Package 'WMAP'

July 21, 2025

· ·- j j
Title Weighted Meta-Analysis with Pseudo-Populations
Version 1.2.0
Description Implementation of integrative weighting approaches for multiple observational studies and causal inferences. The package features three weighting approaches, each representing a special case of the unified weighting framework, introduced by Guha and Li (2024) <doi:10.1093 biomtc="" ujae070="">, which includes an extension of inverse probability weights for data integration settings.</doi:10.1093>
License GPL-3
Encoding UTF-8
RoxygenNote 7.3.2
LazyData true
Imports pkgcond, ggplot2, zeallot, caret, randomForest, forcats, utils, stats, grDevices
Depends R (>= $3.5.0$)
NeedsCompilation no
Author Subharup Guha [aut, cre], Mengqi Xu [aut], Kashish Priyam [aut], Yi Li [aut]
Maintainer Subharup Guha <s.guha@ufl.edu></s.guha@ufl.edu>
Repository CRAN
Date/Publication 2025-06-17 04:20:06 UTC
Contents
balancing.weights causal.estimate demo plot.causal_estimates summary.balancing_weights summary.causal_estimates
Index

2 balancing.weights

balancing.weights

Compute balancing weights using FLEXOR or other methods

Description

This function calculates balancing weights based on the specified pseudo-population method.

Usage

```
balancing.weights(
   S,
   Z,
   X,
   method,
   naturalGroupProp,
   num.random = 40,
   gammaMin = 0.001,
   gammaMax = (1 - 0.001),
   seed = NULL,
   verbose = TRUE
)
```

Arguments

S	Vector of factor levels representing the study memberships. Takes values in $\{1,, J\}$.	
Z	Vector of factor levels representing the group memberships. Takes values in $\{1,,K\}.$	
Χ	Covariate matrix of N rows and p columns.	
method	Pseudo-population method, i.e., weighting method. Take values in FLEXOR, IC, or IGO.	
naturalGroupProp		
	Relevant only for FLEXOR method: a fixed user-specified probability vector θ .	
num.random	Relevant only for FLEXOR method: number of random starting points of γ in the two-step iterative procedure. Default is 40.	
gammaMin	Relevant only for FLEXOR method: Lower bound for each γ_s in the two-step iterative procedure. Default is 0.001.	
gammaMax	Relevant only for FLEXOR method: Upper bound for each γ_s in the two-step iterative procedure. Default is 0.999.	
seed	Seed for random number generation. Default is NULL.	
verbose	Logical; Relevant only for FLEXOR method: if TRUE (default), displays progress messages during computation to the console. Set to FALSE to suppress these messages.	

causal.estimate 3

Value

An S3 list object with the following components:

 $\mathbf{wt.v}$ N empirically normalized sample weights.

percentESS Percentage sample effective sample size (ESS) for the pseudo-population.

Examples

```
data(demo)
balancing.weights(S, Z, X, method = "IC", naturalGroupProp)
```

causal.estimate

Estimate causal effects using FLEXOR or other methods

Description

This function estimates causal effects based on the specified pseudo-population method. The FLEXOR method involves an iterative two-step procedure.

Usage

```
causal.estimate(
   S,
   Z,
   X,
   Y,
   B = 100,
   method,
   naturalGroupProp = NULL,
   num.random = 40,
   gammaMin = 0.001,
   gammaMax = (1 - 0.001),
   seed = NULL,
   verbose = TRUE
)
```

Arguments

S	Vector of factor levels representing the study memberships. Takes values in $\{1,, J\}$.
Z	Vector of factor levels representing the group memberships. Takes values in $\{1,, K\}$.
Χ	Covariate matrix of N rows and p columns.
Υ	Matrix of L outcomes, with dimensions $N \times L$.
В	Number of bootstrap samples for variance estimation. Default is 100.

4 causal.estimate

Pseudo-population method, i.e., weighting method. Take values in FLEXOR, IC, method or IGO. naturalGroupProp Relevant only for FLEXOR method: a fixed user-specified probability vector θ . num.random Relevant only for FLEXOR method: number of random starting points of γ in the two-step iterative procedure. Default is 40. gammaMin Relevant only for FLEXOR method: Lower bound for each γ_s in the two-step iterative procedure. Default is 0.001. gammaMax Relevant only for FLEXOR method: Upper bound for each γ_s in the two-step iterative procedure. Default is 0.999. seed Seed for random number generation. Default is NULL. Logical; if TRUE (default), displays progress messages during computation to the verbose

Value

An S3 list object with the following components:

percentESS Percentage sample effective sample size (ESS) of the pseudo-population.

console. Set to FALSE to suppress these messages.

moments.ar An array of dimension $3 \times K \times L$, containing:

- Estimated means, standard deviations (SDs), and medians (dimension 1),
- For *K* groups (dimension 2),
- And L counterfactual outcomes (dimension 3).

otherFeatures.v Estimated mean group differences for L outcomes.

collatedMoments.ar An array of dimension $3 \times K \times L \times B$, containing:

- moments.ar of the bth bootstrap sample (dimensions 1–3),
- For B bootstrap samples (dimension 4).

collatedOtherFeatures.mt A matrix of dimension $L \times B$ containing:

- otherFeatures.v of the bth bootstrap sample (dimension 1),
- For B bootstrap samples (dimension 2).

collatedESS A vector of length B containing percentage sample ESS for B bootstrap samples. **method** Pseudo-population method, i.e., weighting method.

Examples

```
data(demo)
set.seed(1)
causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
```

demo 5

demo

Demo Dataset

Description

A dataset containing example data for demonstration purposes.

Usage

```
data(demo)
```

Format

An rda object, with 450 observations and the following variables:

- **S** A vector of factor levels, representing the study memberships.
- **Z** A vector of factor levels, representing the group memberships.
- X A covariate matrix.
- Y An outcome matrix.

naturalGroupProp The relative group prevalences of the larger natural population. Necessary only for FLEXOR weights; it should be skipped for IC and IGO weights.

```
groupNames Disease subtype names "IDC" or "ILC"
```

Details

Demo Dataset

Examples

```
data(demo)
```

Description

Plot method for objects of class 'causal_estimates'

Usage

```
## S3 method for class 'causal_estimates' plot(x, ...)
```

Arguments

x An object of class 'causal_estimates'.

. . . Additional arguments including:

y_limit The y-axis range. Default is c(0,50). color The boxplot color. Default is "red".

Value

A boxplot of percent sample ESS for a specific weighting method (FLEXOR, IC, or IGO)

```
summary.balancing_weights
```

Summary method for objects of class 'balancing_weights'

Description

Summary method for objects of class 'balancing_weights'

Usage

```
## S3 method for class 'balancing_weights'
summary(object, ...)
```

Arguments

object An object of class 'balancing_weights'

... Additional arguments affecting the summary produced (so far no additional ar-

guments are needed, so leave blank).

Value

Printed summary of the 'balancing_weights' object, including:

Weight length The total number of weights.

Weight distribution Statistical summary of weight values.

percentESS Percentage sample effective sample size (ESS) for the pseudo-population.

Examples

```
data(demo)
output1 <- balancing.weights(S, Z, X, method = "IC", naturalGroupProp)
summary(output1)</pre>
```

```
summary.causal_estimates
```

Summary method for objects of class 'causal_estimates'

Description

Summary method for objects of class 'causal_estimates'

Usage

```
## S3 method for class 'causal_estimates'
summary(object, ...)
```

Arguments

object An object of class 'causal_estimates'

... Additional arguments affecting the summary produced (so far no additional ar-

guments are needed, so leave blank).

Value

Printed summary of the 'causal_estimates' object, including:

Percentage sample ESS Percentage sample effective sample size (ESS) for the pseudo-population.

Mean differences with 95% CI The mean differences between two groups with their corresponding 95% confidence intervals.

Sigma ratios with 95% CI The ratios of standard deviations between two groups with their corresponding 95% confidence intervals.

Examples

```
data(demo)
set.seed(1)
output2 <- causal.estimate(S, Z, X, Y, B = 5, method = "IC", naturalGroupProp)
summary(output2)</pre>
```

Index

```
balancing.weights, 2

causal.estimate, 3

demo, 5

groupNames (demo), 5

naturalGroupProp (demo), 5

plot.causal_estimates, 5

S (demo), 5

summary.balancing_weights, 6

summary.causal_estimates, 7

X (demo), 5

Y (demo), 5

Z (demo), 5
```