data frame or path/url of a metadata sheet for the segment level |
meta_data_v2 |
character path to workbook like metadata file, see
|
segment_level |
data.frame alias for |
Details
missing columns are added, filled with NA, if this is valid, i.e., n.a.
for STUDY_SEGMENT as the key column
Value
standardized metadata sheet as data frame
Examples
## Not run:
mds <- prep_check_meta_data_segment("ship_meta_v2|segment_level") # also converts
print(mds)
prep_check_meta_data_segment(mds)
mds1 <- mds
mds1$SEGMENT_RECORD_COUNT <- NULL
print(prep_check_meta_data_segment(mds1)) # fixes the missing column by NAs
mds1 <- mds
mds1$SEGMENT_UNIQUE_ROWS[[2]] <- "xxx" # not convertible
# print(prep_check_meta_data_segment(mds1)) # fail
## End(Not run)
Checks the validity of metadata w.r.t. the provided column names
Description
This function verifies, if a data frame complies to metadata conventions and
provides a given richness of meta information as specified by level.
Usage
prep_check_meta_names(
item_level = "item_level",
level,
character.only = FALSE,
meta_data = item_level,
meta_data_v2
)
Arguments
item_level |
data.frame the data frame that contains metadata attributes of study data |
level |
enum level of requirement (see also VARATT_REQUIRE_LEVELS).
set to |
character.only |
logical a logical indicating whether level can be assumed to be character strings. |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
Note, that only the given level is checked despite, levels are somehow hierarchical.
Value
a logical with:
invisible(TRUE). In case of problems with the metadata, a condition is raised (
stop()).
Examples
## Not run:
prep_check_meta_names(data.frame(VAR_NAMES = 1, DATA_TYPE = 2,
MISSING_LIST = 3))
prep_check_meta_names(
data.frame(
VAR_NAMES = 1, DATA_TYPE = 2, MISSING_LIST = 3,
LABEL = "LABEL", VALUE_LABELS = "VALUE_LABELS",
JUMP_LIST = "JUMP_LIST", HARD_LIMITS = "HARD_LIMITS",
GROUP_VAR_OBSERVER = "GROUP_VAR_OBSERVER",
GROUP_VAR_DEVICE = "GROUP_VAR_DEVICE",
TIME_VAR = "TIME_VAR",
PART_VAR = "PART_VAR",
STUDY_SEGMENT = "STUDY_SEGMENT",
LOCATION_RANGE = "LOCATION_RANGE",
LOCATION_METRIC = "LOCATION_METRIC",
PROPORTION_RANGE = "PROPORTION_RANGE",
MISSING_LIST_TABLE = "MISSING_LIST_TABLE",
CO_VARS = "CO_VARS",
LONG_LABEL = "LONG_LABEL"
),
RECOMMENDED
)
prep_check_meta_names(
data.frame(
VAR_NAMES = 1, DATA_TYPE = 2, MISSING_LIST = 3,
LABEL = "LABEL", VALUE_LABELS = "VALUE_LABELS",
JUMP_LIST = "JUMP_LIST", HARD_LIMITS = "HARD_LIMITS",
GROUP_VAR_OBSERVER = "GROUP_VAR_OBSERVER",
GROUP_VAR_DEVICE = "GROUP_VAR_DEVICE",
TIME_VAR = "TIME_VAR",
PART_VAR = "PART_VAR",
STUDY_SEGMENT = "STUDY_SEGMENT",
LOCATION_RANGE = "LOCATION_RANGE",
LOCATION_METRIC = "LOCATION_METRIC",
PROPORTION_RANGE = "PROPORTION_RANGE",
DETECTION_LIMITS = "DETECTION_LIMITS", SOFT_LIMITS = "SOFT_LIMITS",
CONTRADICTIONS = "CONTRADICTIONS", DISTRIBUTION = "DISTRIBUTION",
DECIMALS = "DECIMALS", VARIABLE_ROLE = "VARIABLE_ROLE",
DATA_ENTRY_TYPE = "DATA_ENTRY_TYPE",
CO_VARS = "CO_VARS",
END_DIGIT_CHECK = "END_DIGIT_CHECK",
VARIABLE_ORDER = "VARIABLE_ORDER", LONG_LABEL =
"LONG_LABEL", recode = "recode",
MISSING_LIST_TABLE = "MISSING_LIST_TABLE"
),
OPTIONAL
)
# Next one will fail
try(
prep_check_meta_names(data.frame(VAR_NAMES = 1, DATA_TYPE = 2,
MISSING_LIST = 3), TECHNICAL)
)
## End(Not run)
Support function to scan variable labels for applicability
Description
Adjust labels in meta_data to be valid variable names in formulas for
diverse r functions, such as glm or lme4::lmer.
Usage
prep_clean_labels(
label_col,
item_level = "item_level",
no_dups = FALSE,
meta_data = item_level,
meta_data_v2
)
Arguments
label_col |
character label attribute to adjust or character vector to
adjust, depending on |
item_level |
data.frame metadata data frame: If |
no_dups |
logical disallow duplicates in input or output vectors of
the function, then, prep_clean_labels would call
|
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Details
Hint: The following is still true, but the functions should be capable of doing potentially needed fixes on-the-fly automatically, so likely you will not need this function any more.
Currently, labels as given by label_col arguments in the most functions
are directly used in formula, so that they become natural part of the
outputs, but different models expect differently strict syntax for such
formulas, especially for valid variable names. prep_clean_labels removes
all potentially inadmissible characters from variable names (no guarantee,
that some exotic model still rejects the names, but minimizing the number
of exotic characters). However, variable names are modified, may become
unreadable or indistinguishable from other variable names. For the latter
case, a stop call is possible, controlled by the no_dups argument.
A warning is emitted, if modifications were necessary.
Value
a data.frame with:
if
meta_datais set, a list with:modified
meta_data[, label_col]column
if
meta_datais not set, adjusted labels that then were directly given in label_col
Examples
## Not run:
meta_data1 <- data.frame(
LABEL =
c(
"syst. Blood pressure (mmHg) 1",
"1st heart frequency in MHz",
"body surface (\\u33A1)"
)
)
print(meta_data1)
print(prep_clean_labels(meta_data1$LABEL))
meta_data1 <- prep_clean_labels("LABEL", meta_data1)
print(meta_data1)
## End(Not run)
Combine two report summaries
Description
Combine two report summaries
Usage
prep_combine_report_summaries(..., summaries_list, amend_segment_names = FALSE)
Arguments
... |
objects returned by prep_extract_summary |
summaries_list |
if given, list of objects returned by prep_extract_summary |
amend_segment_names |
logical use names of the |
Value
combined summaries
See Also
Other summary_functions:
prep_extract_classes_by_functions(),
prep_extract_summary(),
prep_extract_summary.dataquieR_result(),
prep_extract_summary.dataquieR_resultset2(),
prep_render_pie_chart_from_summaryclasses_ggplot2(),
prep_render_pie_chart_from_summaryclasses_plotly(),
prep_summary_to_classes()
Verify item-level metadata
Description
are the provided item-level meta_data plausible given study_data?
Usage
prep_compare_meta_with_study(
study_data,
label_col,
item_level = "item_level",
meta_data = item_level,
meta_data_v2
)
Arguments
study_data |
data.frame the data frame that contains the measurements |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Value
an invisible() list with the entries.
-
preddata.frame metadata predicted fromstudy_data, reduced to such metadata also available in the provided metadata -
provdata.frame provided metadata, reduced to such metadata also available in the providedstudy_data -
ml_errorcharacterVAR_NAMESof variables with potentially wrongMISSING_LIST -
sl_errorcharacterVAR_NAMESof variables with potentially wrongSCALE_LEVEL -
dt_errorcharacterVAR_NAMESof variables with potentially wrongDATA_TYPE
Support function to create data.frames of metadata
Description
Create a metadata data frame and map names.
Generally, this function only creates a data.frame, but using
this constructor instead of calling
data.frame(..., stringsAsFactors = FALSE), it becomes possible, to adapt
the metadata data.frame in later developments, e.g. if we decide to use
classes for the metadata, or if certain standard names of variable attributes
change. Also, a validity check is possible to implement here.
Usage
prep_create_meta(..., stringsAsFactors = FALSE, level, character.only = FALSE)
Arguments
... |
named column vectors, names will be mapped using WELL_KNOWN_META_VARIABLE_NAMES, if included in WELL_KNOWN_META_VARIABLE_NAMES can also be a data frame, then its column names will be mapped using WELL_KNOWN_META_VARIABLE_NAMES |
stringsAsFactors |
logical if the argument is a list of vectors, a
data frame will be
created. In this case, |
level |
enum level of requirement (see also VARATT_REQUIRE_LEVELS)
set to |
character.only |
logical a logical indicating whether level can be assumed to be character strings. |
Details
For now, this calls data.frame, but it already renames variable attributes,
if they have a different name assigned in WELL_KNOWN_META_VARIABLE_NAMES,
e.g. WELL_KNOWN_META_VARIABLE_NAMES$RECODE maps to recode in lower case.
NB: dataquieR exports all names from WELL_KNOWN_META_VARIABLE_NAME as
symbols, so RECODE also contains "recode".
Value
a data frame with:
metadata attribute names mapped and
metadata checked using prep_check_meta_names and do some more verification about conventions, such as check for valid intervals in limits)
See Also
WELL_KNOWN_META_VARIABLE_NAMES
Instantiate a new metadata file
Description
Instantiate a new metadata file
Usage
prep_create_meta_data_file(
file_name,
study_data,
open = TRUE,
overwrite = FALSE
)
Arguments
file_name |
character file path to write to |
study_data |
data.frame optional, study data to guess metadata from |
open |
logical open the file after creation |
overwrite |
logical overwrite |
Value
invisible(NULL)
Create a factory function for storr objects for backing
a dataquieR_resultset2
Description
Create a factory function for storr objects for backing
a dataquieR_resultset2
Usage
prep_create_storr_factory(db_dir = tempfile(), namespace = "objects")
Arguments
db_dir |
character path to the directory for the back-end, if one is created on the fly. |
namespace |
character namespace for the report, so that one back-end can back several reports the returned function will try to create a |
Value
storr object or NULL, if package storr is not available
Get data types from data
Description
Get data types from data
Usage
prep_datatype_from_data(
resp_vars = colnames(study_data),
study_data,
.dont_cast_off_cols = FALSE,
guess_character = getOption("dataquieR.guess_character", default =
dataquieR.guess_character_default)
)
Arguments
resp_vars |
variable names of the variables to fetch the data type from the data |
study_data |
data.frame the data frame that contains the measurements Hint: Only data frames supported, no URL or file names. |
.dont_cast_off_cols |
logical internal use, only |
guess_character |
logical guess a data type for character columns based on the values |
Value
vector of data types
See Also
Examples
## Not run:
dataquieR::prep_datatype_from_data(cars)
## End(Not run)
Convert two vectors from a code-value-table to a key-value list
Description
Convert two vectors from a code-value-table to a key-value list
Usage
prep_deparse_assignments(
codes,
labels = codes,
split_char = SPLIT_CHAR,
mode = c("numeric_codes", "string_codes")
)
Arguments
codes |
codes, numeric or dates (as default, but string codes can be enabled using the option 'mode', see below) |
labels |
character labels, same length as codes |
split_char |
character split character character to split code assignments |
mode |
character one of two options to insist on numeric or datetime codes (default) or to allow for string codes |
Value
a vector with assignment strings for each row of
cbind(codes, labels)
Get the dataquieR DATA_TYPE of x
Description
Get the dataquieR DATA_TYPE of x
Usage
prep_dq_data_type_of(
x,
guess_character = getOption("dataquieR.guess_character", default =
dataquieR.guess_character_default)
)
Arguments
x |
object to define the dataquieR data type of |
guess_character |
logical guess a data type for character columns based on the values |
Value
the dataquieR data type as listed in DATA_TYPES
See Also
Expand code labels across variables
Description
Code labels are copied from other variables, if the code is the same and the label is set only for some variables
Usage
prep_expand_codes(
item_level = "item_level",
suppressWarnings = FALSE,
mix_jumps_and_missings = FALSE,
meta_data_v2,
meta_data = item_level
)
Arguments
item_level |
data.frame the data frame that contains metadata attributes of study data |
suppressWarnings |
logical show warnings, if labels are expanded |
mix_jumps_and_missings |
logical ignore the class of the codes for label expansion, i.e., use missing code labels as jump code labels, if the values are the same. |
meta_data_v2 |
character path to workbook like metadata file, see
|
meta_data |
data.frame old name for |
Value
data.frame an updated metadata data frame.
Examples
## Not run:
meta_data <- prep_get_data_frame("meta_data")
meta_data$JUMP_LIST[meta_data$VAR_NAMES == "v00003"] <- "99980 = NOOP"
md <- prep_expand_codes(meta_data)
md$JUMP_LIST
md$MISSING_LIST
md <- prep_expand_codes(meta_data, mix_jumps_and_missings = TRUE)
md$JUMP_LIST
md$MISSING_LIST
meta_data <- prep_get_data_frame("meta_data")
meta_data$MISSING_LIST[meta_data$VAR_NAMES == "v00003"] <- "99980 = NOOP"
md <- prep_expand_codes(meta_data)
md$JUMP_LIST
md$MISSING_LIST
## End(Not run)
Extract all missing/jump codes from metadata and export a cause-label-data-frame
Description
Extract all missing/jump codes from metadata and export a cause-label-data-frame
Usage
prep_extract_cause_label_df(
item_level = "item_level",
label_col = VAR_NAMES,
meta_data_v2,
meta_data = item_level
)
Arguments
item_level |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
meta_data_v2 |
character path to workbook like metadata file, see
|
meta_data |
data.frame old name for |
Value
list with the entries
-
meta_datadata.frame a data frame that contains updated metadata – you still need to add a column MISSING_LIST_TABLE and add thecause_label_dfas such to the metadata cache usingprep_add_data_frames(), manually. -
cause_label_dfdata.frame missing code table. If missing codes have labels the respective data frame are specified here, see cause_label_df.
See Also
Extract old function based summary from data quality results
Description
Extract old function based summary from data quality results
Usage
prep_extract_classes_by_functions(r)
Arguments
r |
Value
data.frame long format, compatible with prep_summary_to_classes()
See Also
Other summary_functions:
prep_combine_report_summaries(),
prep_extract_summary(),
prep_extract_summary.dataquieR_result(),
prep_extract_summary.dataquieR_resultset2(),
prep_render_pie_chart_from_summaryclasses_ggplot2(),
prep_render_pie_chart_from_summaryclasses_plotly(),
prep_summary_to_classes()
Extract summary from data quality results
Description
Generic function, currently supports dq_report2 and dataquieR_result
Usage
prep_extract_summary(r, ...)
Arguments
r |
dq_report2 or dataquieR_result object |
... |
further arguments, maybe needed for some implementations |
Value
list with two slots Data and Table with data.frames
featuring all metrics columns
from the report or result in x,
the STUDY_SEGMENT and the VAR_NAMES.
In case of Data, the columns are formatted nicely but still
with the standardized column names – use
util_translate_indicator_metrics() to rename them nicely. In
case of Table, just as they are.
See Also
Other summary_functions:
prep_combine_report_summaries(),
prep_extract_classes_by_functions(),
prep_extract_summary.dataquieR_result(),
prep_extract_summary.dataquieR_resultset2(),
prep_render_pie_chart_from_summaryclasses_ggplot2(),
prep_render_pie_chart_from_summaryclasses_plotly(),
prep_summary_to_classes()
Extract report summary from reports
Description
Extract report summary from reports
Usage
## S3 method for class 'dataquieR_result'
prep_extract_summary(r, ...)
Arguments
r |
dataquieR_result a result from adq_report2 report |
... |
not used |
Value
list with two slots Data and Table with data.frames
featuring all metrics columns
from the report r, the STUDY_SEGMENT and the VAR_NAMES.
In case of Data, the columns are formatted nicely but still
with the standardized column names – use
util_translate_indicator_metrics() to rename them nicely. In
case of Table, just as they are.
See Also
prep_combine_report_summaries()
Other summary_functions:
prep_combine_report_summaries(),
prep_extract_classes_by_functions(),
prep_extract_summary(),
prep_extract_summary.dataquieR_resultset2(),
prep_render_pie_chart_from_summaryclasses_ggplot2(),
prep_render_pie_chart_from_summaryclasses_plotly(),
prep_summary_to_classes()
Extract report summary from reports
Description
Extract report summary from reports
Usage
## S3 method for class 'dataquieR_resultset2'
prep_extract_summary(r, ...)
Arguments
r |
dq_report2 a dq_report2 report |
... |
not used |
Value
list with two slots Data and Table with data.frames
featuring all metrics columns
from the report r, the STUDY_SEGMENT and the VAR_NAMES.
In case of Data, the columns are formatted nicely but still
with the standardized column names – use
util_translate_indicator_metrics() to rename them nicely. In
case of Table, just as they are.
See Also
prep_combine_report_summaries()
Other summary_functions:
prep_combine_report_summaries(),
prep_extract_classes_by_functions(),
prep_extract_summary(),
prep_extract_summary.dataquieR_result(),
prep_render_pie_chart_from_summaryclasses_ggplot2(),
prep_render_pie_chart_from_summaryclasses_plotly(),
prep_summary_to_classes()
Fix metadata duplicates
Description
if VAR_NAMES have duplicates, maybe, it's because of ID-vars assigned
to different study segments multiple times (they should be in one "intro"-
segment, only), which is not the intended use of STUDY_SEGMENT.
Naturally, they will be part of more than one data-frame, so
this would also qualify for a dump duplicate, only, which can safely be
removed. Only ID-vars are by default assumed to have such duplicates in item
level metadata allowed.
Usage
prep_fix_meta_id_dups(
meta_data_segment = "segment_level",
meta_data_dataframe = "dataframe_level",
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
segment_level,
dataframe_level
)
Arguments
meta_data_segment |
data.frame – optional: Segment level metadata |
meta_data_dataframe |
data.frame the data frame that contains the metadata for the data frame level |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
segment_level |
data.frame alias for |
dataframe_level |
data.frame alias for |
Value
Examples
## Not run:
il <- prep_get_data_frame("item_level")
il <- rbind(il, il)
il$STUDY_SEGMENT[2] <- "X"
il2 <- prep_fix_meta_id_dups(meta_data_v2 = "meta_data_v2", item_level = il)
il2$STUDY_SEGMENT
il$STUDY_SEGMENT[3] <- "X"
il3 <- prep_fix_meta_id_dups(meta_data_v2 = "meta_data_v2", item_level = il)
il3$STUDY_SEGMENT
## End(Not run)
Read data from files/URLs
Description
data_frame_name can be a file path or an URL you can append a pipe and a
sheet name for Excel files or object name e.g. for RData files. Numbers
may also work. All file formats supported by your rio installation will
work.
Usage
prep_get_data_frame(
data_frame_name,
.data_frame_list = .dataframe_environment(),
keep_types = FALSE,
column_names_only = FALSE
)
Arguments
data_frame_name |
character name of the data frame to read, see details |
.data_frame_list |
environment cache for loaded data frames |
keep_types |
logical keep types as possibly defined in a file, if the
data frame is loaded from one. set |
column_names_only |
logical if TRUE imports only headers (column names) of the data frame and no content (an empty data frame) |
Details
The data frames will be cached automatically, you can define an alternative
environment for this using the argument .data_frame_list, and you can purge
the cache using prep_purge_data_frame_cache.
Use prep_add_data_frames to manually add data frames to the cache, e.g., if you have loaded them from more complex sources, before.
Value
data.frame a data frame
See Also
Other data-frame-cache:
prep_add_data_frames(),
prep_list_dataframes(),
prep_load_folder_with_metadata(),
prep_load_workbook_like_file(),
prep_purge_data_frame_cache(),
prep_remove_from_cache()
Examples
## Not run:
bl <- as.factor(prep_get_data_frame(
paste0("https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus",
"/Projekte_RKI/COVID-19_Todesfaelle.xlsx?__blob=",
"publicationFile|COVID_Todesfälle_BL|Bundesland"))[[1]])
n <- as.numeric(prep_get_data_frame(paste0(
"https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/",
"Projekte_RKI/COVID-19_Todesfaelle.xlsx?__blob=",
"publicationFile|COVID_Todesfälle_BL|Anzahl verstorbene",
" COVID-19 Fälle"))[[1]])
plot(bl, n)
# Working names would be to date (2022-10-21), e.g.:
#
# https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/ \
# Projekte_RKI/COVID-19_Todesfaelle.xlsx?__blob=publicationFile
# https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/ \
# Projekte_RKI/COVID-19_Todesfaelle.xlsx?__blob=publicationFile|2
# https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/ \
# Projekte_RKI/COVID-19_Todesfaelle.xlsx?__blob=publicationFile|name
# study_data
# ship
# meta_data
# ship_meta
#
prep_get_data_frame("meta_data | meta_data")
## End(Not run)
Fetch a label for a variable based on its purpose
Description
Fetch a label for a variable based on its purpose
Usage
prep_get_labels(
resp_vars,
item_level = "item_level",
label_col,
max_len,
label_class = c("SHORT", "LONG"),
label_lang = getOption("dataquieR.lang", dataquieR.lang_default),
resp_vars_are_var_names_only = FALSE,
resp_vars_match_label_col_only = FALSE,
meta_data = item_level,
meta_data_v2,
force_label_col = getOption("dataquieR.force_label_col",
dataquieR.force_label_col_default)
)
Arguments
resp_vars |
variable list the variable names to fetch for |
item_level |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
max_len |
integer the maximum label length to return, if not possible
w/o causing ambiguous labels, the labels may still
be longer. For |
label_class |
enum SHORT | LONG. which sort of label according to the metadata model should be returned |
label_lang |
character optional language suffix, if available in
the metadata. Can be controlled by the option
|
resp_vars_are_var_names_only |
logical If |
resp_vars_match_label_col_only |
logical If |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
force_label_col |
enum auto | FALSE | TRUE. if |
Value
character suitable labels for each resp_vars, names of this
vector are VAR_NAMES
Examples
## Not run:
prep_load_workbook_like_file("meta_data_v2")
prep_get_labels("SEX_0", label_class = "SHORT", max_len = 2)
## End(Not run)
Get data frame for a given segment
Description
Get data frame for a given segment
Usage
prep_get_study_data_segment(
segment,
study_data,
item_level = "item_level",
meta_data = item_level,
meta_data_v2,
segment_level,
meta_data_segment = "segment_level"
)
Arguments
segment |
character name of the segment to return data for |
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
segment_level |
data.frame alias for |
meta_data_segment |
data.frame – optional: Segment level metadata |
Value
data.frame the data for the segment
Return the logged-in User's Full Name
Description
If whoami is not installed, the user name from
Sys.info() is returned.
Usage
prep_get_user_name()
Details
Can be overridden by options or environment:
options(FULLNAME = "Stephan Struckmann")
Sys.setenv(FULLNAME = "Stephan Struckmann")
Value
character the user's name
Get machine variant for snapshot tests
Description
Get machine variant for snapshot tests
Usage
prep_get_variant()
Value
character the variant
Guess encoding of text or text files
Description
Guess encoding of text or text files
Usage
prep_guess_encoding(x, file)
Arguments
x |
character string to guess encoding for |
file |
character file to guess encoding for |
Value
encoding
Prepare a label as part of a link for RMD files
Description
Prepare a label as part of a link for RMD files
Usage
prep_link_escape(s, html = FALSE)
Arguments
s |
the label |
html |
prepare the label for direct |
Value
the escaped label
List Loaded Data Frames
Description
List Loaded Data Frames
Usage
prep_list_dataframes()
Value
names of all loaded data frames
See Also
Other data-frame-cache:
prep_add_data_frames(),
prep_get_data_frame(),
prep_load_folder_with_metadata(),
prep_load_workbook_like_file(),
prep_purge_data_frame_cache(),
prep_remove_from_cache()
All valid voc: vocabularies
Description
All valid voc: vocabularies
Usage
prep_list_voc()
Value
character() all voc: suffixes allowed for
prep_get_data_frame().
Examples
## Not run:
prep_list_dataframes()
prep_list_voc()
prep_get_data_frame("<ICD10>")
my_voc <-
tibble::tribble(
~ voc, ~ url,
"test", "data:datasets|iris|Species+Sepal.Length")
prep_add_data_frames(`<>` = my_voc)
prep_list_dataframes()
prep_list_voc()
prep_get_data_frame("<test>")
prep_get_data_frame("<ICD10>")
my_voc <-
tibble::tribble(
~ voc, ~ url,
"ICD10", "data:datasets|iris|Species+Sepal.Length")
prep_add_data_frames(`<>` = my_voc)
prep_list_dataframes()
prep_list_voc()
prep_get_data_frame("<ICD10>")
## End(Not run)
Pre-load a folder with named (usually more than) one table(s)
Description
The original purpose of this function is to load metadata, not study data.
If you want to load study data, you should keep them in a different folder,
then you can call this function once for the metadata and once for the study
data but this time setting keep_types = TRUE to avoid all data being read
as character().
Usage
prep_load_folder_with_metadata(folder, keep_types = FALSE, ...)
Arguments
folder |
the folder name to load. |
keep_types |
logical keep types as possibly defined in the file.
set |
... |
arguments passed to |
Details
Note, that once loaded to the data frame cache, a file won't be read again,
except you call prep_purge_data_frame_cache() or
prep_remove_from_cache(). That is, if you call this function first, and
prep_get_data_frame() later, of if dataquieR wants to read a file, e.g.,
for dq_report2(), the file will come from the cache in the way it was
initially read in (keep_types may thus be used inadequately).
By default, this function works not recursively, but you can tweak that by
passing ...-arguments passed through to the initially running
list.files() function.
These can thereafter be referred to by their names only. Such files are,
e.g., spreadsheet-workbooks or RData-files.
Note, that this function in contrast to prep_get_data_frame does neither support selecting specific sheets/columns from a file.
Value
invisible(the cache environment)
See Also
Other data-frame-cache:
prep_add_data_frames(),
prep_get_data_frame(),
prep_list_dataframes(),
prep_load_workbook_like_file(),
prep_purge_data_frame_cache(),
prep_remove_from_cache()
Load a dq_report2
Description
Load a dq_report2
Usage
prep_load_report(file)
Arguments
file |
character the file name to load from |
Value
dataquieR_resultset2 the report
Load a report from a back-end
Description
Load a report from a back-end
Usage
prep_load_report_from_backend(
namespace = "objects",
db_dir,
storr_factory = prep_create_storr_factory(namespace = namespace, db_dir = db_dir)
)
Arguments
namespace |
the namespace to read the report's results from |
db_dir |
character path to the directory for the back-end, if
a |
storr_factory |
a function returning a |
Value
dataquieR_resultset2 the report
See Also
Examples
## Not run:
r <- dataquieR::dq_report2("study_data", meta_data_v2 = "meta_data_v2",
dimensions = NULL)
storr_factory <- prep_create_storr_factory()
r_storr <- prep_set_backend(r, storr_factory)
r_restorr <- prep_set_backend(r_storr, NULL)
r_loaded <- prep_load_report_from_backend(storr_factory)
## End(Not run)
Pre-load a file with named (usually more than) one table(s)
Description
These can thereafter be referred to by their names only. Such files are,
e.g., spreadsheet-workbooks or RData-files.
Usage
prep_load_workbook_like_file(file, keep_types = FALSE)
Arguments
file |
the file name to load. |
keep_types |
logical keep types as possibly defined in the file.
set |
Details
Note, that this function in contrast to prep_get_data_frame does neither support selecting specific sheets/columns from a file.
Value
invisible(the cache environment)
See Also
Other data-frame-cache:
prep_add_data_frames(),
prep_get_data_frame(),
prep_list_dataframes(),
prep_load_folder_with_metadata(),
prep_purge_data_frame_cache(),
prep_remove_from_cache()
Support function to allocate labels to variables
Description
Map variables to certain attributes, e.g. by default their labels.
Usage
prep_map_labels(
x,
item_level = "item_level",
to = LABEL,
from = VAR_NAMES,
ifnotfound,
warn_ambiguous = FALSE,
meta_data_v2,
meta_data = item_level
)
Arguments
x |
character variable names, character vector, see parameter from |
item_level |
data.frame metadata data frame, if, as a |
to |
character variable attribute to map to |
from |
character variable identifier to map from |
ifnotfound |
list A list of values to be used if the item is not found: it will be coerced to a list if necessary. |
warn_ambiguous |
logical print a warning if mapping variables from
|
meta_data_v2 |
character path to workbook like metadata file, see
|
meta_data |
data.frame old name for |
Details
This function basically calls colnames(study_data) <- meta_data$LABEL,
ensuring correct merging/joining of study data columns to the corresponding
metadata rows, even if the orders differ. If a variable/study_data-column
name is not found in meta_data[[from]] (default from = VAR_NAMES),
either stop is called or, if ifnotfound has been assigned a value, that
value is returned. See mget, which is internally used by this function.
The function not only maps to the LABEL column, but to can be any
metadata variable attribute, so the function can also be used, to get, e.g.
all HARD_LIMITS from the metadata.
Value
a character vector with:
mapped values
Examples
## Not run:
meta_data <- prep_create_meta(
VAR_NAMES = c("ID", "SEX", "AGE", "DOE"),
LABEL = c("Pseudo-ID", "Gender", "Age", "Examination Date"),
DATA_TYPE = c(DATA_TYPES$INTEGER, DATA_TYPES$INTEGER, DATA_TYPES$INTEGER,
DATA_TYPES$DATETIME),
MISSING_LIST = ""
)
stopifnot(all(prep_map_labels(c("AGE", "DOE"), meta_data) == c("Age",
"Examination Date")))
## End(Not run)
Merge a list of study data frames to one (sparse) study data frame
Description
Merge a list of study data frames to one (sparse) study data frame
Usage
prep_merge_study_data(study_data_list)
Arguments
study_data_list |
list the list |
Value
Convert item-level metadata from v1.0 to v2.0
Description
This function is idempotent..
Usage
prep_meta_data_v1_to_item_level_meta_data(
item_level = "item_level",
verbose = TRUE,
label_col = LABEL,
cause_label_df,
meta_data = item_level
)
Arguments
item_level |
data.frame the old item-level-metadata |
verbose |
logical display all estimated decisions, defaults to |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
cause_label_df |
data.frame missing code table, see cause_label_df. Optional. If this argument is given, you can add missing code tables. |
meta_data |
data.frame old name for |
Details
The options("dataquieR.force_item_specific_missing_codes") (default
FALSE) tells the system, to always fill in res_vars columns to the
MISSING_LIST_TABLE, even, if the column already exists, but is empty.
Value
data.frame the updated metadata
Support function to identify the levels of a process variable with minimum number of observations
Description
utility function to subset data based on minimum number of observation per level
Usage
prep_min_obs_level(study_data, group_vars, min_obs_in_subgroup)
Arguments
study_data |
data.frame the data frame that contains the measurements |
group_vars |
variable list the name grouping variable |
min_obs_in_subgroup |
integer optional argument if a "group_var" is used. This argument specifies the minimum no. of observations that is required to include a subgroup (level) of the "group_var" in the analysis. Subgroups with less observations are excluded. The default is 30. |
Details
This functions removes observations having fewer than min_obs_in_subgroup
distinct values in a group variable, e.g. blood pressure measurements
performed by an examiner having fewer than e.g. 50 measurements done. It
displays a warning, if samples/rows are removed and returns the modified
study data frame.
Value
a data frame with:
a subsample of original data
Open a data frame in Excel
Description
Open a data frame in Excel
Usage
prep_open_in_excel(dfr)
Arguments
dfr |
the data frame |
Details
if the file cannot be read on function exit, NULL will be returned
Value
potentially modified data frame after dialog was closed
Support function for a parallel pmap
Description
parallel version of purrr::pmap
Usage
prep_pmap(.l, .f, ..., cores = 0)
Arguments
.l |
data.frame with one call per line and one function argument per column |
.f |
|
... |
additional, static arguments for calling |
cores |
number of cpu cores to use or a (named) list with arguments for parallelMap::parallelStart or NULL, if parallel has already been started by the caller. Set to 0 to run without parallelization. |
Value
list of results of the function calls
Author(s)
S Struckmann
See Also
purrr::pmap
Prepare and verify study data with metadata
Description
This function ensures, that a data frame ds1 with suitable variable
names study_data and meta_data exist as base data.frames.
Usage
prep_prepare_dataframes(
.study_data,
.meta_data,
.label_col,
.replace_hard_limits,
.replace_missings,
.sm_code = NULL,
.allow_empty = FALSE,
.adjust_data_type = TRUE,
.amend_scale_level = TRUE,
.apply_factor_metadata = FALSE,
.apply_factor_metadata_inadm = FALSE,
.internal = rlang::env_inherits(rlang::caller_env(), parent.env(environment()))
)
Arguments
.study_data |
if provided, use this data set as study_data |
.meta_data |
if provided, use this data set as meta_data |
.label_col |
if provided, use this as label_col |
.replace_hard_limits |
replace |
.replace_missings |
replace missing codes, defaults to |
.sm_code |
missing code for |
.allow_empty |
allow |
.adjust_data_type |
ensure that the data type of variables in the study data corresponds to their data type specified in the metadata |
.amend_scale_level |
ensure that |
.apply_factor_metadata |
logical convert categorical variables to labeled factors. |
.apply_factor_metadata_inadm |
logical convert categorical variables
to labeled factors keeping
inadmissible values. Implies, that
.apply_factor_metadata will be set
to |
.internal |
logical internally called, modify caller's environment. |
Details
This function defines ds1 and modifies study_data and meta_data in the
environment of its caller (see eval.parent). It also defines or modifies
the object label_col in the calling environment. Almost all functions
exported by dataquieR call this function initially, so that aspects common
to all functions live here, e.g. testing, if an argument meta_data has been
given and features really a data.frame. It verifies the existence of
required metadata attributes (VARATT_REQUIRE_LEVELS). It can also replace
missing codes by NAs, and calls prep_study2meta to generate a minimum
set of metadata from the study data on the fly (should be amended, so
on-the-fly-calling is not recommended for an instructive use of dataquieR).
The function also detects tibbles, which are then converted to base-R
data.frames, which are expected by dataquieR.
If .internal is TRUE, differently from the other utility function that
work in their caller's environment, this function modifies objects in the
calling function's environment. It defines a new object ds1,
it modifies study_data and/or meta_data
and label_col.
Value
ds1 the study data with mapped column names, invisible(), if
not .internal
See Also
acc_margins
Examples
## Not run:
acc_test1 <- function(resp_variable, aux_variable,
time_variable, co_variables,
group_vars, study_data, meta_data) {
prep_prepare_dataframes()
invisible(ds1)
}
acc_test2 <- function(resp_variable, aux_variable,
time_variable, co_variables,
group_vars, study_data, meta_data, label_col) {
ds1 <- prep_prepare_dataframes(study_data, meta_data)
invisible(ds1)
}
environment(acc_test1) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)
environment(acc_test2) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)
acc_test3 <- function(resp_variable, aux_variable, time_variable,
co_variables, group_vars, study_data, meta_data,
label_col) {
prep_prepare_dataframes()
invisible(ds1)
}
acc_test4 <- function(resp_variable, aux_variable, time_variable,
co_variables, group_vars, study_data, meta_data,
label_col) {
ds1 <- prep_prepare_dataframes(study_data, meta_data)
invisible(ds1)
}
environment(acc_test3) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)
environment(acc_test4) <- asNamespace("dataquieR")
# perform this inside the package (not needed for functions that have been
# integrated with the package already)
meta_data <- prep_get_data_frame("meta_data")
study_data <- prep_get_data_frame("study_data")
try(acc_test1())
try(acc_test2())
acc_test1(study_data = study_data)
try(acc_test1(meta_data = meta_data))
try(acc_test2(study_data = 12, meta_data = meta_data))
print(head(acc_test1(study_data = study_data, meta_data = meta_data)))
print(head(acc_test2(study_data = study_data, meta_data = meta_data)))
print(head(acc_test3(study_data = study_data, meta_data = meta_data)))
print(head(acc_test3(study_data = study_data, meta_data = meta_data,
label_col = LABEL)))
print(head(acc_test4(study_data = study_data, meta_data = meta_data)))
print(head(acc_test4(study_data = study_data, meta_data = meta_data,
label_col = LABEL)))
try(acc_test2(study_data = NULL, meta_data = meta_data))
## End(Not run)
Clear data frame cache
Description
Clear data frame cache
Usage
prep_purge_data_frame_cache()
Value
nothing
See Also
Other data-frame-cache:
prep_add_data_frames(),
prep_get_data_frame(),
prep_list_dataframes(),
prep_load_folder_with_metadata(),
prep_load_workbook_like_file(),
prep_remove_from_cache()
Materialize a lazy ggplot
Description
Evaluate the stored expression in its lean environment and cache
the resulting ggplot object in the current R session, if enabled
using the option dataquieR.lazy_plots_cache.
Usage
prep_realize_ggplot(x)
Arguments
x |
a |
Value
A ggplot object.
Remove a specified element from the data frame cache
Description
Remove a specified element from the data frame cache
Usage
prep_remove_from_cache(object_to_remove)
Arguments
object_to_remove |
character name of the object to be removed as character string (quoted), or character vector containing the names of the objects to remove from the cache |
Value
nothing
See Also
Other data-frame-cache:
prep_add_data_frames(),
prep_get_data_frame(),
prep_list_dataframes(),
prep_load_folder_with_metadata(),
prep_load_workbook_like_file(),
prep_purge_data_frame_cache()
Examples
## Not run:
prep_load_workbook_like_file("meta_data_v2") #load metadata in the cache
ls(.dataframe_environment()) #get the list of dataframes in the cache
#remove cross-item_level from the cache
prep_remove_from_cache("cross-item_level")
#remove dataframe_level and expected_id from the cache
prep_remove_from_cache(c("dataframe_level", "expected_id"))
#remove missing_table and segment_level from the cache
x<- c("missing_table", "segment_level")
prep_remove_from_cache(x)
## End(Not run)
Create a ggplot2 pie chart
Description
needs htmltools
Usage
prep_render_pie_chart_from_summaryclasses_ggplot2(
data,
meta_data = "item_level"
)
Arguments
data |
data as returned by |
meta_data |
Value
a htmltools compatible object or NULL, if package is missing
See Also
Other summary_functions:
prep_combine_report_summaries(),
prep_extract_classes_by_functions(),
prep_extract_summary(),
prep_extract_summary.dataquieR_result(),
prep_extract_summary.dataquieR_resultset2(),
prep_render_pie_chart_from_summaryclasses_plotly(),
prep_summary_to_classes()
Create a plotly pie chart
Description
Create a plotly pie chart
Usage
prep_render_pie_chart_from_summaryclasses_plotly(
data,
meta_data = "item_level"
)
Arguments
data |
data as returned by |
meta_data |
Value
a htmltools compatible object
See Also
Other summary_functions:
prep_combine_report_summaries(),
prep_extract_classes_by_functions(),
prep_extract_summary(),
prep_extract_summary.dataquieR_result(),
prep_extract_summary.dataquieR_resultset2(),
prep_render_pie_chart_from_summaryclasses_ggplot2(),
prep_summary_to_classes()
Guess the data type of a vector
Description
Guess the data type of a vector
Usage
prep_robust_guess_data_type(x, k = 50, it = 200)
Arguments
x |
a vector with characters |
k |
numeric sample size, if less than |
it |
integer number of iterations when taking samples |
Value
a guess of the data type of x. An attribute orig_type is also
attached to give the more detailed guess returned by readr::guess_parser().
Algorithm
This function takes x and tries to guess the data type of random subsets of
this vector using readr::guess_parser(). The RNG is initialized with a
constant, so the function stays deterministic. It does such sub-sample based
checks it times, the majority of the detected datatype determines the
guessed data type.
See Also
Save a dq_report2
Description
Save a dq_report2
Usage
prep_save_report(report, file, compression_level = 3)
Arguments
report |
dataquieR_resultset2 the report |
file |
character the file name to write to |
compression_level |
integer from=0 to=9. Compression level. 9 is very slow. |
Value
invisible(NULL)
Heuristics to amend a SCALE_LEVEL column and a UNIT column in the metadata
Description
...if missing
Usage
prep_scalelevel_from_data_and_metadata(
resp_vars = lifecycle::deprecated(),
study_data,
item_level = "item_level",
label_col = LABEL,
meta_data = item_level,
meta_data_v2
)
Arguments
resp_vars |
variable list deprecated, the function always addresses all variables. |
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
meta_data |
data.frame old name for |
meta_data_v2 |
character path to workbook like metadata file, see
|
Value
data.frame modified metadata
Examples
## Not run:
prep_load_workbook_like_file("meta_data_v2")
prep_scalelevel_from_data_and_metadata(study_data = "study_data")
## End(Not run)
Change the back-end of a report
Description
with this function, you can move a report from/to a storr storage.
Usage
prep_set_backend(r, storr_factory = NULL, amend = FALSE)
Arguments
r |
dataquieR_resultset2 the report |
storr_factory |
|
amend |
logical if there is already data in. |
Value
dataquieR_resultset2 but now with the desired back-end
Guess a metadata data frame from study data.
Description
Guess a minimum metadata data frame from study data. Minimum required variable attributes are:
Usage
prep_study2meta(
study_data,
level = c(VARATT_REQUIRE_LEVELS$REQUIRED, VARATT_REQUIRE_LEVELS$RECOMMENDED),
cumulative = TRUE,
convert_factors = FALSE,
guess_missing_codes = getOption("dataquieR.guess_missing_codes",
dataquieR.guess_missing_codes_default),
guess_character = getOption("dataquieR.guess_character", default =
dataquieR.guess_character_default)
)
Arguments
study_data |
data.frame the data frame that contains the measurements |
level |
enum levels to provide (see also VARATT_REQUIRE_LEVELS) |
cumulative |
logical include attributes of all levels up to level |
convert_factors |
logical convert factor columns to coded integers. if selected, then also the study data will be updated and returned. |
guess_missing_codes |
logical try to guess missing codes from the data |
guess_character |
logical guess a data type for character columns based on the values |
Details
dataquieR:::util_get_var_att_names_of_level(VARATT_REQUIRE_LEVELS$REQUIRED) #> VAR_NAMES DATA_TYPE MISSING_LIST_TABLE #> "VAR_NAMES" "DATA_TYPE" "MISSING_LIST_TABLE"
The function also tries to detect missing codes.
Value
a meta_data data frame or a list with study data and metadata, if
convert_factors == TRUE.
Examples
## Not run:
dataquieR::prep_study2meta(Orange, convert_factors = FALSE)
## End(Not run)
Classify metrics from a report summary table
Description
Classify metrics from a report summary table
Usage
prep_summary_to_classes(report_summary)
Arguments
report_summary |
|
Value
data.frame classes for the report summary table, long format
See Also
Other summary_functions:
prep_combine_report_summaries(),
prep_extract_classes_by_functions(),
prep_extract_summary(),
prep_extract_summary.dataquieR_result(),
prep_extract_summary.dataquieR_resultset2(),
prep_render_pie_chart_from_summaryclasses_ggplot2(),
prep_render_pie_chart_from_summaryclasses_plotly()
Prepare a label as part of a title text for RMD files
Description
Prepare a label as part of a title text for RMD files
Usage
prep_title_escape(s, html = FALSE)
Arguments
s |
the label |
html |
prepare the label for direct |
Value
the escaped label
Remove data disclosing details
Description
new function: no warranty, so far.
Usage
prep_undisclose(x, cores)
Arguments
x |
an object to un-disclose, a |
cores |
can be an integer with a number of cores to use. if not specified, the function uses the default cluster, if available and falls back to serial un-disclosing, otherwise. |
Value
undisclosed object
Combine all missing and value lists to one big table
Description
Combine all missing and value lists to one big table
Usage
prep_unsplit_val_tabs(meta_data = "item_level", val_tab = NULL)
Arguments
meta_data |
data.frame item level meta data to be used, defaults to
|
val_tab |
character name of the table being created: This table will
be added to the data frame cache (or overwritten). If |
Value
data.frame the combined table
Get value labels from data
Description
Detects factors and converts them to compatible metadata/study data.
Usage
prep_valuelabels_from_data(resp_vars = colnames(study_data), study_data)
Arguments
resp_vars |
variable names of the variables to fetch the value labels from the data |
study_data |
data.frame the data frame that contains the measurements |
Value
a list with:
-
VALUE_LABELS: vector of value labels and modified study data -
ModifiedStudyData: study data with factors as integers
Examples
## Not run:
dataquieR::prep_datatype_from_data(iris)
## End(Not run)
Print a DataSlot object
Description
Print a DataSlot object
Usage
## S3 method for class 'DataSlot'
print(x, ...)
Arguments
x |
the object |
... |
not used |
Value
see print
print implementation for the class ReportSummaryTable
Description
Use this function to print results objects of the class
ReportSummaryTable.
Usage
## S3 method for class 'ReportSummaryTable'
print(
x,
relative = lifecycle::deprecated(),
dt = FALSE,
fillContainer = FALSE,
displayValues = FALSE,
view = TRUE,
drop = getOption("dataquieR.droplevels_ReportSummaryTable",
dataquieR.droplevels_ReportSummaryTable_default),
...,
flip_mode = "auto"
)
Arguments
x |
|
relative |
deprecated |
dt |
logical use |
fillContainer |
logical if |
displayValues |
logical if |
view |
logical if |
drop |
logical if |
... |
not used, yet |
flip_mode |
enum default | flip | noflip | auto. Should the plot be
in default orientation, flipped, not flipped or
auto-flipped. Not all options are always supported.
In general, this con be controlled by
setting the |
Value
the printed object
See Also
base::print
Print a Slot object
Description
displays all warnings and stuff. then it prints x.
Usage
## S3 method for class 'Slot'
print(x, ...)
Arguments
x |
the object |
... |
not used |
Value
calls the next print method
Print a StudyDataSlot object
Description
Print a StudyDataSlot object
Usage
## S3 method for class 'StudyDataSlot'
print(x, ...)
Arguments
x |
the object |
... |
not used |
Value
see print
Print a TableSlot object
Description
Print a TableSlot object
Usage
## S3 method for class 'TableSlot'
print(x, ...)
Arguments
x |
the object |
... |
not used |
Value
see print
Print a dataquieR result returned by dq_report2
Description
Print a dataquieR result returned by dq_report2
Usage
## S3 method for class 'dataquieR_result'
print(x, ...)
Arguments
x |
list a dataquieR result from dq_report2 or
|
... |
passed to print. Additionally, the argument |
Value
see print
See Also
util_pretty_print()
Generate a RMarkdown-based report from a dataquieR report
Description
Generate a RMarkdown-based report from a dataquieR report
Usage
## S3 method for class 'dataquieR_resultset'
print(...)
Arguments
... |
deprecated |
Value
deprecated
Generate a HTML-based report from a dataquieR report
Description
Generate a HTML-based report from a dataquieR report
Usage
## S3 method for class 'dataquieR_resultset2'
print(
x,
dir,
view = TRUE,
disable_plotly = FALSE,
block_load_factor = getOption("dataquieR.print_block_load_factor",
dataquieR.print_block_load_factor_default),
advanced_options = list(),
dashboard = NA,
...,
cores = list(mode = "socket", logging = FALSE, cpus = util_detect_cores(),
load.balancing = TRUE)
)
Arguments
x |
|
dir |
character directory to store the rendered report's files, a temporary one, if omitted. Directory will be created, if missing, files may be overwritten inside that directory |
view |
logical display the report |
disable_plotly |
logical do not use |
block_load_factor |
|
advanced_options |
list options to set during report computation,
see |
dashboard |
logical dashboard mode: |
... |
additional arguments: |
cores |
integer number of cpu cores to use or a named list with arguments for parallelMap::parallelStart or NULL, if parallel has already been started by the caller. Can also be a cluster. |
Value
file names of the generated report's HTML files
Print a dataquieR summary
Description
Print a dataquieR summary
Usage
## S3 method for class 'dataquieR_summary'
print(
x,
...,
grouped_by = c("call_names", "indicator_metric"),
dont_print = FALSE,
folder_of_report = NULL,
vars_to_include = c("study")
)
Arguments
x |
the |
... |
not yet used |
grouped_by |
define the columns of the resulting matrix. It can be either "call_names", one column per function, or "indicator_metric", one column per indicator or both c("call_names", "indicator_metric"). The last combination is the default |
dont_print |
suppress the actual printing, just return a printable
object derived from |
folder_of_report |
a named vector with the location of variable and call_names |
vars_to_include |
|
Value
invisible html object
print implementation for the class interval
Description
such objects, for now, only occur in RECCap rules, so this function
is meant for internal use, mostly – for now.
Usage
## S3 method for class 'interval'
print(x, ...)
Arguments
x |
|
... |
not used yet |
Value
the printed object
See Also
base::print
print a list of dataquieR_result objects
Description
print a list of dataquieR_result objects
Usage
## S3 method for class 'list'
print(x, ...)
Arguments
x |
|
... |
passed to other implementations |
Value
undefined
Print a master_result object
Description
Print a master_result object
Usage
## S3 method for class 'master_result'
print(x, template = "default", ...)
Arguments
x |
the object |
template |
the template for the |
... |
not used |
Value
invisible(NULL)
Print a number with unit
Description
Print a number with unit
Usage
## S3 method for class 'numeric_with_unit'
print(x, ...)
Arguments
x |
number with unit |
... |
not used |
Value
invisible(x)
Print method for util_pairs_ggplot_panels objects
Description
Print method for util_pairs_ggplot_panels objects
Usage
## S3 method for class 'util_pairs_ggplot_panels'
print(x, ...)
Arguments
x |
An object of class |
... |
Ignored. |
Value
The input object, invisibly.
Check applicability of DQ functions on study data
Description
Checks applicability of DQ functions based on study data and metadata characteristics
Usage
pro_applicability_matrix(
study_data,
item_level = "item_level",
split_segments = FALSE,
label_col,
max_vars_per_plot = 20,
meta_data_segment,
meta_data_dataframe,
flip_mode = "noflip",
meta_data_v2,
meta_data = item_level,
segment_level,
dataframe_level
)
Arguments
study_data |
data.frame the data frame that contains the measurements |
item_level |
data.frame the data frame that contains metadata attributes of study data |
split_segments |
logical return one matrix per study segment |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
max_vars_per_plot |
integer from=0. The maximum number of variables per single plot. |
meta_data_segment |
data.frame – optional: Segment level metadata |
meta_data_dataframe |
data.frame – optional: Data frame level metadata |
flip_mode |
enum default | flip | noflip | auto. Should the plot be
in default orientation, flipped, not flipped or
auto-flipped. Not all options are always supported.
In general, this con be controlled by
setting the |
meta_data_v2 |
character path to workbook like metadata file, see
|
meta_data |
data.frame old name for |
segment_level |
data.frame alias for |
dataframe_level |
data.frame alias for |
Details
This is a preparatory support function that compares study data with associated metadata. A prerequisite of this function is that the no. of columns in the study data complies with the no. of rows in the metadata.
For each existing R-implementation, the function searches for necessary static metadata and returns a heatmap like matrix indicating the applicability of each data quality implementation.
In addition, the data type defined in the metadata is compared with the observed data type in the study data.
Value
a list with:
-
SummaryTable: data frame about the applicability of each indicator function (each function in a column). its integer values can be one of the following four categories: 0. Non-matching datatype + Incomplete metadata, 1. Non-matching datatype + complete metadata, 2. Matching datatype + Incomplete metadata, 3. Matching datatype + complete metadata, 4. Not applicable according to data type -
ApplicabilityPlot: ggplot2::ggplot2 heatmap plot, graphical representation ofSummaryTable -
ApplicabilityPlotList: list of plots per (maybe artificial) segment -
ReportSummaryTable: data frame underlyingApplicabilityPlot
function to call on progress initialization
Description
has one argument, n, reporting the number of steps in the current
job. needed, e.g., by packages, such as progressr.
TODO
See Also
Other options:
dataquieR,
dataquieR.CONDITIONS_LEVEL_TRHESHOLD,
dataquieR.CONDITIONS_WITH_STACKTRACE,
dataquieR.ELEMENT_MISSMATCH_CHECKTYPE,
dataquieR.ERRORS_WITH_CALLER,
dataquieR.GAM_for_LOESS,
dataquieR.MAHALANOBIS_THRESHOLD,
dataquieR.MAX_LABEL_LEN,
dataquieR.MAX_LONG_LABEL_LEN,
dataquieR.MAX_VALUE_LABEL_LEN,
dataquieR.MESSAGES_WITH_CALLER,
dataquieR.MULTIVARIATE_OUTLIER_CHECK,
dataquieR.VALUE_LABELS_htmlescaped,
dataquieR.WARNINGS_WITH_CALLER,
dataquieR.acc_loess.exclude_constant_subgroups,
dataquieR.acc_loess.mark_time_points,
dataquieR.acc_loess.min_bw,
dataquieR.acc_loess.min_proportion,
dataquieR.acc_loess.plot_format,
dataquieR.acc_loess.plot_observations,
dataquieR.acc_margins_num,
dataquieR.acc_margins_sort,
dataquieR.acc_multivariate_outlier.scale,
dataquieR.col_con_con_empirical,
dataquieR.col_con_con_logical,
dataquieR.convert_to_list_for_lapply,
dataquieR.debug,
dataquieR.des_summary_hard_lim_remove,
dataquieR.dontwrapresults,
dataquieR.droplevels_ReportSummaryTable,
dataquieR.dt_adjust,
dataquieR.fix_column_type_on_read,
dataquieR.flip_mode,
dataquieR.force_item_specific_missing_codes,
dataquieR.force_label_col,
dataquieR.grading_formats,
dataquieR.grading_rulesets,
dataquieR.guess_character,
dataquieR.guess_missing_codes,
dataquieR.ignore_empty_vars,
dataquieR.lang,
dataquieR.lazy_plots,
dataquieR.lazy_plots_cache,
dataquieR.lazy_plots_gg_compatibility,
dataquieR.locale,
dataquieR.max_cat_resp_var_levels_in_plot,
dataquieR.max_group_var_levels_in_plot,
dataquieR.max_group_var_levels_with_violins,
dataquieR.min_obs_per_group_var_in_plot,
dataquieR.min_time_points_for_cat_resp_var,
dataquieR.non_disclosure,
dataquieR.old_factor_handling,
dataquieR.old_type_adjust,
dataquieR.precomputeStudyData,
dataquieR.print_block_load_factor,
dataquieR.progress_fkt_default,
dataquieR.progress_msg_fkt_default,
dataquieR.resume_checkpoint,
dataquieR.resume_print,
dataquieR.scale_level_heuristics_control_binaryrecodelimit,
dataquieR.scale_level_heuristics_control_metriclevels,
dataquieR.study_data_cache_max,
dataquieR.study_data_cache_metrics,
dataquieR.study_data_cache_metrics_env,
dataquieR.study_data_cache_quick_fill,
dataquieR.study_data_colnames_case_sensitive,
dataquieR.testdebug,
dataquieR.traceback,
dataquieR.type_adjust_parallel
Combine ReportSummaryTable outputs
Description
Using this rbind implementation, you can combine different
heatmap-like results of the class ReportSummaryTable.
Usage
## S3 method for class 'ReportSummaryTable'
rbind(...)
Arguments
... |
|
See Also
Return names of result slots (e.g., 3rd dimension of dataquieR results)
Description
Return names of result slots (e.g., 3rd dimension of dataquieR results)
Usage
resnames(x)
Arguments
x |
the objects |
Value
character vector with names
Return names of result slots (e.g., 3rd dimension of dataquieR results)
Description
Return names of result slots (e.g., 3rd dimension of dataquieR results)
Usage
## S3 method for class 'dataquieR_resultset2'
resnames(x)
Arguments
x |
the objects |
Value
character vector with names
Data frame with the study data whose quality is being assessed
Description
Study data is expected in wide format. If should contain all variables for all segments in one large table, even, if some variables are not measured for all observational utils (study participants).
Summarize a dataquieR report
Description
Deprecated
Usage
## S3 method for class 'dataquieR_resultset'
summary(...)
Arguments
... |
Deprecated |
Value
Deprecated
Generate a report summary table
Description
Generate a report summary table
Usage
## S3 method for class 'dataquieR_resultset2'
summary(
object,
aspect = c("applicability", "error", "anamat", "indicator_or_descriptor"),
FUN,
collapse = "\n<br />\n",
...
)
Arguments
object |
a square result set |
aspect |
an aspect/problem category of results |
FUN |
function to apply to the cells of the result table |
collapse |
passed to |
... |
not used |
Value
a summary of a dataquieR report
Examples
## Not run:
util_html_table(summary(report),
filter = "top", options = list(scrollCollapse = TRUE, scrollY = "75vh"),
is_matrix_table = TRUE, rotate_headers = TRUE, output_format = "HTML"
)
## End(Not run)
Delete rows from summary table for SSI or non-SSI variables
Description
Delete rows from summary table for SSI or non-SSI variables
Usage
util_filter_repsum(
repsumtab,
vars_to_include,
meta_data,
rownames_of_report,
label_col
)
Arguments
repsumtab |
data.frame the report summary table |
vars_to_include |
|
meta_data |
data.frame old name for |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
Value
data.frame the filtered repsumtab with attribute
rownames_of_report, also filtered
Convert a dataquieR report v2 to a named list of web pages
Description
Convert a dataquieR report v2 to a named list of web pages
Usage
util_generate_pages_from_report(
report,
template,
disable_plotly,
progress = progress,
progress_msg = progress_msg,
block_load_factor,
dir,
my_dashboard
)
Arguments
report |
|
template |
character template to use, only the name, not the path |
disable_plotly |
logical do not use |
progress |
|
progress_msg |
|
block_load_factor |
numeric multiply size of parallel compute blocks by this factor. |
dir |
character output directory for potential |
my_dashboard |
list of class |
Value
named list, each entry becomes a file with the name of the entry.
the contents are HTML objects as used by htmltools.
Examples
## Not run:
devtools::load_all()
prep_load_workbook_like_file("meta_data_v2")
report <- dq_report2("study_data", dimensions = NULL, label_col = "LABEL");
save(report, file = "report_v2.RData")
report <- dq_report2("study_data", label_col = "LABEL");
save(report, file = "report_v2_short.RData")
## End(Not run)
Create a dynamic dimension related page for the report
Description
Create a dynamic dimension related page for the report
Usage
util_html_for_dims(
report,
use_plot_ly,
template,
block_load_factor,
repsum,
dir
)
Arguments
report |
dataquieR_resultset2 a |
use_plot_ly |
logical use |
template |
character template to use for the |
block_load_factor |
numeric multiply size of parallel compute blocks by this factor. |
repsum |
the |
dir |
character output directory for potential |
Value
list of arguments for append_single_page() defined locally in
util_generate_pages_from_report().
Create a dynamic single variable page for the report
Description
Create a dynamic single variable page for the report
Usage
util_html_for_var(
results,
cur_var,
use_plot_ly,
template,
note_meta = c(),
rendered_repsum,
dir,
meta_data,
label_col,
dims_in_rep,
clls_in_rep,
function_alias_map
)
Arguments
results |
list a list of subsets of the report matching |
cur_var |
character variable name for single variable pages |
use_plot_ly |
logical use |
template |
character template to use for the |
note_meta |
character notes on the metadata for a single variable (if needed) |
rendered_repsum |
the |
dir |
character output directory for potential |
Value
list of arguments for append_single_page() defined locally in
util_generate_pages_from_report().
Check for duplicated content
Description
This function tests for duplicates entries in the data set. It is possible to check duplicated entries by study segments or to consider only selected segments.
Usage
util_int_duplicate_content_dataframe(
level = c("dataframe"),
identifier_name_list,
id_vars_list,
unique_rows,
meta_data_dataframe = "dataframe_level",
...,
dataframe_level
)
Arguments
level |
character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment"). |
identifier_name_list |
vector the vector that contains the name of the identifier to be used in the assessment. For the study level, corresponds to the names of the different data frames. For the segment level, indicates the name of the segments. |
id_vars_list |
list the list containing the identifier variables names to be used in the assessment. |
unique_rows |
vector named. for each data frame, either true/false or |
meta_data_dataframe |
data.frame the data frame that contains the metadata for the data frame level |
... |
Not used. |
dataframe_level |
data.frame alias for |
Value
a list with
-
SegmentData: data frame with the results of the quality check for duplicated entries -
SegmentTable: data frame with selected duplicated entries check results, used for the data quality report. -
Other: vector with row indices of duplicated entries, if any, otherwise NULL.
See Also
Other integrity_indicator_functions:
util_int_duplicate_content_segment(),
util_int_duplicate_ids_dataframe(),
util_int_duplicate_ids_segment(),
util_int_unexp_records_set_dataframe(),
util_int_unexp_records_set_segment()
Check for duplicated content
Description
This function tests for duplicates entries in the data set. It is possible to check duplicated entries by study segments or to consider only selected segments.
Usage
util_int_duplicate_content_segment(
level = c("segment"),
identifier_name_list,
id_vars_list,
unique_rows,
study_data,
meta_data,
meta_data_segment = "segment_level",
segment_level
)
Arguments
level |
character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment"). |
identifier_name_list |
vector the vector that contains the name of the identifier to be used in the assessment. For the study level, corresponds to the names of the different data frames. For the segment level, indicates the name of the segments. |
id_vars_list |
list the list containing the identifier variables names to be used in the assessment. |
unique_rows |
vector named. for each segment, either true/false or |
study_data |
data.frame the data frame that contains the measurements, mandatory. |
meta_data |
data.frame the data frame that contains metadata attributes of the study data, mandatory. |
meta_data_segment |
data.frame – optional: Segment level metadata |
segment_level |
data.frame alias for |
Value
a list with
-
SegmentData: data frame with the results of the quality check for duplicated entries -
SegmentTable: data frame with selected duplicated entries check results, used for the data quality report. -
Other: vector with row indices of duplicated entries, if any, otherwise NULL.
See Also
Other integrity_indicator_functions:
util_int_duplicate_content_dataframe(),
util_int_duplicate_ids_dataframe(),
util_int_duplicate_ids_segment(),
util_int_unexp_records_set_dataframe(),
util_int_unexp_records_set_segment()
Check for duplicated IDs
Description
This function tests for duplicates entries in identifiers. It is possible to check duplicated identifiers by study segments or to consider only selected segments.
Usage
util_int_duplicate_ids_dataframe(
level = c("dataframe"),
id_vars_list,
identifier_name_list,
repetitions,
meta_data_dataframe = "dataframe_level",
...,
dataframe_level
)
Arguments
level |
character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment"). |
id_vars_list |
list id variable names for each segment or data frame |
identifier_name_list |
vector the segments or data frame names being assessed |
repetitions |
vector an integer vector indicating the number of allowed repetitions in the |
meta_data_dataframe |
data.frame the data frame that contains the metadata for the data frame level |
... |
not used. |
dataframe_level |
data.frame alias for |
Value
a list with
-
DataframeData: data frame with the results of the quality check for duplicated identifiers -
DataframeTable: data frame with selected duplicated identifiers check results, used for the data quality report. -
Other: named list with inner lists of unique cases containing each the row indices of duplicated identifiers separated by "|" , if any. outer names are names of the data frames
See Also
Other integrity_indicator_functions:
util_int_duplicate_content_dataframe(),
util_int_duplicate_content_segment(),
util_int_duplicate_ids_segment(),
util_int_unexp_records_set_dataframe(),
util_int_unexp_records_set_segment()
Check for duplicated IDs
Description
This function tests for duplicates entries in identifiers. It is possible to check duplicated identifiers by study segments or to consider only selected segments.
Usage
util_int_duplicate_ids_segment(
level = c("segment"),
id_vars_list,
study_segment,
repetitions,
study_data,
meta_data,
meta_data_segment = "segment_level",
segment_level
)
Arguments
level |
character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment"). |
id_vars_list |
list id variable names for each segment or data frame |
study_segment |
vector the segments or data frame names being assessed |
repetitions |
vector an integer vector indicating the number of allowed repetitions in the id_vars. Currently, no repetitions are supported. |
study_data |
data.frame the data frame that contains the measurements, mandatory. |
meta_data |
data.frame the data frame that contains metadata attributes of the study data, mandatory. |
meta_data_segment |
data.frame – optional: Segment level metadata |
segment_level |
data.frame alias for |
Value
a list with
-
SegmentData: data frame with the results of the quality check for duplicated identifiers -
SegmentTable: data frame with selected duplicated identifiers check results, used for the data quality report. -
Other: named list with inner lists of unique cases containing each the row indices of duplicated identifiers separated by "|" , if any. outer names are names of the segments. Useprep_get_study_data_segment()to get the data frame the indices refer to.
See Also
Other integrity_indicator_functions:
util_int_duplicate_content_dataframe(),
util_int_duplicate_content_segment(),
util_int_duplicate_ids_dataframe(),
util_int_unexp_records_set_dataframe(),
util_int_unexp_records_set_segment()
Check for unexpected data record set
Description
This function tests that the identifiers match a provided record set. It is possible to check for unexpected data record sets by study segments or to consider only selected segments.
Usage
util_int_unexp_records_set_dataframe(
level = c("dataframe"),
id_vars_list,
identifier_name_list,
valid_id_table_list,
meta_data_record_check_list,
meta_data_dataframe = "dataframe_level",
...,
dataframe_level
)
Arguments
level |
character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment"). |
id_vars_list |
list the list containing the identifier variables names to be used in the assessment. |
identifier_name_list |
list the list that contains the name of the identifier to be used in the assessment. For the study level, corresponds to the names of the different data frames. For the segment level, indicates the name of the segments. |
valid_id_table_list |
list the reference list with the identifier variable values. |
meta_data_record_check_list |
character a character vector indicating the type of check to conduct, either "subset" or "exact". |
meta_data_dataframe |
data.frame the data frame that contains the metadata for the data frame level |
... |
not used |
dataframe_level |
data.frame alias for |
Value
a list with
-
SegmentData: data frame with the results of the quality check for unexpected data elements -
SegmentTable: data frame with selected unexpected data elements check results, used for the data quality report. -
UnexpectedRecords: vector with row indices of duplicated records, if any, otherwise NULL.
See Also
Other integrity_indicator_functions:
util_int_duplicate_content_dataframe(),
util_int_duplicate_content_segment(),
util_int_duplicate_ids_dataframe(),
util_int_duplicate_ids_segment(),
util_int_unexp_records_set_segment()
Check for unexpected data record set
Description
This function tests that the identifiers match a provided record set. It is possible to check for unexpected data record sets by study segments or to consider only selected segments.
Usage
util_int_unexp_records_set_segment(
level = c("segment"),
id_vars_list,
identifier_name_list,
valid_id_table_list,
meta_data_record_check_list,
study_data,
label_col,
meta_data,
item_level,
meta_data_segment = "segment_level",
segment_level
)
Arguments
level |
character a character vector indicating whether the assessment should be conducted at the study level (level = "dataframe") or at the segment level (level = "segment"). |
id_vars_list |
list the list containing the identifier variables names to be used in the assessment. |
identifier_name_list |
list the list that contains the name of the identifier to be used in the assessment. For the study level, corresponds to the names of the different data frames. For the segment level, indicates the name of the segments. |
valid_id_table_list |
list the reference list with the identifier variable values. |
meta_data_record_check_list |
character a character vector indicating the type of check to conduct, either "subset" or "exact". |
study_data |
data.frame the data frame that contains the measurements, mandatory. |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
meta_data |
data.frame the data frame that contains metadata attributes of the study data, mandatory. |
item_level |
data.frame the data frame that contains metadata attributes of study data |
meta_data_segment |
data.frame – optional: Segment level metadata |
segment_level |
data.frame alias for |
Value
a list with
-
SegmentData: data frame with the results of the quality check for unexpected data elements -
SegmentTable: data frame with selected unexpected data elements check results, used for the data quality report. -
UnexpectedRecords: vector with row indices of duplicated records, if any, otherwise NULL.
See Also
Other integrity_indicator_functions:
util_int_duplicate_content_dataframe(),
util_int_duplicate_content_segment(),
util_int_duplicate_ids_dataframe(),
util_int_duplicate_ids_segment(),
util_int_unexp_records_set_dataframe()
Operator caring for units
Description
Operator caring for units
Usage
util_op_numeric_with_unit(e1, e2)
Arguments
e1 |
first argument |
e2 |
second argument |
Value
result
Translate standard column names to readable ones
Description
TODO: Duplicate of util_make_data_slot_from_table_slot ??
Usage
util_translate_indicator_metrics(
colnames,
short = FALSE,
long = TRUE,
ignore_unknown = FALSE
)
Arguments
colnames |
character the names to translate |
short |
logical include unit letter in output |
long |
logical include unit description in output |
ignore_unknown |
logical do not replace unknown indicator metrics
by |
Value
translated names
Data frame with labels for missing- and jump-codes #' Metadata about value and missing codes
Description
data.frame with the following columns:
-
CODE_VALUE: numeric | DATETIME Missing or categorical code (the number or date representing a missing/category) -
CODE_LABEL: character a label for the missing code or category -
CODE_CLASS: enum JUMP | MISSING. For missing lists: Class of the missing code. -
CODE_INTERPRETenum I | P | PL | R | BO | NC | O | UH | UO | NE. For missing lists: Class of the missing code according toAAPOR. -
resp_vars: character For missing lists: optional, if a missing code is specific for some variables, it is listed for each such variable with one entry inresp_vars, IfNA, the code is assumed shared among all variables. For v1.0 metadata, you need to refer toVAR_NAMEShere.
See Also
com_qualified_item_missingness()
com_qualified_segment_missingness()