Type: | Package |
Title: | Automatic Univariate Time Series Modelling of many Kinds |
Version: | 5.1.1 |
Date: | 2025-07-21 |
Author: | Diego J. Pedregal |
Maintainer: | Diego J. Pedregal <Diego.Pedregal@uclm.es> |
Description: | Comprehensive analysis and forecasting of univariate time series using automatic time series models of many kinds. Harvey AC (1989) <doi:10.1017/CBO9781107049994>. Pedregal DJ and Young PC (2002) <doi:10.1002/9780470996430>. Durbin J and Koopman SJ (2012) <doi:10.1093/acprof:oso/9780199641178.001.0001>. Hyndman RJ, Koehler AB, Ord JK, and Snyder RD (2008) <doi:10.1007/978-3-540-71918-2>. Gómez V, Maravall A (2000) <doi:10.1002/9781118032978>. Pedregal DJ, Trapero JR and Holgado E (2024) <doi:10.1016/j.ijforecast.2023.09.004>. |
License: | GPL-3 |
Encoding: | UTF-8 |
Imports: | ggplot2, gridExtra, tsibble, tsoutliers, stats, ggforce, utils, parallel |
LinkingTo: | Rcpp, RcppArmadillo |
Depends: | Rcpp (≥ 1.0.3), R (≥ 3.5.0) |
LazyData: | true |
Suggests: | knitr, rmarkdown |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | yes |
Packaged: | 2025-07-21 11:30:07 UTC; diego.pedregal |
Repository: | CRAN |
Date/Publication: | 2025-07-21 11:50:01 UTC |
UComp
Description
Package for time series modelling and forecasting of times series models inspired on different sources:
Details
Unobserved Components models due to A.C. Harvey (Basic Structural Model: BSM), enhanced with automatic identification tools by Diego J. Pedregal.
ExponenTial Smoothing by R.J. Hyndman and colaborators.
ARIMA models by V. Gómez and A. Maravall
Tobit ETS models by Pedregal, Trapero and Holgado
The package is designed for automatic identification among a wide range of possible models. The models may include exogenous variables. ARMA irregular components and automatic detection of outliers in some instances.
References
Harvey AC (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam- bridge University Press.
de Jong, P & Penzer, J (1998). Diagnosing Shocks in Time Series, Journal of the American Statistical Association, 93, 442, 796-806.
Pedregal, DJ, & Young, PC (2002). Statistical approaches to modelling and forecasting time series. In M. Clements, & D. Hendry (Eds.), Companion to economic forecasting (pp. 69–104). Oxford: Blackwell Publishers.
Durbin J, Koopman SJ (2012). Time Series Analysis by State Space Methods. 38. Oxford University Press.
Proietti T and Luati A (2013). Maximum likelihood estimation of time series models: the Kalman filter and beyond, in Handbook of research methods and applications in empirical macroeconomics, ed. Nigar Hashimzade and Michael Thornton, E. Elgar, UK.
Hyndman RJ, Koehler AB, Ord JK and Snyder RD (2008), Forecasting with exponential smoothing, The State Sapce approach, Berlin, Springer-Verlag.
Gómez V and Maravall, A (2000), Automatic methods for univariate series. In Peña, D., Tiao, G.C. and Tsay R.S., A course in time series analyis. Wiley.
Trapero JR, Holgado E, Pedregal DJ (2024), Demand forecasting under lost sales stock policies, International Journal of Forecasting, 40, 1055-1068.
Maintainer
Diego J. Pedregal
Author(s)
Diego J. Pedregal
AIC.UComp
Description
Extract AIC value of UComp object
Usage
## S3 method for class 'UComp'
AIC(object, ..., k = 2)
Arguments
object |
Object of class “UComp”. |
... |
Additional inputs to function. |
k |
The penalty per parameter to be used. |
Details
Selection criteria for models with different number of
parameters, the smaller AIC the better. The formula used here is
AIC=-2 (ln(L) - k) / n
, where ln(L)
is the log-likelihood
at the optimum, k
is the number of parameters plus
non-stationary states and n
is the number of observations.
Mind that this formulation differs from the usual definition that
does not divide by n
. This makes that AIC(m) and AIC(logLik(m))
give different results, being m an UComp object.
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCvalidate
, UCfilter
, UCsmooth
,
UCdisturb
, UCcomponents
Examples
## Not run:
y <- log(AirPassengers)
m1 <- UCforecast(y, model = "llt/equal/arma(0,0)")
AIC(m1)
## End(Not run)
ARIMA
Description
Runs all relevant functions for ARIMA modelling
Usage
ARIMA(
y,
u = NULL,
model = NULL,
cnst = NULL,
s = frequency(y),
criterion = "bic",
h = 2 * s,
verbose = FALSE,
lambda = 1,
maxOrders = c(3, 2, 3, 2, 1, 2),
bootstrap = FALSE,
nSimul = 5000,
fast = FALSE
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of input time series. If
the output wanted to be forecast, matrix |
model |
the model to estimate. A vector c(p,d,q,P,D,Q) containing the model orders of an ARIMA(p,d,q)x(P,D,Q)_s model. A constant may be estimated with the cnst input. Use a NULL to automatically identify the ARIMA model. |
cnst |
flag to include a constant in the model (TRUE/FALSE/NULL). Use NULL to estimate |
s |
seasonal period of time series (1 for annual, 4 for quarterly, ...) |
criterion |
information criterion for identification stage ("aic", "bic", "aicc") |
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
verbose |
intermediate estimation output (TRUE / FALSE) |
lambda |
Box-Cox lambda parameter (NULL: estimate) |
maxOrders |
a vector c(p,d,q,P,D,Q) containing the maximum orders of model orders to search for in the automatic identification |
bootstrap |
use bootstrap simulation for predictive distributions |
nSimul |
number of simulation runs for bootstrap simulation of predictive distributions |
fast |
fast identification (avoids post-identification checks) |
Details
See help of ARIMAforecast
.
Value
An object of class ARIMA
. See ARIMAforecast
.
Author(s)
Diego J. Pedregal
See Also
Examples
## Not run:
y <- log(AirPAssengers)
m1 <- ARIMA(y)
m1 <- ARIMA(y, lambda = NULL)
## End(Not run)
ARIMAestim
Description
Estimates and forecasts ARIMA models
Usage
ARIMAestim(m)
Arguments
m |
an object of type |
Details
ARIMAestim
estimates and forecasts a time series using
an ARIMA model
Value
The same input object with the appropriate fields filled in, in particular:
p |
Estimated parameters |
yFor |
Forecasted values of output |
yForV |
Variance of forecasted values of output |
ySimul |
Bootstrap simulations for forecasting distribution evaluation |
Author(s)
Diego J. Pedregal
See Also
ARIMA
, ARIMAforecast
, ARIMAvalidate
,
Examples
## Not run:
m1 <- ARIMAsetup(log(gdp))
m1 <- ARIMAestim(m1)
## End(Not run)
ARIMAforecast
Description
Estimates and forecasts ARIMA general univariate models
Usage
ARIMAforecast(
y,
u = NULL,
model = NULL,
cnst = NULL,
s = frequency(y),
criterion = "bic",
h = 2 * s,
verbose = FALSE,
lambda = 1,
maxOrders = c(3, 2, 3, 2, 1, 2),
bootstrap = FALSE,
nSimul = 5000,
fast = FALSE
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of input time series. If
the output wanted to be forecast, matrix |
model |
the model to estimate. A vector c(p,d,q,P,D,Q) containing the model orders of an ARIMA(p,d,q)x(P,D,Q)_s model. A constant may be estimated with the cnst input. Use a NULL to automatically identify the ARIMA model. |
cnst |
flag to include a constant in the model (TRUE/FALSE/NULL). Use NULL to estimate |
s |
seasonal period of time series (1 for annual, 4 for quarterly, ...) |
criterion |
information criterion for identification stage ("aic", "bic", "aicc") |
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
verbose |
intermediate estimation output (TRUE / FALSE) |
lambda |
Box-Cox lambda parameter (NULL: estimate) |
maxOrders |
a vector c(p,d,q,P,D,Q) containing the maximum orders of model orders to search for in the automatic identification |
bootstrap |
use bootstrap simulation for predictive distributions |
nSimul |
number of simulation runs for bootstrap simulation of predictive distributions |
fast |
fast identification (avoids post-identification checks) |
Details
ARIMAforecast
is a function for modelling and forecasting univariate
time series with Autoregressive Integrated Moving Average (ARIMA) time series models.
It sets up the model with a number of control variables that
govern the way the rest of functions in the package will work. It also estimates
the model parameters by Maximum Likelihood and forecasts the data.
Value
An object of class ARIMA
. It is a list with fields including all the inputs and
the fields listed below as outputs. All the functions in this package fill in
part of the fields of any ARIMA
object as specified in what follows (function
ARIMA
fills in all of them at once):
After running ARIMAforecast
or ARIMA
:
p |
Estimated parameters |
yFor |
Forecasted values of output |
yForV |
Variance of forecasted values of output |
ySimul |
Bootstrap simulations for forecasting distribution evaluation |
After running ARIMAvalidate
:
table |
Estimation and validation table |
Author(s)
Diego J. Pedregal
See Also
Examples
## Not run:
y <- log(AirPAssengers)
m1 <- ARIMAforecast(y)
m1 <- ARIMAforecast(y, lambda = NULL)
## End(Not run)
ARIMAsetup
Description
Sets up ARIMA general models
Usage
ARIMAsetup(
y,
u = NULL,
model = NULL,
cnst = NULL,
s = frequency(y),
criterion = "bic",
h = 2 * s,
verbose = FALSE,
lambda = 1,
maxOrders = c(3, 2, 3, 2, 1, 2),
bootstrap = FALSE,
nSimul = 5000,
fast = FALSE
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of input time series. If
the output wanted to be forecast, matrix |
model |
the model to estimate. A vector c(p,d,q,P,D,Q) containing the model orders of an ARIMA(p,d,q)x(P,D,Q)_s model. A constant may be estimated with the cnst input. Use a NULL to automatically identify the ARIMA model. |
cnst |
flag to include a constant in the model (TRUE/FALSE/NULL). Use NULL to estimate |
s |
seasonal period of time series (1 for annual, 4 for quarterly, ...) |
criterion |
information criterion for identification stage ("aic", "bic", "aicc") |
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
verbose |
intermediate estimation output (TRUE / FALSE) |
lambda |
Box-Cox lambda parameter (NULL: estimate) |
maxOrders |
a vector c(p,d,q,P,D,Q) containing the maximum orders of model orders to search for in the automatic identification |
bootstrap |
use bootstrap simulation for predictive distributions |
nSimul |
number of simulation runs for bootstrap simulation of predictive distributions |
fast |
fast identification (avoids post-identification checks) |
Details
See help of ARIMAforecast
.
Value
An object of class ARIMA
. See ARIMAforecast
.
Author(s)
Diego J. Pedregal
See Also
ARIMA
, ARIMAforecast
, ARIMAvalidate
,
Examples
## Not run:
y <- log(AirPAssengers)
m1 <- ARIMAsetup(y)
m1 <- ARIMAsetup(y, lambda = NULL)
## End(Not run)
ARIMAvalidate
Description
Shows a table of estimation and diagnostics results for ARIMA models
Usage
ARIMAvalidate(m)
Arguments
m |
an object of type |
Value
The same input object with the appropriate fields filled in, in particular:
table |
Estimation and validation table |
Author(s)
Diego J. Pedregal
See Also
ARIMA
, ARIMAforecast
, ARIMAvalidate
,
Examples
## Not run:
m1 <- ARIMAforecast(log(gdp))
m1 <- ARIMAvalidate(m1)
## End(Not run)
Accuracy
Description
Accuracy for 1 time series y and several forecasting methods py and h steps ahead py is h x nMethods x nSeries
Usage
Accuracy(py, y, s = frequency(y), collectFun = mean)
Arguments
py |
matrix of forecasts (h x nMethods x nForecasts) |
y |
a matrix of actual values (n x nForecasts) |
s |
seasonal period, number of observations per year |
collectFun |
aggregation function (mean, median, etc.) |
Value
Table of results
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, tsDisplay
,
size
Examples
## Not run: Accuracy(py, y, 12)
BIC.UComp
Description
Extract BIC (or SBC) value of UComp object
Usage
## S3 method for class 'UComp'
BIC(object, ...)
Arguments
object |
Object of class “UComp”. |
... |
Additional inputs to function. |
Details
Selection criteria for models with different number of
parameters, the smaller BIC the better. The formula used here is
BIC=(-2 ln(L) + k ln(n)) / n
, where ln(L)
is the log-likelihood
at the optimum, k
is the number of parameters plus
non-stationary states and n
is the number of observations.
Mind that this formulation differs from the usual definition that
does not divide by n
. This makes that BIC(m) and BIC(logLik(m))
give different results, being m an UComp object.
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCvalidate
, UCfilter
, UCsmooth
,
UCdisturb
, UCcomponents
Examples
## Not run:
y <- log(AirPassengers)
m1 <- UCforecast(y, model = "llt/equal/arma(0,0)")
BIC(m1)
## End(Not run)
ETS
Description
Runs all relevant functions for ETS modelling
Usage
ETS(
y,
u = NULL,
model = "???",
s = frequency(y),
h = 2 * s,
criterion = "aicc",
lambda = 1,
armaIdent = FALSE,
identAll = FALSE,
forIntervals = FALSE,
bootstrap = FALSE,
nSimul = 5000,
verbose = FALSE,
alphaL = c(1e-08, 1 - 1e-08),
betaL = alphaL,
gammaL = alphaL,
phiL = c(0.8, 0.98),
p0 = -99999
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of input time series. If
the output wanted to be forecast, matrix |
model |
the model to estimate. It is a single string indicating the type of model for each component with one or two letters:
|
s |
seasonal period of time series (1 for annual, 4 for quarterly, ...) |
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
criterion |
information criterion for identification ("aic", "bic" or "aicc"). |
lambda |
Box-Cox lambda parameter (NULL: estimate) |
armaIdent |
check for arma models for error component (TRUE / FALSE). |
identAll |
run all models to identify the best one (TRUE / FALSE) |
forIntervals |
estimate forecasting intervals (TRUE / FALSE) |
bootstrap |
use bootstrap simulation for predictive distributions |
nSimul |
number of simulation runs for bootstrap simulation of predictive distributions |
verbose |
intermediate estimation output (TRUE / FALSE) |
alphaL |
constraints limits for alpha parameter |
betaL |
constraints limits for beta parameter |
gammaL |
constraints limits for gamma parameter |
phiL |
constraints limits for phi parameter |
p0 |
initial values for parameter search (alpha, beta, phi, gamma) with consraints:
|
Details
See help of ETSforecast
.
Value
An object of class ETS
. See ETSforecast
.
Author(s)
Diego J. Pedregal
See Also
ETSforecast
, ETSvalidate
,
ETScomponents
, ETSestim
Examples
## Not run:
y <- log(AirPAssengers)
m1 <- ETS(y)
m1 <- ETS(y, model = "MAM")
## End(Not run)
ETScomponents
Description
Estimates components of ETS models
Usage
ETScomponents(m)
Arguments
m |
an object of type |
Value
The same input object with the appropriate fields filled in, in particular:
comp |
Estimated components in matrix form |
Author(s)
Diego J. Pedregal
See Also
ETS
, ETSforecast
, ETSvalidate
,
ETSestim
Examples
## Not run:
m1 <- ETS(log(gdp))
m1 <- ETScomponents(m1)
## End(Not run)
ETSestim
Description
Estimates and forecasts ETS models
Usage
ETSestim(m)
Arguments
m |
an object of type |
Details
ETSestim
estimates and forecasts a time series using an
an ETS model
Value
The same input object with the appropriate fields filled in, in particular:
p |
Estimated parameters |
yFor |
Forecasted values of output |
yForV |
Variance of forecasted values of output |
ySimul |
Bootstrap simulations for forecasting distribution evaluation |
Author(s)
Diego J. Pedregal
See Also
ETS
, ETSforecast
, ETSvalidate
,
ETScomponents
Examples
## Not run:
m1 <- ETSsetup(log(gdp))
m1 <- ETSestim(m1)
## End(Not run)
ETSforecast
Description
Estimates and forecasts ETS general univariate models
Usage
ETSforecast(
y,
u = NULL,
model = "???",
s = frequency(y),
h = max(2 * s, 6),
criterion = "aicc",
lambda = 1,
armaIdent = FALSE,
identAll = FALSE,
forIntervals = FALSE,
bootstrap = FALSE,
nSimul = 5000,
verbose = FALSE,
alphaL = c(1e-08, 1 - 1e-08),
betaL = alphaL,
gammaL = alphaL,
phiL = c(0.8, 0.98),
p0 = -99999
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of input time series. If
the output wanted to be forecast, matrix |
model |
the model to estimate. It is a single string indicating the type of model for each component with one or two letters:
|
s |
seasonal period of time series (1 for annual, 4 for quarterly, ...) |
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
criterion |
information criterion for identification ("aic", "bic" or "aicc"). |
lambda |
Box-Cox lambda parameter (NULL: estimate) |
armaIdent |
check for arma models for error component (TRUE / FALSE). |
identAll |
run all models to identify the best one (TRUE / FALSE) |
forIntervals |
estimate forecasting intervals (TRUE / FALSE) |
bootstrap |
use bootstrap simulation for predictive distributions |
nSimul |
number of simulation runs for bootstrap simulation of predictive distributions |
verbose |
intermediate estimation output (TRUE / FALSE) |
alphaL |
constraints limits for alpha parameter |
betaL |
constraints limits for beta parameter |
gammaL |
constraints limits for gamma parameter |
phiL |
constraints limits for phi parameter |
p0 |
initial values for parameter search (alpha, beta, phi, gamma) with consraints:
|
Details
ETSforecast
is a function for modelling and forecasting univariate
time series with ExponenTial Smoothing (ETS) time series models.
It sets up the model with a number of control variables that
govern the way the rest of functions in the package will work. It also estimates
the model parameters by Maximum Likelihood and forecasts the data.
Value
An object of class ETS
. It is a list with fields including all the inputs and
the fields listed below as outputs. All the functions in this package fill in
part of the fields of any ETS
object as specified in what follows (function
ETS
fills in all of them at once):
After running ETSforecast
or ETSestim
:
p |
Estimated parameters |
criteria |
Values for estimation criteria (LogLik, AIC, BIC, AICc) |
yFor |
Forecasted values of output |
yForV |
Variance of forecasted values of output |
ySimul |
Bootstrap simulations for forecasting distribution evaluation |
After running ETSvalidate
:
table |
Estimation and validation table |
comp |
Estimated components in matrix form |
After running ETScomponents
:
comp |
Estimated components in matrix form |
Author(s)
Diego J. Pedregal
See Also
ETS
, ETSvalidate
,
ETScomponents
, ETSestim
Examples
## Not run:
y <- log(AirPAssengers)
m1 <- ETSforecast(y)
m1 <- ETSforecast(y, model = "A?A")
## End(Not run)
ETSsetup
Description
Sets up ETS general univariate models
Usage
ETSsetup(
y,
u = NULL,
model = "???",
s = frequency(y),
h = 2 * s,
criterion = "aicc",
lambda = 1,
armaIdent = FALSE,
identAll = FALSE,
forIntervals = FALSE,
bootstrap = FALSE,
nSimul = 5000,
verbose = FALSE,
alphaL = c(1e-08, 1 - 1e-08),
betaL = alphaL,
gammaL = alphaL,
phiL = c(0.8, 0.98),
p0 = -99999
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of input time series. If
the output wanted to be forecast, matrix |
model |
the model to estimate. It is a single string indicating the type of model for each component with one or two letters:
|
s |
seasonal period of time series (1 for annual, 4 for quarterly, ...) |
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
criterion |
information criterion for identification ("aic", "bic" or "aicc"). |
lambda |
Box-Cox lambda parameter (NULL: estimate) |
armaIdent |
check for arma models for error component (TRUE / FALSE). |
identAll |
run all models to identify the best one (TRUE / FALSE) |
forIntervals |
estimate forecasting intervals (TRUE / FALSE) |
bootstrap |
use bootstrap simulation for predictive distributions |
nSimul |
number of simulation runs for bootstrap simulation of predictive distributions |
verbose |
intermediate estimation output (TRUE / FALSE) |
alphaL |
constraints limits for alpha parameter |
betaL |
constraints limits for beta parameter |
gammaL |
constraints limits for gamma parameter |
phiL |
constraints limits for phi parameter |
p0 |
initial values for parameter search (alpha, beta, phi, gamma) with consraints:
|
Details
See help of ETSforecast
.
Value
An object of class ETS
. See ETSforecast
.
Author(s)
Diego J. Pedregal
See Also
ETS
, ETSforecast
, ETSvalidate
,
ETScomponents
, ETSestim
Examples
## Not run:
y <- log(AirPAssengers)
m1 <- ETSsetup(y)
m1 <- ETSsetup(y, model = "???")
m1 <- ETSsetup(y, model = "?AA")
## End(Not run)
ETSvalidate
Description
Shows a table of estimation and diagnostics results for ETS models
Usage
ETSvalidate(m)
Arguments
m |
an object of type |
Value
The same input object with the appropriate fields filled in, in particular:
table |
Estimation and validation table |
Author(s)
Diego J. Pedregal
See Also
ETS
, ETSforecast
, ETSvalidate
,
ETScomponents
Examples
## Not run:
m1 <- ETSforecast(log(gdp))
m1 <- ETSvalidate(m1)
## End(Not run)
OECD GDP
Description
Seasonally adjusted quarterly OECD real gross domestic product (OECDgdp).
Usage
OECDgdp
Format
Time series objects.
Quarterly data from 1962 to 2019
https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/bdsice.aspx
Examples
## Not run:
OECDgdp
## End(Not run)
TETS
Description
Runs all relevant functions for TETS modelling
Usage
TETS(
y,
u = NULL,
model = "???",
s = frequency(y),
h = 2 * s,
criterion = "aicc",
forIntervals = FALSE,
bootstrap = FALSE,
nSimul = 5000,
verbose = FALSE,
alphaL = c(0, 1),
betaL = alphaL,
gammaL = alphaL,
phiL = c(0.8, 0.98),
p0 = -99999,
Ymin = -Inf,
Ymax = Inf
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of input time series. If
the output wanted to be forecast, matrix |
model |
the model to estimate. It is a single string indicating the type of model for each component with one or two letters:
|
s |
seasonal period of time series (1 for annual, 4 for quarterly, ...) |
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
criterion |
information criterion for identification ("aic", "bic" or "aicc"). |
forIntervals |
estimate forecasting intervals (TRUE / FALSE) |
bootstrap |
use bootstrap simulation for predictive distributions |
nSimul |
number of simulation runs for bootstrap simulation of predictive distributions |
verbose |
intermediate estimation output (TRUE / FALSE) |
alphaL |
constraints limits for alpha parameter |
betaL |
constraints limits for beta parameter |
gammaL |
constraints limits for gamma parameter |
phiL |
constraints limits for phi parameter |
p0 |
initial values for parameter search (alpha, beta, phi, gamma, sigma2) with consraints: |
Ymin |
scalar or vector of time varying censoring values from below |
Ymax |
scalar or vector of time varying censoring values from above
|
Details
See help of TETSforecast
.
Value
An object of class TETS
. See TETSforecast
.
Author(s)
Diego J. Pedregal
See Also
TETSforecast
, TETSvalidate
,
TETScomponents
, TETSestim
Examples
## Not run:
y <- log(AirPAssengers)
m1 <- TETS(y)
m1 <- TETS(y, model = "MAM")
## End(Not run)
TETScomponents
Description
Estimates components of TOBIT TETS models
Usage
TETScomponents(m)
Arguments
m |
an object of type |
Value
The same input object with the appropriate fields filled in, in particular:
comp |
Estimated components in matrix form |
Author(s)
Diego J. Pedregal
See Also
TETS
, TETSforecast
, TETSvalidate
,
TETSestim
Examples
## Not run:
m1 <- TETS(log(gdp))
m1 <- TETScomponents(m1)
## End(Not run)
TETSestim
Description
Estimates and forecasts TOBIT TETS models
Usage
TETSestim(m)
Arguments
m |
an object of type |
Details
TETSestim
estimates and forecasts a time series using an
a TOBIT TETS model
Value
The same input object with the appropriate fields filled in, in particular:
p |
Estimated parameters |
yFor |
Forecasted values of output |
yForV |
Variance of forecasted values of output |
ySimul |
Bootstrap simulations for forecasting distribution evaluation |
Author(s)
Diego J. Pedregal
See Also
TETS
, TETSforecast
, TETSvalidate
,
TETScomponents
Examples
## Not run:
m1 <- TETSsetup(log(gdp))
m1 <- TETSestim(m1)
## End(Not run)
TETSforecast
Description
Estimates and forecasts TOBIT TETS general univariate models
Usage
TETSforecast(
y,
u = NULL,
model = "???",
s = frequency(y),
h = max(2 * s, 6),
criterion = "aicc",
forIntervals = FALSE,
bootstrap = FALSE,
nSimul = 5000,
verbose = FALSE,
alphaL = c(0, 1),
betaL = alphaL,
gammaL = alphaL,
phiL = c(0.8, 0.98),
p0 = -99999,
Ymin = -Inf,
Ymax = Inf
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of input time series. If
the output wanted to be forecast, matrix |
model |
the model to estimate. It is a single string indicating the type of model for each component with one or two letters:
|
s |
seasonal period of time series (1 for annual, 4 for quarterly, ...) |
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
criterion |
information criterion for identification ("aic", "bic" or "aicc"). |
forIntervals |
estimate forecasting intervals (TRUE / FALSE) |
bootstrap |
use bootstrap simulation for predictive distributions |
nSimul |
number of simulation runs for bootstrap simulation of predictive distributions |
verbose |
intermediate estimation output (TRUE / FALSE) |
alphaL |
constraints limits for alpha parameter |
betaL |
constraints limits for beta parameter |
gammaL |
constraints limits for gamma parameter |
phiL |
constraints limits for phi parameter |
p0 |
initial values for parameter search (alpha, beta, phi, gamma, sigma2) with consraints: |
Ymin |
scalar or vector of time varying censoring values from below |
Ymax |
scalar or vector of time varying censoring values from above
|
Details
TETSforecast
is a function for modelling and forecasting univariate
time series with TOBIT ExponenTial Smoothing (TETS) time series models.
It sets up the model with a number of control variables that
govern the way the rest of functions in the package will work. It also estimates
the model parameters by Maximum Likelihood and forecasts the data.
Value
An object of class TETS
. It is a list with fields including all the inputs and
the fields listed below as outputs. All the functions in this package fill in
part of the fields of any TETS
object as specified in what follows (function
TETS
fills in all of them at once):
After running TETSforecast
or TETSestim
:
p |
Estimated parameters |
criteria |
Values for estimation criteria (LogLik, AIC, BIC, AICc) |
yFor |
Forecasted values of output |
yForV |
Variance of forecasted values of output |
ySimul |
Bootstrap simulations for forecasting distribution evaluation |
After running TETSvalidate
:
table |
Estimation and validation table |
comp |
Estimated components in matrix form |
After running TETScomponents
:
comp |
Estimated components in matrix form |
Author(s)
Diego J. Pedregal
See Also
TETS
, TETSvalidate
,
TETScomponents
, TETSestim
Examples
## Not run:
y <- log(AirPAssengers)
m1 <- TETSforecast(y)
m1 <- TETSforecast(y, model = "A?A")
## End(Not run)
TETSsetup
Description
Sets up TOBIT TETS general univariate models
Usage
TETSsetup(
y,
u = NULL,
model = "???",
s = frequency(y),
h = 2 * s,
criterion = "aicc",
forIntervals = FALSE,
bootstrap = FALSE,
nSimul = 5000,
verbose = FALSE,
alphaL = c(0, 1),
betaL = alphaL,
gammaL = alphaL,
phiL = c(0.8, 0.98),
p0 = -99999,
Ymin = -Inf,
Ymax = Inf
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of input time series. If
the output wanted to be forecast, matrix |
model |
the model to estimate. It is a single string indicating the type of model for each component with one or two letters:
|
s |
seasonal period of time series (1 for annual, 4 for quarterly, ...) |
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
criterion |
information criterion for identification ("aic", "bic" or "aicc"). |
forIntervals |
estimate forecasting intervals (TRUE / FALSE) |
bootstrap |
use bootstrap simulation for predictive distributions |
nSimul |
number of simulation runs for bootstrap simulation of predictive distributions |
verbose |
intermediate estimation output (TRUE / FALSE) |
alphaL |
constraints limits for alpha parameter |
betaL |
constraints limits for beta parameter |
gammaL |
constraints limits for gamma parameter |
phiL |
constraints limits for phi parameter |
p0 |
initial values for parameter search (alpha, beta, phi, gamma, sigma2) with consraints: |
Ymin |
scalar or vector of time varying censoring values from below |
Ymax |
scalar or vector of time varying censoring values from above
|
Details
See help of TETSforecast
.
Value
An object of class TETS
. See TETSforecast
.
Author(s)
Diego J. Pedregal
See Also
TETS
, TETSforecast
, TETSvalidate
,
TETScomponents
, TETSestim
Examples
## Not run:
y <- log(AirPAssengers)
m1 <- TETSsetup(y)
m1 <- TETSsetup(y, model = "???")
m1 <- TETSsetup(y, model = "?AA")
## End(Not run)
TETSvalidate
Description
Shows a table of estimation and diagnostics results for TOBIT TETS models
Usage
TETSvalidate(m)
Arguments
m |
an object of type |
Value
The same input object with the appropriate fields filled in, in particular:
table |
Estimation and validation table |
Author(s)
Diego J. Pedregal
See Also
TETS
, TETSforecast
, TETSvalidate
,
TETScomponents
Examples
## Not run:
m1 <- TETSforecast(log(gdp))
m1 <- TETSvalidate(m1)
## End(Not run)
UC
Description
Runs all relevant functions for UC modelling
Usage
UC(
y,
u = NULL,
model = "?/none/?/?",
h = 24,
lambda = 1,
outlier = 9999,
tTest = FALSE,
criterion = "aic",
periods = NA,
verbose = FALSE,
stepwise = FALSE,
p0 = -9999.9,
arma = FALSE,
TVP = NULL,
trendOptions = "none/rw/llt/dt",
seasonalOptions = "none/equal/different",
irregularOptions = "none/arma(0,0)"
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of external regressors included only in the observation equation.
(it may be either a numerical vector or a time series object). If the output wanted
to be forecast, matrix |
model |
the model to estimate. It is a single string indicating the type of model for each component. It allows two formats "trend/seasonal/irregular" or "trend/cycle/seasonal/irregular". The possibilities available for each component are:
|
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
lambda |
Box-Cox transformation lambda, NULL for automatic estimation |
outlier |
critical level of outlier tests. If NA it does not carry out any outlier detection (default). A positive value indicates the critical minimum t test for outlier detection in any model during identification. Three types of outliers are identified, namely Additive Outliers (AO), Level Shifts (LS) and Slope Change (SC). |
tTest |
augmented Dickey Fuller test for unit roots used in stepwise algorithm (TRUE / FALSE). The number of models to search for is reduced, depending on the result of this test. |
criterion |
information criterion for identification ("aic", "bic" or "aicc"). |
periods |
vector of fundamental period and harmonics required. |
verbose |
intermediate results shown about progress of estimation (TRUE / FALSE). |
stepwise |
stepwise identification procedure (TRUE / FALSE). |
p0 |
initial parameter vector for optimisation search. |
arma |
check for arma models for irregular components (TRUE / FALSE). |
TVP |
vector of zeros and ones to indicate TVP parameters. |
trendOptions |
trend models to select amongst (e.g., "rw/llt"). |
seasonalOptions |
seasonal models to select amongst (e.g., "none/differentt"). |
irregularOptions |
irregular models to select amongst (e.g., "none/arma(0,1)"). |
Details
UC
is a function for modelling and forecasting univariate
time series according to Unobserved Components models (UC).
It sets up the model with a number of control variables that
govern the way the rest of functions in the package work. It also estimates
the model parameters by Maximum Likelihood, forecasts the data, performs smoothing,
estimates model disturbances, estimates components and shows statistical diagnostics.
Standard methods applicable to UComp objects are print, summary, plot,
fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.
Value
An object of class UComp
. It is a list with fields including all the inputs and
the fields listed below as outputs. All the functions in this package fill in
part of the fields of any UComp
object as specified in what follows (function
UC
fills in all of them at once):
After running UCforecast
or UCestim
:
p: Estimated parameters
v: Estimated innovations (white noise in correctly specified models)
yFor: Forecasted values of output
yForV: Forecasted values +- one standard error
criteria: Value of criteria for estimated model
iter: Number of iterations in estimation
grad: Gradient at estimated parameters
covp: Covariance matrix of parameters
After running UCvalidate
:
table: Estimation and validation table
After running UCcomponents
:
comp: Estimated components in matrix form
compV: Estimated components variance in matrix form
After running UCfilter
, UCsmooth
or UCdisturb
:
yFit: Fitted values of output
yFitV: Variance of fitted values of output
a: State estimates
P: Variance of state estimates
aFor: Forecasts of states
PFor: Forecasts of states variances
After running UCdisturb
:
eta: State perturbations estimates
eps: Observed perturbations estimates
Author(s)
Diego J. Pedregal
See Also
UC
, UCvalidate
, UCfilter
, UCsmooth
,
UCdisturb
, UCcomponents
,
UChp
Examples
## Not run:
y <- log(AirPassengers)
m1 <- UC(y)
m1 <- UC(y, model = "llt/different/arma(0,0)")
## End(Not run)
UCcomponents
Description
Estimates unobserved components of UC models Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.
Usage
UCcomponents(sys)
Arguments
sys |
an object of type |
Value
The same input object with the appropriate fields filled in, in particular:
comp: Estimated components in matrix form
compV: Estimated components variance in matrix form
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCvalidate
, UCfilter
,
UCsmooth
, UCdisturb
,
UChp
Examples
## Not run:
m1 <- UC(log(AirPassengers))
m1 <- UCcomponents(m1)
## End(Not run)
UCdisturb
Description
Runs the Disturbance Smoother for UC models
Standard methods applicable to UComp
objects are print, summary, plot,
fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.
Usage
UCdisturb(sys)
Arguments
sys |
an object of type |
Value
The same input object with the appropriate fields filled in, in particular:
yFit: Fitted values of output
yFitV: Variance of fitted values of output
a: State estimates
P: Variance of state estimates (diagonal of covariance matrices)
eta: State perturbations estimates
eps: Observed perturbations estimates
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCvalidate
, UCfilter
,
UCsmooth
, UCcomponents
,
UChp
Examples
## Not run:
m1 <- UC(log(AirPassengers))
m1 <- UCdisturb(m1)
## End(Not run)
UCestim
Description
Estimates and forecasts UC models
Usage
UCestim(sys)
Arguments
sys |
an object of type |
Details
UCestim
estimates and forecasts a time series using an
UC model.
The optimization method is a BFGS quasi-Newton algorithm with a
backtracking line search using Armijo conditions.
Parameter names in output table are the following:
Damping: Damping factor for DT trend.
Level: Variance of level disturbance.
Slope: Variance of slope disturbance.
Rho(#): Damping factor of cycle #.
Period(#): Estimated period of cycle #.
Var(#): Variance of cycle #.
Seas(#): Seasonal harmonic with period #.
Irregular: Variance of irregular component.
AR(#): AR parameter of lag #.
MA(#): MA parameter of lag #.
AO#: Additive outlier in observation #.
LS#: Level shift outlier in observation #.
SC#: Slope change outlier in observation #.
Beta(#): Beta parameter of input #.
Cnst: Constant.
Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.
Value
The same input object with the appropriate fields filled in, in particular:
p: Estimated transformed parameters
v: Estimated innovations (white noise in correctly specified models)
yFor: Forecast values of output
yForV: Forecasted values variance
criteria: Value of criteria for estimated model
covp: Covariance matrix of estimated transformed parameters
grad: Gradient of log-likelihood at the optimum
iter: Estimation iterations
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCvalidate
, UCfilter
,
UCsmooth
, UCdisturb
, UCcomponents
,
UChp
Examples
## Not run:
m1 <- UCsetup(log(AirPassengers))
m1 <- UCestim(m1)
## End(Not run)
UCfilter
Description
Runs the Kalman Filter for UC models
Standard methods applicable to UComp
objects are print, summary, plot,
fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.
Usage
UCfilter(sys)
Arguments
sys |
an object of type |
Value
The same input object with the appropriate fields filled in, in particular:
yFit: Fitted values of output
yFitV: Variance of fitted values of output
a: State estimates
P: Variance of state estimates (diagonal of covariance matrices)
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCvalidate
,
UCsmooth
, UCdisturb
, UCcomponents
,
UChp
Examples
## Not run:
m1 <- UC(log(AirPassengers))
m1 <- UCfilter(m1)
## End(Not run)
UCforecast
Description
Estimates and forecasts UC general univariate models
Usage
UCforecast(
y,
u = NULL,
model = "?/none/?/?",
h = 24,
lambda = 1,
outlier = 9999,
tTest = FALSE,
criterion = "aic",
periods = NA,
verbose = FALSE,
stepwise = FALSE,
p0 = -9999.9,
arma = FALSE,
TVP = NULL,
trendOptions = "none/rw/llt/dt",
seasonalOptions = "none/equal/different",
irregularOptions = "none/arma(0,0)"
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of external regressors included only in the observation equation.
(it may be either a numerical vector or a time series object). If the output wanted
to be forecast, matrix |
model |
the model to estimate. It is a single string indicating the type of model for each component. It allows two formats "trend/seasonal/irregular" or "trend/cycle/seasonal/irregular". The possibilities available for each component are:
|
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
lambda |
Box-Cox transformation lambda, NULL for automatic estimation |
outlier |
critical level of outlier tests. If NA it does not carry out any outlier detection (default). A positive value indicates the critical minimum t test for outlier detection in any model during identification. Three types of outliers are identified, namely Additive Outliers (AO), Level Shifts (LS) and Slope Change (SC). |
tTest |
augmented Dickey Fuller test for unit roots used in stepwise algorithm (TRUE / FALSE). The number of models to search for is reduced, depending on the result of this test. |
criterion |
information criterion for identification ("aic", "bic" or "aicc"). |
periods |
vector of fundamental period and harmonics required. |
verbose |
intermediate results shown about progress of estimation (TRUE / FALSE). |
stepwise |
stepwise identification procedure (TRUE / FALSE). |
p0 |
initial parameter vector for optimisation search. |
arma |
check for arma models for irregular components (TRUE / FALSE). |
TVP |
vector of zeros and ones to indicate TVP parameters. |
trendOptions |
trend models to select amongst (e.g., "rw/llt"). |
seasonalOptions |
seasonal models to select amongst (e.g., "none/differentt"). |
irregularOptions |
irregular models to select amongst (e.g., "none/arma(0,1)"). |
Details
UCforecast
is a function for modelling and forecasting univariate
time series according to Unobserved Components models (UC).
It sets up the model with a number of control variables that
govern the way the rest of functions in the package work. It also estimates
the model parameters by Maximum Likelihood and forecasts the data.
Standard methods applicable to UComp objects are print, summary, plot,
fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.
Value
An object of class UComp
. It is a list with fields including all the inputs and
the fields listed below as outputs. All the functions in this package fill in
part of the fields of any UComp
object as specified in what follows (function
UC
fills in all of them at once):
After running UCforecast
or UCestim
:
p: Estimated parameters
v: Estimated innovations (white noise in correctly specified models)
yFor: Forecasted values of output
yForV: Forecasted values +- one standard error
criteria: Value of criteria for estimated model
iter: Number of iterations in estimation
grad: Gradient at estimated parameters
covp: Covariance matrix of parameters
After running UCvalidate
:
table: Estimation and validation table
After running UCcomponents
:
comp: Estimated components in matrix form
compV: Estimated components variance in matrix form
After running UCfilter
, UCsmooth
or UCdisturb
:
yFit: Fitted values of output
yFitV: Variance of fitted values of output
a: State estimates
P: Variance of state estimates
aFor: Forecasts of states
PFor: Forecasts of states variances
After running UCdisturb
:
eta: State perturbations estimates
eps: Observed perturbations estimates
Author(s)
Diego J. Pedregal
See Also
UC
, UCvalidate
, UCfilter
, UCsmooth
,
UCdisturb
, UCcomponents
,
UChp
Examples
## Not run:
y <- log(AirPassengers)
m1 <- UCforecast(y)
m1 <- UCforecast(y, model = "llt/equal/arma(0,0)")
## End(Not run)
UChp
Description
Hodrick-Prescott filter estimation
Usage
UChp(y, lambda = 1600)
Arguments
y |
A time series object |
lambda |
Smoothing constant (default: 1600) |
Value
The cycle estimation
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCvalidate
, UCfilter
,
UCsmooth
, UCcomponents
, UCdisturb
Examples
## Not run:
cycle <- UChp(USgdp)
plot(cycle)
## End(Not run)
UCsetup
Description
Sets up UC general univariate models
Usage
UCsetup(
y,
u = NULL,
model = "?/none/?/?",
h = 24,
lambda = 1,
outlier = 9999,
tTest = FALSE,
criterion = "aic",
periods = NA,
verbose = FALSE,
stepwise = FALSE,
p0 = -9999.9,
arma = FALSE,
TVP = NULL,
trendOptions = "none/rw/llt/dt",
seasonalOptions = "none/equal/different",
irregularOptions = "none/arma(0,0)"
)
Arguments
y |
a time series to forecast (it may be either a numerical vector or
a time series object). This is the only input required. If a vector, the additional
input |
u |
a matrix of external regressors included only in the observation equation.
(it may be either a numerical vector or a time series object). If the output wanted
to be forecast, matrix |
model |
the model to estimate. It is a single string indicating the type of model for each component. It allows two formats "trend/seasonal/irregular" or "trend/cycle/seasonal/irregular". The possibilities available for each component are:
|
h |
forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead. |
lambda |
Box-Cox transformation lambda, NULL for automatic estimation |
outlier |
critical level of outlier tests. If NA it does not carry out any outlier detection (default). A positive value indicates the critical minimum t test for outlier detection in any model during identification. Three types of outliers are identified, namely Additive Outliers (AO), Level Shifts (LS) and Slope Change (SC). |
tTest |
augmented Dickey Fuller test for unit roots used in stepwise algorithm (TRUE / FALSE). The number of models to search for is reduced, depending on the result of this test. |
criterion |
information criterion for identification ("aic", "bic" or "aicc"). |
periods |
vector of fundamental period and harmonics required. |
verbose |
intermediate results shown about progress of estimation (TRUE / FALSE). |
stepwise |
stepwise identification procedure (TRUE / FALSE). |
p0 |
initial parameter vector for optimisation search. |
arma |
check for arma models for irregular components (TRUE / FALSE). |
TVP |
vector of zeros and ones to indicate TVP parameters. |
trendOptions |
trend models to select amongst (e.g., "rw/llt"). |
seasonalOptions |
seasonal models to select amongst (e.g., "none/differentt"). |
irregularOptions |
irregular models to select amongst (e.g., "none/arma(0,1)"). |
Details
See help of UC
.
Value
An object of class UComp
. It is a list with fields including all the inputs and
the fields listed below as outputs. All the functions in this package fill in
part of the fields of any UComp
object as specified in what follows (function
UC
fills in all of them at once):
After running UCforecast
or UCestim
:
p: Estimated parameters
v: Estimated innovations (white noise in correctly specified models)
yFor: Forecasted values of output
yForV: Variance of forecasts
criteria: Value of criteria for estimated model
iter: Number of iterations in estimation
grad: Gradient at estimated parameters
covp: Covariance matrix of parameters
After running UCvalidate
:
table: Estimation and validation table
After running UCcomponents
:
comp: Estimated components in matrix form
compV: Estimated components variance in matrix form
After running UCfilter
, UCsmooth
or UCdisturb
:
yFit: Fitted values of output
yFitV: Estimated fitted values variance
a: State estimates
P: Variance of state estimates
aFor: Forecasts of states
PFor: Forecasts of states variances
After running UCdisturb
:
eta: State perturbations estimates
eps: Observed perturbations estimates
Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCvalidate
, UCfilter
, UCsmooth
,
UCdisturb
, UCcomponents
,
UChp
Examples
## Not run:
y <- log(AirPassengers)
m1 <- UCsetup(y)
m1 <- UCsetup(y, outlier = 4)
m1 <- UCsetup(y, model = "llt/equal/arma(0,0)")
m1 <- UCsetup(y, model = "?/?/?/?")
m1 <- UCsetup(y, model = "llt/?/equal/?", outlier = 4)
## End(Not run)
UCsmooth
Description
Runs the Fixed Interval Smoother for UC models
Standard methods applicable to UComp
objects are print, summary, plot,
fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.
Usage
UCsmooth(sys)
Arguments
sys |
an object of type |
Value
The same input object with the appropriate fields filled in, in particular:
yFit: Fitted values of output
yFitV: Variance of fitted values of output
a: State estimates
P: Variance of state estimates (diagonal of covariance matrices)
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCvalidate
, UCfilter
,
UCdisturb
, UCcomponents
,
UChp
Examples
## Not run:
m1 <- UC(log(AirPassengers))
m1 <- UCsmooth(m1)
## End(Not run)
UCvalidate
Description
Shows a table of estimation and diagnostics results for UC models. Equivalent to print or summary. The table shows information in four sections: Firstly, information about the model estimated, the relevant periods of the seasonal component included, and further information about convergence. Secondly, parameters with their names are provided, the asymptotic standard errors, the ratio of the two, and the gradient at the optimum. One asterisk indicates concentrated-out parameters and two asterisks signals parameters constrained during estimation. Thirdly, information criteria and the value of the log-likelihood. Finally, diagnostic statistics about innovations, namely, the Ljung-Box Q test of absense of autocorrelation statistic for several lags, the Jarque-Bera gaussianity test, and a standard ratio of variances test.
Usage
UCvalidate(sys, printScreen = TRUE)
Arguments
sys |
an object of type |
printScreen |
print to screen or just return output table |
Value
The same input object with the appropriate fields filled in, in particular:
table: Estimation and validation table
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCfilter
,
UCsmooth
, UCdisturb
, UCcomponents
,
UChp
Examples
## Not run:
m1 <- UC(log(gdp))
m1 <- UCvalidate(m1)
## End(Not run)
US GDP
Description
Seasonally adjusted quarterly US real gross domestic product (USgdp).
Usage
USgdp
Format
Time series objects.
Quarterly data from 1962 to 2019
Source
Examples
## Not run:
USgdp
## End(Not run)
acft
Description
Theoretical autocorrelation functions of ARMA models
Usage
acft(MApoly = 1, ARpoly = 1, ncoef = 38, s = 1)
Arguments
MApoly |
coefficients of numerator polynomial in descending order |
ARpoly |
coefficients of denominator polynomial in descending order |
ncoef |
number of coefficients |
s |
seasonal period, number of observations per year |
Value
Theoretical autocorrelation functions
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
acft(c(1, -0.8), c(1, 0.8))
Airpassengers in Spain
Description
Foreign arrivals by air in Spain in thousands of passengers (airpas).
Usage
airpas
Format
Time series objects.
Monthly data from 1969
https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/bdsice.aspx
Examples
## Not run:
airpas
## End(Not run)
arma2tsi
Description
AR polynomial coefficients of ARMA model
Usage
arma2tsi(MApoly, ARpoly, n = 100)
Arguments
MApoly |
coefficients of numerator polynomial in descending order |
ARpoly |
coefficients of denominator polynomial in descending order |
n |
number of coefficients |
Author(s)
Diego J. Pedregal
armaFilter
Description
Filter of time series
Usage
armaFilter(MA = 1, AR = 1, y)
Arguments
MA |
numerator polynomial |
AR |
denominator polynomial |
y |
a vector, ts or tsibble object |
Value
Filtered time series
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
y <- armaFilter(1, c(1 , -0.8), rnorm(200))
auxInvBoxCox
Description
Inverse of Box-Cox transformation
Usage
auxInvBoxCox(y, lambda)
Arguments
y |
matrix, array or vector |
lambda |
lambda parameter of Box-Cox transformation |
Author(s)
Diego J. Pedregal
box.cox
Description
Runs Box-Cox transform of a time series
Usage
box.cox(x, lambda)
Arguments
x |
Time series object. |
lambda |
Lambda parameter for Box-Cox transform. |
Author(s)
Diego J. Pedregal
See Also
inv.box.cox
, UC
, UCforecast
, UCvalidate
, UCfilter
, UCsmooth
,
UCdisturb
, UCcomponents
Examples
## Not run:
y <- box.cox(AirPassengers, 0.5)
plot(y)
## End(Not run)
Methane concentration at Cape Grim in Australia
Description
Methane concentration at Cape Grim in Australia (ch4).
Usage
ch4
Format
Time series objects.
Monthly data from January 1992 to December 2019
Source
Examples
## Not run:
ch4
## End(Not run)
colMedians
Description
Medians of matrix by columns
Usage
colMedians(x, na.rm = TRUE, ...)
Arguments
x |
a matrix |
na.rm |
boolean indicating whether to remove nans |
... |
rest of inputs |
Value
A vector with all the medians
Author(s)
Diego J. Pedregal
See Also
rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
s <- colMedians(matrix(4, 3, 2))
conv
Description
1D convolution: filtering or polynomial multiplication
Usage
conv(...)
Arguments
... |
list of vectors to convolute |
Value
Convolution of all input vectors
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
conv(c(1, -1), c(1, -2, 1))
conv(c(1, -1), c(1, 0.8))
cusum
Description
Cusum and cusumsq tests
Usage
cusum(y, runFromTest = FALSE)
Arguments
y |
a vector, ts or tsibble object |
runFromTest |
internal check variable |
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
cusum(AirPassengers)
dif
Description
Discrete differencing of time series
Usage
dif(y, difs = 1, seas = 1)
Arguments
y |
a vector, ts or tsibble object |
difs |
vector with differencing orders |
seas |
vector of seasonal periods |
Value
Differenced time series
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
dif(AirPassengers)
dif(AirPassengers, 2)
dif(AirPassengers, c(1, 1), c(1, 12))
extract
Description
Reorder data frame returning column col reordered according to the values in column accordingTo
Usage
extract(x, col, accordingTo = 1)
Arguments
x |
a data frame |
col |
column to be ordered |
accordingTo |
column to take as the pattern |
Value
data frame reordered
Author(s)
Diego J. Pedregal
fitted.ETS
Description
Fitted output values of ETS object
Fitted output values of TETS object
Usage
## S3 method for class 'ETS'
fitted(object, ...)
## S3 method for class 'TETS'
fitted(object, ...)
Arguments
object |
Object of class “TETS”. |
... |
Additional inputs to function. |
Details
See help of ETS
.
See help of TETS
.
Author(s)
Diego J. Pedregal
See Also
ETS
, ETSforecast
, ETSvalidate
,
ETScomponents
, ETSestim
TETS
, TETSforecast
, TETSvalidate
,
TETScomponents
, TETSestim
Examples
## Not run:
m1 <- ETSforecast(log(gdp))
fitted(m1)
## End(Not run)
## Not run:
m1 <- TETSforecast(log(gdp))
fitted(m1)
## End(Not run)
gaussTest
Description
Gaussianity tests
Usage
gaussTest(y, runFromTests = FALSE)
Arguments
y |
a vector, ts or tsibble object |
runFromTests |
internal check |
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
gaussTest(AirPassengers)
Spanish GDP
Description
Quarterly real Spanish Gross Domestic Product (gdp)
Usage
gdp
Format
Time series objects.
Quarterly since 1995
https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/bdsice.aspx
Examples
## Not run:
gdp
## End(Not run)
getp0
Description
Get initial conditions for parameters of UComp
object
Usage
getp0(y, model = "llt/equal/arma(0,0)", periods = NA)
Arguments
y |
a time series to forecast. |
model |
any valid |
periods |
vector of fundamental period and harmonics required. |
Details
Provides initial parameters of a given model for the time series.
They may be changed arbitrarily by the user to include as an input p0
to
UC
or UCforecast
functions (see example below).
There is no guarantee that the model will converge and selecting initial conditions
should be used with care.
Value
A set of parameters p0 of an object of class UComp
to use as input to UC
, UCforecast
or UCsetup
.
Author(s)
Diego J. Pedregal
See Also
UC
, UCvalidate
, UCfilter
, UCsmooth
,
UCdisturb
, UCcomponents
,
UChp
Examples
## Not run:
p0 <- getp0(log(AirPassengers), model = "llt/equal/arma(0,0)")
p0[1] <- 0 # p0[1] <- NA
m <- UCforecast(log(AirPassengers), model = "llt/equal/arma(0,0)", p0 = p0)
## End(Not run)
ident
Description
Autocorrelation functions of a time series
Usage
ident(y, nCoef = min(37, floor(length(y)/4)), nPar = 0, runFromTests = FALSE)
Arguments
y |
a vector, ts or tsibble object |
nCoef |
number of autocorrelation coefficients to estimate |
nPar |
number of parameters in a model if y is a residual |
runFromTests |
internal check |
Value
A vector with all the dimensions
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
ident(AirPassengers)
inv.box.cox
Description
Runs inverse of Box-Cox transform of a time series
Usage
inv.box.cox(x, lambda)
Arguments
x |
Transformed time series object. |
lambda |
Lambda parameter used for Box-Cox transform. |
Author(s)
Diego J. Pedregal
See Also
box.cox
, UC
, UCforecast
, UCvalidate
, UCfilter
, UCsmooth
,
UCdisturb
, UCcomponents
Examples
## Not run:
y <- inv.box.cox(box.cox(AirPassengers, 0.5), 0.5)
plot(y)
## End(Not run)
invBoxCox
Description
Calculates inverse of Box-Cox transformation with confidence bands, calculated as const time the standard error
Usage
invBoxCox(y, yVar, lambda, const = 2)
Arguments
y |
matrix, array or vector |
yVar |
matrix, array or vector of variances of y |
lambda |
lambda parameter of Box-Cox transformation |
const |
number of standard error for confidence band |
Author(s)
Diego J. Pedregal
Spanish Industrial Production Index
Description
Spanish Industrial Production Index (ipi).
Usage
ipi
Format
Objeto time series.
Monthly since 1975
https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/bdsice.aspx
Examples
## Not run:
ipi
## End(Not run)
plot.ARIMA
Description
Plot zplane of ARIMA object
Usage
## S3 method for class 'ARIMA'
plot(x, ...)
Arguments
x |
Object of class “ARIMA”. |
... |
Additional inputs to function. |
Details
See help of ARIMA
.
Author(s)
Diego J. Pedregal
See Also
ARIMA
, ARIMAforecast
, ARIMAvalidate
,
Examples
## Not run:
m1 <- ARIMAforecast(log(gdp))
plot(m1)
## End(Not run)
plot.ETS
Description
Plot components of ETS object
Plot components of TETS object
Usage
## S3 method for class 'ETS'
plot(x, ...)
## S3 method for class 'TETS'
plot(x, ...)
Arguments
x |
Object of class “TETS”. |
... |
Additional inputs to function. |
Details
See help of ETS
.
See help of TETS
.
Author(s)
Diego J. Pedregal
See Also
ETS
, ETSforecast
, ETSvalidate
,
ETScomponents
, ETSestim
TETS
, TETSforecast
, TETSvalidate
,
TETScomponents
, TETSestim
Examples
## Not run:
m1 <- ETSforecast(log(gdp))
plot(m1)
## End(Not run)
## Not run:
m1 <- TETSforecast(log(gdp))
plot(m1)
## End(Not run)
plotAcfPacf
Description
Plot of ACF and PACF
Usage
plotAcfPacf(ACF, PACF, s = 1, n = NA, runFromTest = FALSE)
Arguments
ACF |
variable to plot |
PACF |
second variable to plot |
s |
seasonal period |
n |
number of coefficients |
runFromTest |
internal check variable |
Author(s)
Diego J. Pedregal
plotBar
Description
Plot variable in bars
Usage
plotBar(ACF, s = 1, n = NA, label = "ACF")
Arguments
ACF |
variable to plot |
s |
seasonal period |
n |
number of coefficients |
label |
label for plot |
Value
Handle of plot
Author(s)
Diego J. Pedregal
plotSlide
Description
Plot summarised results from slide
Usage
plotSlide(py1, y, orig, step = 1, errorFun, collectFun = mean)
Arguments
py1 |
output from slide function |
y |
a vector or matrix of time series (the same used in slide call) |
orig |
starting forecasting origin (the same used in slide call) |
step |
observations ahead to move the forecasting origin (the same used in slide call) |
errorFun |
user function to calculate error measures |
collectFun |
aggregation function (mean, median, etc.) |
Value
Results
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
Accuracy
, tsDisplay
,
size
Examples
## Not run: plotSlide(py1, AirPassengers, 100, 1, errorFun)
plus_one
Description
Returns date of next to end time series y
Usage
plus_one(y)
Arguments
y |
a ts object |
Value
Next time stamp
Author(s)
Diego J. Pedregal
predict.UComp
Description
Forecasting using structural Unobseved Components models with prediction intervals
Usage
## S3 method for class 'UComp'
predict(object, newdata = NULL, n.ahead = NULL, level = 0.95, ...)
Arguments
object |
Object of class “UComp”. |
newdata |
New output data to apply “UComp” object to. |
n.ahead |
Number of steps ahead to forecast or new inputs variables including their predictions. |
level |
Confidence level for prediction intervals. |
... |
Ignored. |
Details
See help of UC
.
Value
A matrix with the mean forecasts and lower and upper prediction intervals
Author(s)
Diego J. Pedregal
See Also
UC
, UCforecast
, UCvalidate
, UCfilter
, UCsmooth
,
UCdisturb
, UCcomponents
Examples
## Not run:
y <- log(AirPassengers)
m1 <- UCforecast(y, model = "llt/eq/arma(0,0)")
f1 <- predict(m1)
## End(Not run)
print.ARIMA
Description
Prints an ARIMA object
Prints an ETS object
Prints a TOBIT TETS object
Usage
## S3 method for class 'ARIMA'
print(x, ...)
## S3 method for class 'ETS'
print(x, ...)
## S3 method for class 'TETS'
print(x, ...)
Arguments
x |
Object of class “TETS”. |
... |
Additional inputs to handle the way to print output. |
Details
See help of ARIMA
.
See help of ETS
.
See help of TETS
.
Author(s)
Diego J. Pedregal
See Also
ARIMA
, ARIMAforecast
, ARIMAvalidate
,
ETS
, ETSforecast
, ETSvalidate
,
ETScomponents
, ETSestim
TETS
, TETSforecast
, TETSvalidate
,
TETScomponents
, TETSestim
Examples
## Not run:
m1 <- ARIMAforecast(log(gdp))
print(m1)
## End(Not run)
## Not run:
m1 <- ETSforecast(log(gdp))
print(m1)
## End(Not run)
## Not run:
m1 <- TETSforecast(log(gdp))
print(m1)
## End(Not run)
removeNaNs
Description
Remove nans at beginning or end of vector
Usage
removeNaNs(x)
Arguments
x |
a vector or a ts object |
Value
vector with nans removed (only those at beginning or end)
Author(s)
Diego J. Pedregal
residuals.ETS
Description
Residuals of ETS object
Residuals of TETS object
Usage
## S3 method for class 'ETS'
residuals(object, ...)
## S3 method for class 'TETS'
residuals(object, ...)
Arguments
object |
Object of class “TETS”. |
... |
Additional inputs to function. |
Details
See help of ETS
.
See help of TETS
.
Author(s)
Diego J. Pedregal
See Also
ETS
, ETSforecast
, ETSvalidate
,
ETScomponents
, ETSestim
TETS
, TETSforecast
, TETSvalidate
,
TETScomponents
, TETSestim
Examples
## Not run:
m1 <- ETSforecast(log(gdp))
residuals(m1)
## End(Not run)
## Not run:
m1 <- TETSforecast(log(gdp))
residuals(m1)
## End(Not run)
roots
Description
Roots of polynomial
Usage
roots(x)
Arguments
x |
coefficients of polynomial in descending order |
Value
Roots of polynomial
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
roots(c(1, -2 ,1))
roots(conv(c(1, -1), c(1, 0.8)))
rowMedians
Description
Medians of matrix by rows
Usage
rowMedians(x, na.rm = TRUE, ...)
Arguments
x |
a matrix |
na.rm |
boolean indicating whether to remove nans |
... |
rest of inputs |
Value
A vector with all the medians
Author(s)
Diego J. Pedregal
See Also
colMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
s <- rowMedians(matrix(4, 3, 2))
Sales index for large retailers in Spain
Description
Sales index for food of large retailers in Spain
Usage
sales
Format
Time series objects.
Monthly data from January 1995 to December 2019
https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/bdsice.aspx
Examples
## Not run:
sales
## End(Not run)
size
Description
size of vectors or matrices
Size of vector, matrix or array
Usage
size(y)
size(y)
Arguments
y |
a vector, matrix or array |
Value
A vector with all the dimensions
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
Examples
s <- size(matrix(4, 3, 2))
s <- size(rep(4, 3))
s <- size(array(4, c(3, 2, 2)))
slide
Description
Rolling forecasting of a matrix of time series
Usage
slide(
y,
orig,
forecFun,
...,
h = 12,
step = 1,
output = TRUE,
window = NA,
parallel = FALSE
)
Arguments
y |
a vector or matrix of time series |
orig |
starting forecasting origin |
forecFun |
user function that implements forecasting methods |
... |
rest of inputs to forecFun function |
h |
forecasting horizon |
step |
observations ahead to move the forecasting origin |
output |
output TRUE/FALSE |
window |
fixed window width in number of observations (NA for non fixed) |
parallel |
run forecasts in parallel |
Details
Takes a time series and run forecasting methods implemented in function forecFun h steps ahead along the time series y, starting at forecasting origin orig, and moving step observations ahead. Forecasts may be run in parallel by setting parallel to TRUE. A fixed window width may be specified with input window. The output is of dimensions (h, nOrigs, nModels, nSeries)
Value
A vector with all the dimensions
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
## Not run: slide(AirPassengers, 100, forecFun)
slideAux
Description
Auxiliary function run from slide
Usage
slideAux(
y,
orig,
forecFun,
h = 12,
step = 1,
output = TRUE,
graph = TRUE,
window = NA,
parallel = FALSE,
...
)
Arguments
y |
a vector or matrix of time series |
orig |
starting forecasting origin |
forecFun |
user function that implements forecasting methods |
h |
forecasting horizon |
step |
observations ahead to move the forecasting origin |
output |
output TRUE/FALSE |
graph |
fraphical output TRUE/FALSE |
window |
fixed window width in number of observations (NA for non fixed) |
parallel |
run forecasts in parallel |
... |
rest of inputs to forecFun function |
Value
Next time stamp
Author(s)
Diego J. Pedregal
sumStats
Description
Summary statistics of a matrix of variables
Usage
sumStats(y, decimals = 5)
Arguments
y |
a vector, matrix of time series |
decimals |
number of decimals for table |
Details
Position, dispersion, skewness, kurtosis, etc.
Value
Table of values
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
s <- sumStats(AirPassengers)
summary.ARIMA
Description
Prints an ARIMA object on screen
Usage
## S3 method for class 'ARIMA'
summary(object, ...)
Arguments
object |
Object of class “ARIMA”. |
... |
Additional inputs to function. |
Details
See help of ARIMA
.
Author(s)
Diego J. Pedregal
See Also
ARIMA
, ARIMAforecast
, ARIMAvalidate
,
Examples
## Not run:
m1 <- ARIMAforecast(log(gdp))
summary(m1)
## End(Not run)
summary.ETS
Description
Prints an ETS object on screen
Usage
## S3 method for class 'ETS'
summary(object, ...)
Arguments
object |
Object of class “ETS”. |
... |
Additional inputs to function. |
Details
See help of ETS
.
Author(s)
Diego J. Pedregal
See Also
ETS
, ETSforecast
, ETSvalidate
,
ETScomponents
, ETSestim
Examples
## Not run:
m1 <- ETSforecast(log(gdp))
summary(m1)
## End(Not run)
summary.TETS
Description
Prints a TOBIT TETS object on screen
Usage
## S3 method for class 'TETS'
summary(object, ...)
Arguments
object |
Object of class “TETS”. |
... |
Additional inputs to function. |
Details
See help of TETS
.
Author(s)
Diego J. Pedregal
See Also
TETS
, TETSforecast
, TETSvalidate
,
TETScomponents
, TETSestim
Examples
## Not run:
m1 <- TETSforecast(log(gdp))
summary(m1)
## End(Not run)
tests
Description
Tests on a time series
Usage
tests(
y,
parts = 1/3,
nCoef = min(25, length(x)/4),
nPar = 0,
s = frequency(y),
avoid = 16
)
Arguments
y |
a vector, ts or tsibble object |
parts |
proportion of sample to include in ratio of variances test |
nCoef |
number of autocorrelation coefficients to estimate |
nPar |
number of parameters in a model if y is a residual |
s |
seasonal period, number of observations per year |
avoid |
number of observations to avoid at beginning of sample to eliminate initial effects |
Details
Multiple tests on a time series, including summary statistics, autocorrelation, Gaussianity and heteroskedasticity,
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
tests(AirPassengers)
tsDisplay
Description
Displays time series plot with autocorrelation functions
Usage
tsDisplay(y, nCoef = 25, nPar = 0, s = NA)
Arguments
y |
a vector, ts or tsibble object |
nCoef |
number of autocorrelation coefficients to estimate |
nPar |
number of parameters in a model if y is a residual |
s |
seasonal period, number of observations per year |
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
,
size
Examples
tsDisplay(AirPassengers)
varTest
Description
Ratio of variances test
Usage
varTest(y, parts = 1/3)
Arguments
y |
a vector, ts or tsibble object |
parts |
portion of sample to estimate variances |
Value
Table with test results
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, conv
,
armaFilter
, dif
, roots
,
zplane
, acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
varTest(AirPassengers)
zplane
Description
Real-imaginary plane to show roots of digital filters (ARMA)
Usage
zplane(MApoly = 1, ARpoly = 1)
Arguments
MApoly |
coefficients of numerator polynomial in descending order |
ARpoly |
coefficients of denominator polynomial in descending order |
Details
Shows the real-imaginary plane to show zeros (roots of numerator or MA polynomial) and poles (roots of denominator of AR polynomial). Unit roots and real vs imaginary roots can be seen by eye
Author(s)
Diego J. Pedregal
See Also
colMedians
, rowMedians
, tests
,
sumStats
, gaussTest
, ident
,
cusum
, varTest
, conv
,
armaFilter
, dif
, roots
,
acft
, slide
,
plotSlide
, Accuracy
, tsDisplay
,
size
Examples
zplane(c(1, -2, 1), c(1, -0.8))