| Title: | Cluster Estimated Standard Errors | 
| Version: | 1.0.0 | 
| Description: | Implementation of the Cluster Estimated Standard Errors (CESE) proposed in Jackson (2020) <doi:10.1017/pan.2019.38> to compute clustered standard errors of linear coefficients in regression models with grouped data. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| URL: | https://github.com/DiogoFerrari/ceser | 
| BugReports: | https://github.com/DiogoFerrari/ceser/issues | 
| Depends: | R (≥ 2.10) | 
| Imports: | magrittr, purrr, dplyr, tibble, lmtest | 
| RoxygenNote: | 7.0.2 | 
| Suggests: | knitr, rmarkdown | 
| VignetteBuilder: | knitr | 
| NeedsCompilation: | yes | 
| Packaged: | 2020-11-04 18:20:22 UTC; diogo | 
| Author: | Diogo Ferrari [aut, cre], John Jackson [aut] | 
| Maintainer: | Diogo Ferrari <diogoferrari@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2020-11-09 20:20:03 UTC | 
Sample data set
Description
A dataset relating the effective number of parties to the number of presidential candidates and presidential power.
Usage
dcese
Format
A data frame with rows and 9 variables:
- country
- name of the country 
- enep
- Effective number of legislative parties 
- enpc
- Number of presidential candidates 
- fapres
- Presidential power 
- proximity
- Proximity of the presidential and legislative elections 
- eneg
- Eeffective number of ethnic groups 
- logmag
- log of average district magnitudes 
- enpcfapres
- Interaction between enpc and fapres 
- logmag_eneg
- Interaction between logmag and eneg 
...
Source
Jackson, John (2019) Corrected Standard Errors with Clustered Data. Political Analysis.
References
Elgie, Robert, Bueur, C., Dolez, B. & Laurent, A. (2014). “Proximity, Candidates, and Presidential Power: How Directly Elected Presidents Shape the Legislative Party System.” Political Research Quarterly. 67(3): 467 - 477.
Cluster Estimated Standard Errors
Description
Cluster Estimated Standard Errors (CESE)
Usage
vcovCESE(mod, cluster = NULL, type = NULL)
Arguments
| mod | a model object. It can be the output of the functions  | 
| cluster | either a string vector with the name of the variables that will be used to cluster the standard errors, or a formula - e.g., ~ rhs, with a summation of the variables that will be used to cluster the standard errors replacing the  | 
| type | string with either  | 
Value
The function returns a variance-covariace matrix of the coefficient estimates using the Cluster Estimated Standard Error (CESE) method.
References
Jackson, John (2019) Corrected Standard Errors with Clustered Data. Political Analysis.
Hayes, A. F., & Cai, L., (2007) Using heteroskedasticity-consistent standard error estimators in ols regression: an introduction and software implementation, Behavior research methods, 39(4), 709–722.
Davidson, R., & MacKinnon, J. G., (2004) Econometric theory and methods: Oxford University Press New York.
Examples
mod  = lm(enep ~  enpc + fapres + enpcfapres + proximity + eneg + logmag + logmag_eneg , data=dcese)
## --------------------------------------
## Getting the variance covariance matrix
## -------------------------------------- 
## Original variance-covariance matrix (no clustered std. errors)
vcov(mod)
## Variance-covariance matrix using CRSE (sandwish package)
## sandwich::vcovCL(mod, cluster = ~ country)
## sandwich::vcovCL(mod, cluster = ~ country, type="HC3")
## Variance-covariance matrix using CESE
ceser::vcovCESE(mod, cluster = ~ country)
ceser::vcovCESE(mod, cluster = ~ country, type="HC3") # HC3 correction
## ---------
## Summaries
## ---------
## no robust SE 
summary(mod)                                                                          
## summary table using CRSE (sandwich package)
## lmtest::coeftest(mod, vcov = sandwich::vcovCL, cluster = ~ country)                   
## summary using CESE
lmtest::coeftest(mod, vcov = ceser::vcovCESE, cluster = ~ country, type='HC3')