Package 'bootSVD'

July 22, 2025

Title Fast, Exact Bootstrap Principal Component Analysis for High Dimensional Data
Description Implements fast, exact bootstrap Principal Component Analysis and Singular Value Decompositions for high dimensional data, as described in

2 As 2Vs

As2Vs	Convert low dimensional bootstrap components to high dimensional bootstrap components	
Index		24
	simEEG	22
	reindexVectorsByK	21
	reindexMatricesByK	
	qrSVD	
	08	
	getMomentsAndMomentCI	
	genQ	
	genBootIndeces	16
	ffmatrixmult	
	fastSVD	
	EEG_score_var	
	EEG_mu	
	EEG_leadingV	
	bootSVD_LD	9

Description

Let B be the number of bootstrap samples, indexed by b=1,2,...B. As2Vs is a simple function converts the list of principal component (PC) matrices for the bootstrap scores to a list of principal component matrices on the original high dimensional space. Both of these lists, the input and the output of As2Vs, are indexed by b.

Usage

```
As2Vs(AsByB, V, pattern = NULL, ...)
```

Arguments

AsByB	a list of the PCs matrices for each bootstrap sample, indexed by b . Each element of this list should be a $(n \ \text{by} \ K)$ matrix, where K is the number of PCs of interest, and n is the sample size.
V	a tall $(p \text{ by } n)$ matrix containing the PCs of the original sample, where n is sample size, and p is sample dimension.
pattern	if V is a class ff object, the returned value will also be a class ff object. pattern is passed to ff in creation of the output.
	passed to mclapply.

Value

a B-length list of (p by K) PC matrices on the original sample coordinate space (denoted here as V^b). This is achieved by the matrix multiplication $V^b = VA^b$. Note that here, V^b denotes the b^{th} bootstrap PC matrix, not V raised to the power b. This notation is the same as the notation used in (Fisher et al., 2014).

bootPCA 3

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Examples

```
#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
svdY<-fastSVD(Y)
DUt<- tcrossprod(diag(svdY$d),svdY$u)
bInds<-genBootIndeces(B=50,n=dim(DUt)[2])
bootSVD_LD_output<-bootSVD_LD(DUt=DUt,bInds=bInds,K=3,verbose=interactive())
Vs<-As2Vs(As=bootSVD_LD_output$As,V=svdY$v)
# Yields the high dimensional bootstrap PCs (left singular
# vectors of the bootstrap sample Y),
# indexed by b = 1,2...B, where B is the number of bootstrap samples</pre>
```

bootPCA

Quickly calculates bootstrap PCA results (wrapper for bootSVD)

Description

All arguments are passed to [bootSVD()]. This function should be used in exactly the same way as [bootSVD()]. The only difference is that PCA typically involves re-centering each bootstrap sample, whereas calculations involving the SVD might not.

Usage

```
bootPCA(...)
```

Arguments

... passed to [bootSVD()], with centerSamples set to TRUE.

Value

```
bootSVD(...)
```

bootSVD

Calculates bootstrap distribution of PCA (i.e. SVD) results

Description

Applies fast bootstrap PCA, using the method from (Fisher et al., 2014). Dimension of the sample is denoted by p, and sample size is denoted by n, with p > n.

Usage

```
bootSVD(
    Y = NULL,
    K,
    V = NULL,
    d = NULL,
    U = NULL,
    B = 50,
    output = "HD_moments",
    verbose = getOption("verbose"),
    bInds = NULL,
    percentiles = c(0.025, 0.975),
    centerSamples = TRUE,
    pattern_V = "V_",
    pattern_Vb = "Vb_"
)
```

Arguments

Υ

initial data sample, which can be either a matrix or a ff matrix. Y can be either tall $(p \ \text{by} \ n)$ or wide $(n \ \text{by} \ p)$. If Y is entered and V, d and U (see definitions below) are not entered, then bootSVD will also compute the SVD of Y. In this case where the SVD is computed, bootSVD will assume that the larger dimension of Y is p, and the smaller dimension of Y is n (i.e. bootSVD assumes that p>n. This assumption can be overriden by manually entering V, U and d.

For cases where the entire data matrix can be easily stored in memory (e.g. p < 50000), it is generally appropriate to enter Y as a standard matrix. When Y is large enough that matrix algebra on Y is too demanding for memory though, Y should be entered as a ff object, where the actual data is stored on disk. If Y has class ff, and V, d or U is not entered, then block matrix algebra will be used to calculate the PCs and bootstrap PCs. The results of these calculations will be returned as ff objects as well.

Κ

number of PCs to calculate the bootstrap distribution for.

٧

(optional) the (p by n) full matrix of p-dimensional PCs for the sample data matrix. If Y is wide, these are the right singular vectors of Y (i.e. Y = UDV'). If Y is tall, these are the left singular vectors of Y (i.e. Y = VDU'). In general it is assumed that p > n, however, this can be overridden by setting V and U

appropriately.

Like Y, the argument V can be either a standard matrix or a ff matrix. If V is a ff object, the bootstrap PCs, if requested, will be returned as ff objects as well.

(optional) n-length vector of the singular values of Y. For example, if Y is tall,

then we have Y = VDU' with D=diag(d).

U (optional) the (n by n) full set of n-dimensional singular vectors of Y. If Y is

wide, these are the left singular vectors of Y (i.e. Y = UDV'). If Y is tall, these

are the right singular vectors of Y (i.e. Y = VDU').

B number of bootstrap samples to compute.

output a vector telling which descriptions of the bootstrap distribution should be cal-

culated. Can include any of the following: 'initial_SVD', 'HD_moments', 'full_HD_PC_dist', and 'HD_percentiles'. See below for explanations of these

outputs.

For especially high dimensional cases, caution should be used if requesting

'full_HD_PC_dist' due to potential storage limitations.

verbose if TRUE, the function will print progress during calculation procedure.

bInds a (B by n) matrix of bootstrap indeces, where B is the number of bootstrap

samples, and n is the sample size. The purpose of setting a specific bootstrap sampling index is to allow the results to be more precisely compared against standard bootstrap PCA calculations. If entered, the bInds argument will over-

ride the B argument.

percentiles a vector containing percentiles to be used to calculate element-wise percentiles

across the bootstrap distribution (both across the distribution of p-dimensional components and the distribution of n-dimensional components). For example, percentiles=c(.025, .975) will return the 2.5 and 97.5 percentiles, which can be used as 95 percent bootstrap percentile CIs. Alternatively, a longer vector of

percentiles can be entered.

centerSamples whether each bootstrap sample should be centered before calculating the SVD.

pattern_V if Y is a class ff object, then the returned PCs of Y will also be a class ff object.

pattern_V is passed to ff in creation of the initial_SVD output. Specifically, pattern_V is a filename prefix used for storing the high dimensional PCs of the

original sample.

pattern_Vb if Y or V is a class ff object, then the returned bootstrap PCs will also be class

ff objects. pattern_Vb is passed to ff in creation of the full_HD_PC_dist output. Specifically, pattern_Vb is a filename prefix used for storing the high

dimensional bootstrap PCs.

Details

d

Users might also consider changing the global options ffbatchbytes, from the ff package, and mc.cores, from the parallel package. When ff objects are entered as arguments for bootSVD, the required matrix algebra is done using block matrix alebra. The ffbatchbytes option determines the size of the largest block matrix that will be held in memory at any one time. The mc.cores option (set to 1 by default) determines the level of parallelization to use when calculating the high dimensional distribution of the bootstrap PCs (see mclapply).

Value

bootSVD returns a list that can include any of the following elements, depending on what is specified in the output argument:

- initial_SVD The singular value decomposition of the centered, original data matrix. initial_SVD is a list containing V, the matrix of p-dimensional principal components, d, the vector of singular values of Y, and U, the matrix of n-dimensional singular vectors of Y.
- **HD_moments** A list containing the bootstrap expected value (EPCs), element-wise bootstrap variance (varPCs), and element-wise bootstrap standard deviation (sdPCs) for each of the pdimensional PCs. Each of these three elements of HD_moments is also a list, which contains K vectors, one for each PC. HD_moments also contains momentCI, a K-length list of (p by 2) matrices containing element-wise moment based confidence intervals for the PCs.
- **full HD PC dist** A B-length list of matrices (or ff matrices), with the b^{th} list element equal to the (p by K) matrix of high dimensional PCs for the b^{th} bootstrap sample. For especially high dimensional cases when the output is returned as ff matrices, caution should be used if requesting 'full_HD_PC_dist' due to potential storage limitations. To reindex these PCs by k (the PC index) as opposed to b (the bootstrap index), see [reindex-MatricesByK()]. Again though, caution shoulded be used when reindexing PCs stored as ff objects, as this will double the number of files stored.
- **HD_percentiles** A list of K matrices, each of dimension (p by q), where q is the number of percentiles requested (i.e. q = length(percentiles)). The k^{th} matrix in HD_percentiles contains element-wise percentiles for the k^{th} , p-dimensional PC.

In addition, the following results are always included in the output, regardless of what is specified in the output argument:

full_LD_PC_dist

A B-length list of matrices, with the b^{th} list element equal to the (p by K) matrix of PCs of the scores in the b^{th} bootstrap sample. To reindex these vectors by k (the PC index), see [reindexMatricesByK()].

A B-length list of vectors, with the b^{th} element of d_dist containing the nd_dist length vector of singular values from the b^{th} bootstrap sample. To reindex these values by k (the PC index), see [reindexVectorsByK()].

> A B-length list of (n by K) matrices, with the columns of the b^{th} matrix containing the n-length singular vectors from the b^{th} bootstrap sample. To reindex these vectors by k (the PC index), see [reindexMatricesByK()].

A list that is comparable to HD_moments, but that instead describes the variability of the n-dimensional principal components of the resampled score matrices. LD_moments contains the bootstrap expected value (EPCs), element-wise bootstrap variances (varPCs), and element-wise bootstrap standard deviations (sdPCs) for each of the n-dimensional PCs. Each of these three elements of LD_moments is also a list, which contains K vectors, one for each PC. LD_moments also contains moment CI, a list of K (n by 2) matrices containing element-wise,

moment-based confidence intervals for the PCs.

LD_percentiles A list of K matrices, each of dimension (p by q), where q is the number of percentiles requested (i.e. q = length(percentiles))). The k^{th} matrix in LD_percentiles contains element-wise percentiles for the k^{th} n-dimensional PC.

U_dist

LD_moments

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

```
#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
b<-bootSVD(Y, B=50, K=2, output=
  c('initial_SVD', 'HD_moments', 'full_HD_PC_dist',
  'HD_percentiles'), verbose=interactive())
h
#explore results
matplot(b$initial_SVD$V[,1:4],type='l',main='Fitted PCs',lty=1)
legend('bottomright',paste0('PC',1:4),col=1:4,lty=1,lwd=2)
# look specifically at 2nd PC
k<-2
######
#looking at HD variability
#plot several draws from bootstrap distribution
VsByK<-reindexMatricesByK(b$full_HD_PC_dist)
matplot(t(VsByK[[k]][1:20,]),type='l',lty=1,
main=paste0('20 Draws from bootstrap\ndistribution of HD PC ',k))
#plot pointwise CIs
matplot(b$HD_moments$momentCI[[k]],type='l',col='blue',lty=1,
main=paste0('CIs For HD PC ',k))
matlines(b$HD_percentiles[[k]],type='l',col='darkgreen',lty=1)
lines(b$initial_SVD$V[,k])
legend('topright',c('Fitted PC','Moment CIs','Percentile CIs'),
lty=1,col=c('black','blue','darkgreen'))
abline(h=0,lty=2,col='darkgrey')
######
# looking at LD variability
# plot several draws from bootstrap distribution
AsByK<-reindexMatricesByK(b$full_LD_PC_dist)
matplot(t(AsByK[[k]][1:50,]),type='l',lty=1,
main=paste0('50 Draws from bootstrap\ndistribution of LD PC ',k),
xlim=c(1,10),xlab='PC index (truncated)')
# plot pointwise CIs
matplot(b$LD_moments$momentCI[[k]],type='o',col='blue',
lty=1,main=paste0('CIs For LD PC ',k),xlim=c(1,10),
xlab='PC index (truncated)',pch=1)
```

```
matlines(b$LD_percentiles[[k]], type='o', pch=1, col='darkgreen', lty=1)
abline(h=0,lty=2,col='darkgrey')
legend('topright',c('Moment CIs','Percentile CIs'),lty=1,
pch=1,col=c('blue','darkgreen'))
#Note: variability is mostly due to rotations with the third and fourth PC.
# Bootstrap eigenvalue distribution
dsByK<-reindexVectorsByK(b$d_dist)</pre>
boxplot(dsByK[[k]]^2,main=paste0('Covariance Matrix Eigenvalue ',k),
ylab='Bootstrap Distribution',
ylim=range(c(dsByK[[k]]^2,b$initial_SVD$d[k]^2)))
points(b$initial_SVD$d[k]^2,pch=18,col='red')
legend('bottomright', 'Sample Value', pch=18, col='red')
#Example with ff input
library(ff)
Yff<-as.ff(Y, pattern='Y_')
# If desired, change options in 'ff' package to
# adjust the size of matrix blocks held in RAM.
# For example:
# options('ffbatchbytes'=100000)
ff_dir<-tempdir()</pre>
pattern_V <- paste0(ff_dir,'/V_')</pre>
pattern_Vb <- paste0(ff_dir,'/Vb_')</pre>
bff <- bootSVD(Yff, B=50, K=2, output=c('initial_SVD', 'HD_moments',</pre>
  'full_HD_PC_dist', 'HD_percentiles'), pattern_V= pattern_V,
 pattern_Vb=pattern_Vb, verbose=interactive())
# Note that elements of full_HD_PC_dist and initial_SVD
# have class 'ff'
str(lapply(bff,function(x) class(x[[1]])))
#Show some results of bootstrap draws
plot(bff$full_HD_PC_dist[[1]][,k],type='l')
#Reindexing by K will create a new set of ff files.
VsByKff<-reindexMatricesByK(bff$full_HD_PC_dist,
 pattern=paste0(ff_dir,'/Vk_'))
physical(bff$full_HD_PC_dist[[1]])$filename
physical(VsByKff[[1]])$filename
matplot(t(VsByKff[[k]][1:10,]),type='l',lty=1,
main=paste0('Bootstrap Distribution of PC',k))
# Saving and moving results:
saveRDS(bff,file=paste0(ff_dir,'/bff.rds'))
close(bff$initial_SVD$V)
physical(bff$initial_SVD$V)$filename
# If the 'ff' files on disk are moved or renamed,
# this filename attribute can be changed:
old_ff_path <- physical(bff$initial_SVD$V)$filename</pre>
new_ff_path <- paste0(tempdir(),'/new_V_file.ff')</pre>
```

bootSVD_LD 9

```
file.rename(from= old_ff_path, to= new_ff_path)
physical(bff$initial_SVD$V)$filename <- new_ff_path
matplot(bff$initial_SVD$V[,1:4],type='1',lty=1)</pre>
```

bootSVD_LD

Calculate bootstrap distribution of n-dimensional PCs

Description

bootSVD_LD Calculates the bootstrap distribution of the principal components (PCs) of a low dimensional matrix. If the score matrix is inputted, the output of bootSVD_LD can be used to to calculate bootstrap standard errors, confidence regions, or the full bootstrap distribution of the high dimensional components. Most users may want to instead consider using [bootSVD()], which also calculates descriptions of the high dimensional components. Note that [bootSVD()] calls bootSVD_LD.

Usage

```
bootSVD_LD(
   UD,
   DUt = t(UD),
   bInds = genBootIndeces(B = 1000, n = dim(DUt)[2]),
   K,
   warning_type = "silent",
   verbose = getOption("verbose"),
   centerSamples = TRUE
)
```

Arguments

UD (optional) a (n by n) matrix of scores, were rows denote individuals, and columns

denote measurements in the PC space.

DUt the transpose of UD. If both UD and UDt are entered and t(UD)!=DUt, the DUt

argument will override the UD argument.

bInds a (B by n) matrix of bootstrap indeces, where B is the number of bootstrap sam-

ples, and n is the sample size. Each row should be an indexing vector that can be used to generate a new bootstrap sample (i.e. sample(n,replace=TRUE)). The matrix of bootstrap indeces is taken as input, rather than being calculated within bootSVD_LD, so that this method can be more easily compared against traditional bootstrap SVD methods on the exact same bootstrap samples. The bInds matrix can be calculated using the helper function genBootIndeces).

K the number of PCs to be estimated.

warning_type passed to qrSVD, when taking the SVD of the low dimensional bootstrap score

matrices.

verbose if TRUE, a progress bar will appear.

centerSamples whether each bootstrap sample should be centered before calculating the SVD.

10 EEG_leadingV

Value

For each bootstrap matrix $(DU')^b$, let $svd(DU') =: A^bD^bU^b$, where A^b and U^b are (n by n) orthonormal matrices, and D^b is a (n by n) diagonal matrix K. Here we calculate only the first K columns of A^b , but all n columns of U^b . The results are stored as a list containing

As	a B-length list of the (n by K) matrices containing the first K PCs from each bootstrap sample. This list is indexed by b, with the b^{th} element containing the results from the b^{th} bootstrap sample.
ds	a B-length list of vectors, indexed by the bootstrap index b, with each vector containing the singular values of the corresponding bootstrap sample.
Us	a B-length list, indexed by the bootstrap index b, of the $(n \text{ by } n)$ matrices U^b .
time	The computation time required for the procedure, taken using system.time.

If the score matrix is inputted to bootSVD_LD, the results can be transformed to get the PCs on the original space by multiplying each matrix A^b by the PCs of the original sample, V (see [As2Vs()]). The bootstrap scores of the original sample are equal to U^bD^b .

Examples

```
#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
svdY<-fastSVD(Y)
DUt<- tcrossprod(diag(svdY$d),svdY$u)
bInds<-genBootIndeces(B=50,n=dim(DUt)[2])
bootSVD_LD_output<-bootSVD_LD(DUt=DUt,bInds=bInds,K=3,verbose=interactive())</pre>
```

EEG_leadingV

Leading 5 Principal Components (PCs) from EEG dataset

Description

This package is based on (Fisher et al., 2014), which uses as an example a subset of the electroencephalogram (EEG) measurements from the Sleep Heart Health Study (SHHS) (Quan et al. 1997). Since we cannot publish the EEG recordings from SHHS participants in this package, we instead include the summary statistics of the PCs from our subsample of the processed SHHS EEG data. These summary statistics were generated from measurements of smoothed Normalized Delta Power. This data is used by the simEEG to simulate data examples to demonstrate our functions.

Details

Specifically, EEG_leadingV is a matrix whose columns contain the leading 5 principal components of the EEG dataset.

EEG_mu 11

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Stuart F Quan, Barbara V Howard, Conrad Iber, James P Kiley, F Javier Nieto, George T O'Connor, David M Rapoport, Susan Redline, John Robbins, JM Samet, et al. *The sleep heart health study: design, rationale, and methods.* Sleep, 20(12):1077-1085, 1997. 1.1

See Also

EEG_mu, EEG_score_var

EEG_mu

Functional mean from EEG dataset

Description

This package is based on (Fisher et al., 2014), which uses as an example a subset of the electroencephalogram (EEG) measurements from the Sleep Heart Health Study (SHHS) (Quan et al. 1997). Since we cannot publish the EEG recordings from SHHS participants in this package, we instead include the summary statistics of the PCs from our subsample of the processed SHHS EEG data. These summary statistics were generated from measurements of smoothed Normalized Delta Power. This data is used by the simEEG to simulate data examples to demonstrate our functions.

Details

Specifically, EEG_mu is a vector containing the mean normalized delta power function across all subjects, for the first 7.5 hours of sleep.

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Stuart F Quan, Barbara V Howard, Conrad Iber, James P Kiley, F Javier Nieto, George T O'Connor, David M Rapoport, Susan Redline, John Robbins, JM Samet, et al. *The sleep heart health study: design, rationale, and methods.* Sleep, 20(12):1077-1085, 1997. 1.1

See Also

EEG_leadingV, EEG_score_var

12 fastSVD

EEG_score_var

Empirical variance of the first 5 score variables from EEG dataset

Description

This package is based on (Fisher et al., 2014), which uses as an example a subset of the electroencephalogram (EEG) measurements from the Sleep Heart Health Study (SHHS) (Quan et al. 1997). Since we cannot publish the EEG recordings from SHHS participants in this package, we instead include the summary statistics of the PCs from our subsample of the processed SHHS EEG data. These summary statistics were generated from measurements of smoothed Normalized Delta Power. This data is used by the simEEG to simulate data examples to demonstrate our functions.

Details

Specifically, EEG_score_var is a vector containing the variances of the first 5 empirical score variables. Here, we refer to the score variables refer to the *n*-dimensional, uncorrelated variables, whose coordinate vectors are the principal components EEG_leadingV.

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Stuart F Quan, Barbara V Howard, Conrad Iber, James P Kiley, F Javier Nieto, George T O'Connor, David M Rapoport, Susan Redline, John Robbins, JM Samet, et al. *The sleep heart health study: design, rationale, and methods.* Sleep, 20(12):1077-1085, 1997. 1.1

See Also

EEG_mu, EEG_leadingV

fastSVD

Fast SVD of a wide or tall matrix

Description

fastSVD uses the inherent low dimensionality of a wide, or tall, matrix to quickly calculate its SVD. For a matrix A, this function solves svd(A) = UDV'. This function can be applied to either standard matrices, or, when the data is too large to be stored in memory, to matrices with class ff. ff objects have a representation in memory, but store their contents on disk. In these cases, fastSVD will implement block matrix algebra to compute the SVD.

fastSVD 13

Usage

```
fastSVD(
   A,
   nv = min(dim(A)),
   warning_type = "silent",
   center_A = FALSE,
   pattern = NULL
)
```

Arguments

A matrix of dimension (n by m). This can be either of class matrix or ff.

nv number of high dimensional singular vectors to obtain. If n > m, this is the

number of n-dimensional left singular vectors to be computed. If n < m, this is

warning_type passed to qrSVD, which calculates either svd(tcrossprod(A)) or svd(crossprod(A)),

the number of m-dimensional right singular vectors to be computed.

whichever is of lower dimension.

center_A Whether the matrix A should be centered before taking it's SVD. Centering is

done along whichever dimension of A is larger. For example, if A is tall, then setting center_A=TRUE will return the SVD of A after centering the rows of A. This centering is implemented as a low dimensional matrix operation that does

not require creating a copy of the original matrix A.

passed to ff. When A has class ff, the returned high dimensional singular vectors

will also have class ff. The argument pattern is passed to ff when creating the

files on disk for the high dimensional singular vectors.

Details

Users might also consider changing the global option ffbatchbytes, from the ff package. When a ff object is entered, the ffbatchbytes option determines the maximum block size in the block matrix algebra used to calculate the SVD.

Value

Let r be the rank of the matrix A. fastSVD solves svd(A) = UDV', where U is an (n by r) orthonormal matrix, D is an (r by r) diagonal matrix; and V is a (m by r) orthonormal matrix. When A is entered as an ff object, the high dimensional singular vectors of A will be returned as an ff object as well. For matrices where one dimension is substantially large than the other, calculation times are considerably faster than the standard svd function.

```
Y<-simEEG(n=100,centered=TRUE,wide=TRUE)
svdY<-fastSVD(Y)
svdY
matplot(svdY$v[,1:5],type='1',lty=1) #sample PCs for a wide matrix are the right singular vectors</pre>
```

14 ffmatrixmult

```
#Note: For a tall, demeaned matrix Y, with columns corresponding
#to subjects and rows to measurements,
#the PCs are the high dimensional left singular vectors.

#Example with 'ff'
dev.off()
library(ff)
Yff<-as.ff(Y)
svdYff<-fastSVD(Yff)
svdYff
matplot(svdYff$v[,1:5],type='l',lty=1)</pre>
```

ffmatrixmult

Matrix multiplication with "ff_matrix" or "matrix" inputs

Description

A function for crossprod(x,y), for tcrossprod(x,y), or for regular matrix multiplication, that is compatible with ff matrices. Multiplication is done without creating new matrices for the transposes of x or y. Note, the crossproduct function can't be applied directly to objects with class ff.

Usage

```
ffmatrixmult(
    x,
    y = NULL,
    xt = FALSE,
    yt = FALSE,
    ram.output = FALSE,
    override.big.error = FALSE,
    ...
)
```

Arguments

Χ	a matrix or ff_matrix
У	a matrix or ff_matrix. If NULL, this is set equal to x , although a second copy of the matrix x is not actually stored.
xt	should the x matrix be transposed before multiplying
yt	should the y matrix be transposed before multiplying (e.g. $xt=TRUE$, $yt=FALSE$ leads to $crossprod(x,y)$).
ram.output	force output to be a normal matrix, as opposed to an object with class ff.
override.big.er	ror
	If the dimension of the final output matrix is especially large, ffmatrixmult will abort, giving an error. This is meant to avoid the accidental creation of very large matrices. Set override.big.error=TRUE to bypass this error.
	passed to ff.

ffmatrixmult 15

Value

A standard matrix, or a matrix with class ff if one of the input matrices has class ff.

```
## Not run:
library(ff)
#Tall data
y_tall<-matrix(rnorm(5000),500,10) #y tall</pre>
x_tall<-matrix(rnorm(5000),500,10)</pre>
y_wide<-t(y_tall)</pre>
x_wide<-t(x_tall)
y_tall_ff<-as.ff(y_tall) #y tall and ff
x_tall_ff<-as.ff(x_tall)</pre>
y_wide_ff<-as.ff(y_wide) #y tall and ff</pre>
x_wide_ff<-as.ff(x_wide)</pre>
 #Set options to ensure that block matrix algebra is actually done,
 #and the entire algebra isn't just one in one step.
 #Compare ffmatrixmult against output from standard methods
 options('ffbytesize'=100)
 #small final matrices
#x'x
range( crossprod(x_tall) - ffmatrixmult(x_tall_ff, xt=TRUE) )
range( tcrossprod(x_wide) - ffmatrixmult(x_wide_ff, yt=TRUE) )
range( crossprod(x_tall,y_tall) - ffmatrixmult(x_tall_ff,y_tall_ff, xt=TRUE) )
range( tcrossprod(x_wide,y_wide) - ffmatrixmult(x_wide_ff,y_wide_ff, yt=TRUE) )
range( (x_wide%*%y_tall) - ffmatrixmult(x_wide_ff,y_tall_ff) )
#ff + small data
s_tall <- matrix(rnorm(80),10,8)</pre>
s_wide <- matrix(rnorm(80),8,10)</pre>
#tall output
range( crossprod(x_wide, s_tall) - ffmatrixmult(x_wide_ff, s_tall,xt=TRUE)[] )
range( tcrossprod(x_tall, s_wide) - ffmatrixmult(x_tall_ff, s_wide,yt=TRUE)[] )
range( x_tall%*%s_tall - ffmatrixmult(x_tall_ff, s_tall)[])
#Wide output
range( crossprod(s_tall, y_wide) - ffmatrixmult( s_tall, y_wide_ff,xt=TRUE)[] )
range( tcrossprod(s_wide, y_tall) - ffmatrixmult( s_wide,y_tall_ff,yt=TRUE)[] )
range( s_wide%*%y_wide - ffmatrixmult(s_wide,y_wide_ff)[])
 #Reset options for more practical use
 options('ffbytesize'=16777216)
## End(Not run)
```

16 genQ

	_			
gen	Boc	t⊥r	ıde	ces

Generate a random set of bootstrap resampling indeces

Description

Let n be the original sample size, p be the number of measurements per subject, and B be the number of bootstrap samples. genBootIndeces generates a (B by n) matrix containing B indexing vectors that can be used to create B bootstrap samples, each of size n.

Usage

```
genBootIndeces(B, n)
```

Arguments

B number of desired bootstrap samples

n size of original sample from which we'll be resampling.

Value

A (B by n) matrix of bootstrap indeces. Let bInds denote the output of getBootIndeces, and Y denote the original (p by n) sample. Then Y[,bInds[b,]] is the b^{th} bootstrap sample.

Examples

bInds<-genBootIndeces(B=50,n=200)

genQ

Generate random orthonormal matrix

Description

genQ generates a square matrix of random normal noise, and then takes the QR decomposition to return Q, a random orthogonal square matrix.

Usage

```
genQ(n, lim_attempts = 200)
```

Arguments

n the dimension of the desired random orthonormal matrix

lim_attempts the random matrix of normal noise must be full rank to generate the appropriate

QR decomposition. lim_attempts gives the maximum number of attempts for

generating a full rank matrix of normal noise.

Value

a random orthonormal (n by n) matrix

Examples

```
A<-genQ(3)
round(crossprod(A),digits=10)</pre>
```

 ${\it getMomentsAndMomentCI}$ Calculate bootstrap moments and moment-based confidence intervals for the PCs.

Description

Let K be the number of PCs of interest, let B be the number of bootstrap samples, and let p be the number of measurements per subject, also known as the dimension of the sample. In general, we use k to refer to the principal component (PC) index, where k=1,2,...K, and use b to refer to the bootstrap index, where b=1,2,...B.

Usage

```
getMomentsAndMomentCI(AsByK, V, K = length(AsByK), verbose = FALSE)
```

Arguments

AsByK	a list of the bootstrap PC matrices. This list should be indexed by k , with the k^{th} element of the lsit containing a b by p matrix of results for the k^{th} PC, across bootstrap samples.
V	a $(p \text{ by } n)$ matrix containing the coordinate vectors for the matrices within the AsByK list, where n is sample size and p is sample dimension. Generally for bootstrap PCA, AsByK should contain the PCs for the bootstrap scores, and V should be the matrix of PCs from the original sample. The argument V may also be a ff object.
K	the number of leading PCs for which moments and confidence intervals should be obtained.
verbose	setting to TRUE will cause the function to print its progress in calculating the bootstrap variance for each PC.

Value

a list containing

EVs a list containing element-wise bootstrap means for each of the K fitted PCs, in-

dexed by k.

varVs a list containing element-wise bootstrap variances for each of the K fitted PCs,

indexed by k.

18 os

sdVs a list containing element-wise bootstrap standard errors for each of the K fitted

PCs, indexed by k.

momentCI a list of (p by 2) matrices, indexed by k, where momentCI[[k]][j,] is the

pointwise moment-based CI for the j^{th} element of the k^{th} PC.

Examples

```
#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
svdY<-fastSVD(Y)</pre>
V<-svdY$v #right singular vectors of the wide matrix Y
DUt<- tcrossprod(diag(svdY$d),svdY$u)
bInds<-genBootIndeces(B=50, n=dim(DUt)[2])
bootSVD_LD_output<-bootSVD_LD(DUt=DUt,bInds=bInds,K=3,verbose=interactive())</pre>
AsByB<-bootSVD_LD_output$As
AsByK<-reindexMatricesByK(AsByB)
moments<-getMomentsAndMomentCI(AsByK,V,verbose=interactive())</pre>
plot(V[,1],type='l',ylim=c(-.1,.1),main='Original PC1, with CI in blue')
matlines(moments$momentCI[[1]],col='blue',lty=1)
#Can also use this function to get moments for low dimensional
#vectors A^b[,k], by setting V to the identity matrix.
moments_A<- getMomentsAndMomentCI(As=AsByK,V=diag(ncol(AsByK[[1]])))</pre>
```

Quickly print an R object's size

os

Description

Quickly print an R object's size

Usage

```
os(x, units = "Mb")
```

Arguments

x an object of interest units measure to print size in

Value

```
print(object.size(x),units=units)
```

```
Y<-simEEG(n=50)
os(Y)
```

qrSVD

arSVD	Wrapper for svd, which uses random preconditioning to restart when
4. 5. 5	svd fails to converge
	sva jans to converge

Description

In order to generate the SVD of the matrix x, qrSVD calls genQ to generate a random orthonormal matrix, and uses this random matrix to precondition x. The svd of the preconditioned matrix is calculated, and adjusted to account for the preconditioning process in order to find svd(x).

Usage

```
qrSVD(
    x,
    lim_attempts = 50,
    warning_type = "silent",
    warning_file = "qrSVD_warnings.txt",
    ...
)
```

Arguments

Χ	a matrix to calculate the svd for
lim_attempts	the number of tries to randomly precondition x. We generally find that one preconditioning attempt is sufficient.
warning_type	controls whether the user should be told if an orthogonal preconditioning matrix is required, or if svd gives warnings. 'silent' ignores these warnings, 'print' prints the warning to the console, and 'file' saves the warnings in a text file.
warning_file	gives the location of a file to print warnings to, if warning_type is set to 'file'.
	parameters passed to svd, such as nv and nu.

Value

Solves svd(x) = UDV', where U is an matrix containing the left singular vectors of x, D is a diagonal matrix containing the singular values of x; and V is a matrix containing the right singular vectors of x (output follows the same notation convention as the svd function).

qrSVD will attempt the standard svd function before preconditioning the matrix x.

See Also

```
[fastSVD()]
```

```
x <-matrix(rnorm(3*5),nrow=3,ncol=5)
svdx <- qrSVD(x)
svdx</pre>
```

20 reindexMatricesByK

reindexMatricesBvK	Used for calculation of low dimensional standard errors & percentiles,
reindexmatricesbyk	J J
	by re-indexing the A^b by PC index (k) rather than bootstrap index (b) .

Description

This function is used as a precursor step for calculate bootstrap standard errors, or percentiles. For very high dimensional data, we recommend that the this function be applied to the low dimensional components A^b , but the function can also be used to reorder a list of high dimensional bootstrap PCs. It can equivalently be used to reorder a list of scores. In general, we recommend that as many operations as possible be applied to the low dimensional components, as opposed to their high dimensional counterparts. This function is called by [getMomentsAndMomentCI()].

Usage

```
reindexMatricesByK(matricesByB, pattern)
```

Arguments

matricesByB a B-length list of (r by K) matrices from each bootstrap sample. If the list ele-

ments have class ff, the returned matrices will also have class ff.

pattern (optional) passed to ff.

Value

a K-length list of (B by r) matrices. If elements of matricesByB have class ff, then the returned, reordered matrices will also have class ff.

```
#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
svdY<-fastSVD(Y)
V<- svdY$v #original sample PCs
DUt<- tcrossprod(diag(svdY$d),svdY$u)
bInds<-genBootIndeces(B=50, n=dim(DUt)[2])
bootSVD_LD_output<-bootSVD_LD(DUt=DUt, bInds=bInds, K=3, verbose=interactive())
########
# to get 'low dimensional PC' moments and lower percentiles
AsByB<-bootSVD_LD_output$As
AsByK<-reindexMatricesByK(AsByB)
meanA1<-apply(AsByK[[1]],2,mean)</pre>
seA1<-apply(AsByK[[1]],2,sd)
pA1<-apply(AsByK[[1]],2,function(x) quantile(x,.05))
#can also use lapply to get a list (indexed by k=1,...K) of
#the means, standard errors, or percentiles for each PC.
```

reindexVectorsByK 21

```
#See example below, for high dimensional bootstrap PCs.
#Alternatively, moments can be calculated with
seA1_v2<- getMomentsAndMomentCI(As=AsByK,
V=diag(dim(AsByK[[1]])[2]))$sdPCs[[1]]
all(seA1_v2==seA1)
#Additional examples of exploring the low dimensional bootstrap
#PC distribution are given in the documentation for
#the 'bootSVD' function.
#########
#########
#High dimensional percentiles for each PC
VsByB<-As2Vs(As=AsByB,V=V)
VsByK<-reindexMatricesByK(VsByB)
percentileCI_Vs<-lapply(VsByK,function(mat_k){</pre>
apply(mat_k,2,function(x) quantile(x,c(.025,.975)))
})
k=2 # the 2nd PC is a little more interesting here.
matplot(t(percentileCI_Vs[[k]]),type='l',lty=1,col='blue')
lines(V[,k])
########
# Note: This function can also be used to reorganize the
   high dimensional PCs. For 'ff' matrices, this will
   create a new set of files on disk.
```

reindexVectorsByK

Used to study of the bootstrap distribution of the k^{h} th singular values, by re-indexing the list of d^{b} vectors to be organized by PC index (k) rather than bootstrap index (b).

Description

Used to study of the bootstrap distribution of the k^th singular values, by re-indexing the list of d^b vectors to be organized by PC index (k) rather than bootstrap index (b).

Usage

```
reindexVectorsByK(vectorsByB)
```

Arguments

vectorsByB a B-length list, containing vectors with the n values from each bootstrap sample.

Value

a K-length list of (B by n) matrices, where each matrices' rows refers to the values from a different bootstrap sample.

22 simEEG

Examples

```
#use small n, small B, for a quick illustration
set.seed(0)
Y<-simEEG(n=100, centered=TRUE, wide=TRUE)
svdY<-fastSVD(Y)
DUt<- tcrossprod(diag(svdY$d),svdY$u)
bInds<-genBootIndeces(B=50,n=dim(DUt)[2])
bootSVD_LD_output<-bootSVD_LD(DUt=DUt,bInds=bInds,K=3,verbose=interactive())
dsByK<-reindexVectorsByK(bootSVD_LD_output$ds)
boxplot(dsByK[[1]],main='Bootstrap distribution of 1st singular value')</pre>
```

simEEG

Simulation functional EEG data

Description

Our data from (Fisher et al. 2014) consists of EEG measurements from the Sleep Heart Health Study (SHHS) (Quan et al. 1997). Since we cannot publish the EEG recordings from the individuals in the SHHS, we instead include the summary statistics of the PCs from our subsample of the processed SHHS EEG data. This data is used by the simEEG to simulate functional data that is approximately similar to the data used in our work. The resulting simulated vectors are always of length 900, and are generated from 5 basis vectors (see EEG_leadingV).

Usage

```
simEEG(n = 100, centered = TRUE, propVarNoise = 0.45, wide = TRUE)
```

Arguments

n the desired sample size

centered if TRUE, the sample will be centered to have mean zero for each dimension. If

FALSE, measurements will be simulated from a population where the mean is equal to that observed in the sample used in (Fisher et al. 2014) (see EEG_mu).

propVarNoise the approximate proportion of total sample variance attributable to random noise.

wide if TRUE, the resulting data is outputted as a n by 900 matrix, with each row

corresponding to a different subject. If FALSE, the resulting data is outputted as a 900 by n matrix, with each column corresponding to a different subject.

Value

A matrix containing n simulated measurement vectors of Normalized Delta Power, for the first 7.5 hours of sleep. These vectors are generated according to the equation:

$$y = \sum_{j=1}^{5} B_j * s_j + e$$

simEEG 23

Where y is the simulated measurement for a subject, B_j is the j^{th} basis vector, s_j is a random normal variable with mean zero, and e is a vector of random normal noise. The specific values for B_j and $var(s_j)$ are determined from the EEG data sample studied in (Fisher et al., 2014), and are respectively equal to the j^{th} empirical principal component vector (see EEG_leadingV), and the empirical variance of the j^{th} score variable (see EEG_score_var).

References

Aaron Fisher, Brian Caffo, and Vadim Zipunnikov. Fast, Exact Bootstrap Principal Component Analysis for p>1 million. 2014. http://arxiv.org/abs/1405.0922

Stuart F Quan, Barbara V Howard, Conrad Iber, James P Kiley, F Javier Nieto, George T O'Connor, David M Rapoport, Susan Redline, John Robbins, JM Samet, et al. *The sleep heart health study: design, rationale, and methods.* Sleep, 20(12):1077-1085, 1997. 1.1

```
set.seed(0)
#Low noise example, for an illustration of smoother functions
Y<-simEEG(n=20,centered=FALSE,propVarNoise=.02,wide=FALSE)
matplot(Y,type='1',lty=1)
#Higher noise example, for PCA
Y<-simEEG(n=100,centered=TRUE,propVarNoise=.5,wide=TRUE)
svdY<-fastSVD(Y)</pre>
V<-svdY$v #since Y is wide, the PCs are the right singular vectors (svd(Y)$v).
head(cumsum(d^2)/sum(d^2),5) #first 5 PCs explain about half the variation
# Compare fitted PCs to true, generating basis vectors
# Since PCs have arbitrary sign, we match the sign of
# the fitted sample PCs to the population PCs first
V_sign_adj<- array(NA,dim=dim(V))</pre>
for(i in 1:5){
V_sign_adj[,i]<-V[,i] * sign(crossprod(V[,i],EEG_leadingV[,i]))</pre>
}
par(mfrow=c(1,2))
matplot(V_sign_adj[,1:5],type='l',lty=1,
main='PCs from simulated data,\n sign adjusted')
matplot(EEG_leadingV,type='l',lty=1,main='Population PCs')
```

Index

```
* data
    EEG_leadingV, 10
    EEG_mu, 11
    EEG_score_var, 12
As2Vs, 2
bootPCA, 3
bootSVD, 4
bootSVD_LD, 9
EEG_leadingV, 10, 11, 12, 22, 23
EEG_mu, 11, 11, 12, 22
EEG_score_var, 11, 12, 23
fastSVD, 12
ff, 2, 5, 6, 12–14, 17, 20
ffmatrixmult, 14
genBootIndeces, 9, 16
genQ, 16, 19
{\tt getMomentsAndMomentCI}, 17
mclapply, 2, 5
os, 18
qrSVD, 9, 13, 19, 19
reindexMatricesByK, 20
reindexVectorsByK, 21
simEEG, 10-12, 22
svd, 19
system.time, 10
```