Package 'bmabasket'

July 22, 2025

Type Package
Title Bayesian Model Averaging for Basket Trials
Version 0.1.2
Date 2022-02-24
<pre>Maintainer Matt Psioda <matt_psioda@unc.edu></matt_psioda@unc.edu></pre>
Description An implementation of the Bayesian model averaging method of Psioda and others (2019) <doi:10.1093 biostatistics="" kxz014=""> for basket trials. Contains a user-friendly wrapper for simulating basket trials under conditions and analyzing them with a Bayesian model averaging approach.</doi:10.1093>
License GPL (>= 3)
Depends R (>= $3.5.0$)
Imports Rcpp (>= 1.0.3), partitions
LinkingTo Rcpp, RcppArmadillo
Encoding UTF-8
<pre>URL https://github.com/ethan-alt/bmabasket</pre>
<pre>BugReports https://github.com/ethan-alt/bmabasket/issues</pre>
RoxygenNote 7.1.1
NeedsCompilation yes
Author Matt Psioda [cre], Ethan Alt [aut]
Repository CRAN
Date/Publication 2022-02-24 17:50:13 UTC
Contents
bma bma_design numModels 6
Index 7

2 bma

Compute posterior model probabilities

Description

Given data and hyperparameters, computes posterior model probabilities

Usage

```
bma(pi0, y, n, P = NULL, mu0 = 0.5, phi0 = 1, priorModelProbs = NULL, pmp0 = 1)
```

Arguments

	pi0	scalar or vector whose elements are between 0 and 1 giving threshold for the hypothesis test. If a scalar is provided, assumes same threshold for each basket
	у	vector of responses
	n	vector of sample sizes
	P	integer giving maximum number of distinct parameters; default is all possible models
	mu0	prior mean for beta prior
	phi0	prior dispersion for beta prior
priorModelProbs		
		(optional) vector giving prior for models. Default is proportional to $\exp(pmp0 * D)$, where D is the number of distinct parameters in the model
	pmp0	nonnegative scalar. Value of 0 corresponds to uniform prior across model space. Ignored if priorModelProbs is specified

Value

a list with the following structure:

bmaProbs model-averaged probabilities that each basket is larger than pi0 **bmaMeans** model-averaged posterior mean for each basket

Examples

```
## Simulate data with 3 baskets
probs <- c(0.5, 0.25, 0.25)
n <- rep(100, length(probs))
y <- rbinom(length(probs), size = n, prob = probs)
bma(0.5, y, n)</pre>
```

bma_design 3

 bma_design

Simulate a BMA design

Description

Simulates a BMA design given hyperparameters

Usage

```
bma_design(
  nSims,
 nBaskets,
 maxDistinct = nBaskets,
  eRates,
  rRates,
 meanTime,
  sdTime,
  ppEffCrit,
  ppFutCrit,
  futOnly = FALSE,
  rRatesNull,
  rRatesAlt,
 minSSFut,
 minSSEff,
 minSSEnr,
 maxSSEnr,
  targSSPer,
  Ι0,
 mu0 = 0.5,
 phi0 = 1,
  priorModelProbs = NULL,
  pmp0 = 1
)
```

Arguments

nSims	number of simulation studies to be performed
nBaskets	number of baskets
maxDistinct	integer between 1 and nBaskets giving number of distinct model probabilities to use. Defaults to nBaskets. It is recommended to call numModels to ensure that computation is tractable.
eRates	scalar or vector of Poisson process rates for each basket
rRates	scalar or vector of true response rates for each basket
meanTime	mean parameter for time to outcome ascertainment
sdTime	standard deviation parameter for time to outcome ascertainment

4 bma_design

ppEffCrit	scalar or vector giving basket-specific posterior probability threshold for activity (i.e., efficacy).
ppFutCrit	scalar or vector giving basket-specific posterior probability threshold for futility
futOnly	$\label{eq:logical} \mbox{logical giving whether design allows only for futility stopping (TRUE = futility only, FALSE = both futility and efficacy)}$
rRatesNull	scalar or vector of basket-specific null hypothesis values (for efficacy determination)
rRatesAlt	scalar or vector of basket-specific hypothesized alternative values (for futility determination)
minSSFut	minimum number of subjects in basket to assess futility
minSSEff	minimum number of subjects in basket to assess activity
minSSEnr	matrix giving minimum number of new subjects per basket before next analysis (each row is an interim analysis, each column is a basket)
maxSSEnr	matrix giving maximum number of new subjects per basket before next analysis (each row is an interim analysis, each column is a basket)
targSSPer	scalar or vector giving target sample size increment for each basket
10	maximum number of analyses
mu0	prior mean for the response probabilities
phi0	prior dispersion response probabilities
priorModelProbs	
	vector giving prior probabilities for models. Default is prior of each model is proportional $exp(pmp0 * D)$ where D is the number of distinct parameters in the model

scalar giving power for priorModelProbs. If pmp0==0, a uniform prior is used

for model probabilities. Defaults to 1. Ignored if priorModelProbs is not NULL

Value

pmp0

a nested list giving results of the simulation with the following structure:

- hypothesis.testing hypothesis testing information
 - rr basket-specific null hypothesis rejection rate
 - **fw.fpr** family-wise false positive rate (across all inactive baskets)
 - nerr average number of false null hypothesis rejections
 - **fut** basket-specific probability of futility stopping
- sample.size trial sample size information
 - basket.ave basket-specific expected sample size
 - basket.med basket-specific median sample size
 - basket.min basket-specific minimum sample size
 - basket.max basket-specific maximum sample size
 - overall.ave expected overall sample size
- point.estimation point estimation information

bma_design 5

- PM.ave basket-specific average posterior mean
- SP.ave basket-specific average sample proportion
- PP.ave basket-specific average posterior probability
- bias basket-specific bias of the posterior mean
- mse basket-specific MSE of the posterior mean
- early.stopping early stopping information
 - interim.stop.prob probability of trial stoppage by interim
 - baskets.continuing.ave average number of baskets continuing past interim

Examples

```
## SIMULATE DATA AND SET SIMULATION PARAMS
nSims <- 100 ## would be much more in practice
meanTime <- 0.01
sdTime <- 0.0000000001
         <- 0.45
mu0
          <- 1.00
phi0
ppEffCrit <- 0.985
ppFutCrit <- 0.2750
pmp0
          <- 2
          <- 7
n1
          <- 16
targSSPer <- c(n1, n2)
nInterim <- 2
futOnly
         <- 1
K0
          <- 5
          <- 0
row
          <- 4
mss
minSSFut <- mss ## minimum number of subjects in basket to assess futility using BMA
minSSEff <- mss ## minimum number of subjects in basket to assess activity using BMA
          <- 0.45
rTarg
rNull
          <- 0.15
rRatesMod <- matrix(rNull,(K0+1)+3,K0)
rRatesNull <- rep(rNull,K0)
rRatesMid <- rep(rTarg,K0)</pre>
eRatesMod <- rep(1, K0)
## min and max #' of new subjects per basket before next analysis (each row is interim)
minSSEnr <- matrix(rep(mss, K0), nrow=nInterim ,ncol=K0, byrow=TRUE)
maxSSEnr <- matrix(rep(100, K0), nrow=nInterim, ncol=K0, byrow=TRUE)</pre>
## construct matrix of rates
for (i in 1:K0)
 rRatesMod[(i+1):(K0+1),i] = rTarg
rRatesMod[(K0+2),] <- c(0.05,0.15,0.25,0.35,0.45)
rRatesMod[(K0+3),] <- c(0.15,0.30,0.30,0.30,0.45)
rRatesMod[(K0+4),] <- c(0.15,0.15,0.30,0.30,0.30)
## conduct simulation of trial data and analysis
```

6 numModels

```
x <- bma_design(
  nSims, K0, K0, eRatesMod, rRatesMod[i+1,], meanTime, sdTime,
  ppEffCrit, ppFutCrit, as.logical(futOnly), rRatesNull, rRatesMid,
  minSSFut, minSSEff, minSSEnr, maxSSEnr, targSSPer, nInterim, mu0,
  phi0, priorModelProbs = NULL, pmp0 = pmp0
)</pre>
```

numModels

Compute number of models

Description

Given a basket size and maximal number of distinct response rates, compute the number of possible models

Usage

```
numModels(K, P)
```

Arguments

K positive integer giving number of baskets

P positive integer giving maximal number of distinct rates

Value

integer giving number of possible models

Examples

```
numModels(10, 10)
```

Index

```
bma, 2
bma_design, 3
numModels, 3, 6
```