
Package ‘cucumber’
July 21, 2025

Type Package

Title Behavior-Driven Development for R

Version 2.1.1

Description
Write executable specifications in a natural language that describes how your code should behave.
Write specifications in feature files using 'Gherkin' language and execute them using func-
tions implemented in R.
Use them as an extension to your 'testthat' tests to provide a high level descrip-
tion of how your code works.

License MIT + file LICENSE

URL https://github.com/jakubsob/cucumber,

https://jakubsobolewski.com/cucumber/

BugReports https://github.com/jakubsob/cucumber/issues

Encoding UTF-8

Depends R (>= 4.1.0)

Imports checkmate, cli, dplyr, fs, glue, purrr, rlang, stringr,
testthat (>= 3.0.0), tibble, withr

Suggests mockery, box, shinytest2, chromote, covr, knitr, rmarkdown,
quarto, R6, pkgdown, pkgload, muttest

Config/testthat/edition 3

RoxygenNote 7.3.2

VignetteBuilder quarto

Config/Needs/website rmarkdown

NeedsCompilation no

Author Jakub Sobolewski [aut, cre]

Maintainer Jakub Sobolewski <jakupsob@gmail.com>

Repository CRAN

Date/Publication 2025-07-21 07:50:02 UTC

1

https://github.com/jakubsob/cucumber
https://jakubsobolewski.com/cucumber/
https://github.com/jakubsob/cucumber/issues

2 define_parameter_type

Contents

define_parameter_type . 2
hook . 3
opts . 4
run . 4
step . 5
test . 7

Index 9

define_parameter_type Define extra parameters to use in Cucumber steps.

Description

The following parameter types are available by default:

Type Description
{int} Matches integers, for example 71 or -19. Converts value with as.integer.
{float} Matches floats, for example 3.6, .8 or -9.2. Converts value with as.double.
{word} Matches words without whitespace, for example banana (but not banana split).
{string} Matches single-quoted or double-quoted strings, for example "banana split" or ’banana split’ (but not banana split). Only the text between the quotes will be extracted. The quotes themselves are discarded.

To use custom parameter types, call define_parameter_type before cucumber::test is called.

Usage

define_parameter_type(name, regexp, transformer)

Arguments

name The name of the parameter.

regexp A regular expression that the parameter will match on. Note that if you want to
escape a special character, you need to use four backslashes.

transformer A function that will transform the parameter from a string to the desired type.
Must be a function that requires only a single argument.

Value

An object of class parameter, invisibly. Function should be called for side effects.

hook 3

Examples

define_parameter_type("color", "red|blue|green", as.character)
define_parameter_type(

name = "sci_number",
regexp = "[+-]?\\\\d*\\\\.?\\\\d+(e[+-]?\\\\d+)?",
transform = as.double

)

Not run:
#' tests/testthat/test-cucumber.R
cucumber::define_parameter_type("color", "red|blue|green", as.character)
cucumber::test(".", "./steps")

End(Not run)

hook Hooks

Description

Hooks are blocks of code that can run at various points in the Cucumber execution cycle. They are
typically used for setup and teardown of the environment before and after each scenario.

Where a hook is defined has no impact on what scenarios it is run for.

If you want to run a hook only before or after a specific scenario, use it’s name to execute hook only
for this scenario.

Usage

before(hook)

after(hook)

Arguments

hook A function that will be run. The function first argument is context and the sce-
nario name is the second argument.

Before

Whatever happens in a before hook is invisible to people who only read the features. You should
consider using a background as a more explicit alternative, especially if the setup should be readable
by non-technical people. Only use a before hook for low-level logic such as starting a browser or
deleting data from a database.

After

After hooks run after the last step of each scenario, even when the scenario failed or thrown an error.

4 run

Examples

Not run:
before(function(context, scenario_name) {

context$session <- selenider::selenider_session()
})

after(function(context, scenario_name) {
selenider::close_session(context$session)

})

after(function(context, scenario_name) {
if (scenario_name == "Playing one round of the game") {
context$game$close()

}
})

End(Not run)

opts cucumber Options

Description

Internally used, package-specific options. They allow overriding the default behavior of the pack-
age.

Details

The following options are available:

• cucumber.indent

Regular expression for the indent of the feature files.
default: ^\\s{2}

See base::options() and base::getOption() on how to work with options.

run Run Cucumber tests in a testthat context

Description

It’s purpose is to be able to run Cucumber tests alongside testthat tests.

To do that, place a call to run() in one of the test-*.R files in your tests/testthat directory.

Usage

run(path = ".", filter = NULL, ...)

step 5

Arguments

path Path to the directory containing the .feature files. If run() is placed in a
tests/testthat/test-*.R file and you call testthat::test_dir or similar,
it runs in the tests/testthat directory. The default value "." finds all feature
files in the tests/testthat directory.

filter If not NULL, only features with file names matching this regular expression
will be executed. Matching is performed on the file name after it’s stripped of
".feature".

... Additional arguments passed to grepl().

Value

NULL, invisibly. To get result and a report, use cucumber::test(), or inspect the result of
testthat function call.

Examples

Not run:
#' tests/testthat/test-cucumber.R
cucumber::run()

End(Not run)

step Define a step

Description

Provide a description that matches steps in feature files and the implementation function that will
be run.

Usage

given(description, implementation)

when(description, implementation)

then(description, implementation)

Arguments

description A description of the step.
Cucumber executes each step in a scenario one at a time, in the sequence you’ve
written them in. When Cucumber tries to execute a step, it looks for a matching
step definition to execute.

6 step

Keywords are not taken into account when looking for a step definition.
This means you cannot have a Given, When, Then, And or But step with the
same text as another step.
Cucumber considers the following steps duplicates:

Given there is money in my account
Then there is money in my account

This might seem like a limitation, but it forces you to come up with a less am-
biguous, more clear domain language:

Given my account has a balance of £430
Then my account should have a balance of £430

To pass arguments, description can contain placeholders in curly braces.
To match:

Given my account has a balance of £430

use:

given("my account has a balance of £{float}", function(balance, context) {

})

If no step definition is found an error will be thrown.
If multiple steps definitions for a single step are found an error will be thrown.

implementation A function that will be run during test execution.
The implementation function must always have the last parameter named context.
It holds the environment where test state can be stored to be passed to the next
step.
If a step has a description "I have {int} cucumbers in my basket" then the
implementation function should be function(n, context). The {int} value
will be passed to n, this parameter can have any name.
If a table or a docstring is defined for a step, it will be passed as an argument
after placeholder parameters and before context. The function should be a
function(n, table, context). See an example on how to write implemen-
tation that uses tables or docstrings.

Details

Placeholders in expressions are replaced with regular expressions that match values in the feature
file. Regular expressions are generated during runtime based on defined parameter types.

The expression "I have {int} cucumbers in my basket" will be converted to "I have [+-]?(?<![.])[:digit:]+(?![.])
cucumbers in my basket". The extracted value of {int} will be passed to the implementation
function after being transformed with as.integer.

To define your own parameter types use define_parameter_type.

Value

A function of class step, invisibly. Function should be called for side effects.

https://github.com/jakubsob/cucumber/blob/main/inst/examples/table/tests/acceptance/setup-steps.R

test 7

See Also

define_parameter_type()

Examples

given("I have {int} cucumbers in my basket", function(n_cucumbers, context) {
context$n_cucumbers <- n_cucumbers

})

given("I have {int} cucumbers in my basket and a table", function(n_cucumbers, table, context) {
context$n_cucumbers <- n_cucumbers
context$table <- table

})

when("I eat {int} cucumbers", function(n_cucumbers, context) {
context$n_cucumbers <- context$n_cucumbers - n_cucumbers

})

then("I should have {int} cucumbers in my basket", function(n_cucumbers, context) {
expect_equal(context$n_cucumbers, n_cucumbers)

})

test Run Cucumber tests

Description

It runs tests from specifications in .feature files found in the path.

To run Cucumber tests alongside testthat tests, see cucumber::run().

Usage

test(
path = "tests/acceptance",
filter = NULL,
reporter = NULL,
env = NULL,
load_helpers = TRUE,
stop_on_failure = TRUE,
stop_on_warning = FALSE,
...

)

8 test

Arguments

path Path to directory containing tests.

filter If not NULL, only features with file names matching this regular expression
will be executed. Matching is performed on the file name after it’s stripped of
".feature".

reporter Reporter to use to summarise output. Can be supplied as a string (e.g. "sum-
mary") or as an R6 object (e.g. SummaryReporter$new()).
See Reporter for more details and a list of built-in reporters.

env Environment in which to execute the tests. Expert use only.

load_helpers Source helper files before running the tests?
stop_on_failure

If TRUE, throw an error if any tests fail.
stop_on_warning

If TRUE, throw an error if any tests generate warnings.

... Additional arguments passed to grepl() to control filtering.

Good Practices

• Use a separate directory for your acceptance tests, e.g. tests/acceptance.
It’s not prohibited to use tests/testthat directory, but it’s not recommended as those tests
serve a different purpose and are better run separately, especially if acceptance tests take longer
to run than unit tests.
If you want to run Cucumber tests alongside testthat tests, you can use cucumber::run()
in one of the test-*.R files in your tests/testthat directory.

• Use setup-*.R files for calling step(), define_parameter_type() and hook() to leverage
testthat loading mechanism.
If your step(), define_parameter_type() and hook() are called from somewhere else, you
are responsible for loading them.
Read more about testthat special files in the testthat documentation.

• Use test-*.R files to test the support code you might have implemented that is used to run
Cucumber tests.
Those tests won’t be run when calling test(). To run those tests use testthat::test_dir("tests/acceptance").

Examples

Not run:
cucumber::test("tests/acceptance")
cucumber::test("tests/acceptance", filter = "addition|multiplication")

End(Not run)

https://testthat.r-lib.org/articles/special-files.html#setup-files
https://testthat.r-lib.org/articles/special-files.html

Index

after (hook), 3

base::getOption(), 4
base::options(), 4
before (hook), 3

define_parameter_type, 2, 6
define_parameter_type(), 7, 8

given (step), 5
grepl(), 8

hook, 3
hook(), 8

opts, 4

Reporter, 8
run, 4

step, 5
step(), 8

test, 7
test(), 8
then (step), 5

when (step), 5

9

	define_parameter_type
	hook
	opts
	run
	step
	test
	Index

