
Package ‘SpatialPosition’
July 21, 2025

Title Spatial Position Models

Version 2.1.2

Description Computes spatial position models: the potential model as defined
by Stewart (1941) <doi:10.1126/science.93.2404.89> and catchment areas as
defined by Reilly (1931) or Huff (1964) <doi:10.2307/1249154>.

Depends R (>= 3.5.0)

License GPL-3

LazyData true

Imports sf, sp, grDevices, graphics, methods, isoband, raster

Suggests lwgeom, parallel, doParallel, foreach, cartography, knitr,
rmarkdown

URL https://github.com/riatelab/SpatialPosition

BugReports https://github.com/riatelab/SpatialPosition/issues

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Timothée Giraud [cre, aut] (ORCID:
<https://orcid.org/0000-0002-1932-3323>),

Hadrien Commenges [aut],
Joël Boulier [ctb]

Maintainer Timothée Giraud <timothee.giraud@cnrs.fr>

Repository CRAN

Date/Publication 2023-09-14 09:40:04 UTC

Contents
CreateDistMatrix . 2
CreateGrid . 3

1

https://doi.org/10.1126/science.93.2404.89
https://doi.org/10.2307/1249154
https://github.com/riatelab/SpatialPosition
https://github.com/riatelab/SpatialPosition/issues
https://orcid.org/0000-0002-1932-3323

2 CreateDistMatrix

hospital . 4
huff . 4
isopoly . 6
mcStewart . 8
paris . 10
plotHuff . 10
plotReilly . 11
plotStewart . 12
quickStewart . 13
rasterHuff . 15
rasterReilly . 16
rasterStewart . 17
reilly . 18
smoothy . 20
SpatialPosition . 22
stewart . 23

Index 25

CreateDistMatrix Create a Distance Matrix Between Two Spatial Objects

Description

This function creates a distance matrix between two spatial objects (sp or sf objects).

Usage

CreateDistMatrix(knownpts, unknownpts, bypassctrl = FALSE, longlat = TRUE)

Arguments

knownpts sp or sf object; rows of the distance matrix.

unknownpts sp or sf object; columns of the distance matrix.

bypassctrl logical; bypass the distance matrix size control (see Details).

longlat logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid)
distance.

Details

The function returns a full matrix of distances in meters. If the matrix to compute is too large (more
than 100,000,000 cells, more than 10,000,000 origins or more than 10,000,000 destinations) the
function sends a confirmation message to warn users about the amount of RAM mobilized. Use
bypassctrl = TRUE to skip this control.

Value

A distance matrix, row names are knownpts row names, column names are unknownpts row names.

CreateGrid 3

See Also

CreateGrid

Examples

Create a grid of paris extent and 200 meters
resolution
data(hospital)
mygrid <- CreateGrid(w = paris, resolution = 200, returnclass = "sf")
Create a distance matrix between known hospital and mygrid
mymat <- CreateDistMatrix(knownpts = hospital, unknownpts = mygrid,

longlat = FALSE)
mymat[1:5,1:5]
nrow(paris)
nrow(mygrid)
dim(mymat)

CreateGrid Create a Regularly Spaced Points Grid

Description

This function creates a regular grid of points from the extent of a given spatial object and a given
resolution.

Usage

CreateGrid(w, resolution, returnclass = "sp")

Arguments

w sp or sf object; the spatial extent of this object is used to create the regular grid.

resolution numeric; resolution of the grid (in map units). If resolution is not set, the grid
will contain around 7500 points. (optional)

returnclass "sp" or "sf"; class of the returned object.

Value

The output of the function is a regularly spaced points grid with the extent of w.

See Also

CreateDistMatrix

4 huff

Examples

Create a grid of paris extent and 200 meters
resolution
library(SpatialPosition)
library(sf)
data(hospital)
mygrid <- CreateGrid(w = paris, resolution = 200, returnclass = "sf")
plot(st_geometry(mygrid), cex = 0.1, pch = ".")
plot(st_geometry(paris), border="red", lwd = 2, add = TRUE)

hospital Public Hospitals

Description

An sf POINT data frame of 18 public hospitals with their capacity ("capacity" = number of beds).

huff Huff Catchment Areas

Description

This function computes the catchment areas as defined by D. Huff (1964).

Usage

huff(
knownpts,
unknownpts,
matdist,
varname,
typefct = "exponential",
span,
beta,
resolution,
mask,
bypassctrl = FALSE,
longlat = TRUE,
returnclass = "sp"

)

huff 5

Arguments

knownpts sp or sf object; this is the set of known observations to estimate the catchment
areas from.

unknownpts sp or sf object; this is the set of unknown units for which the function computes
the estimates. Not used when resolution is set up. (optional)

matdist matrix; distance matrix between known observations and unknown units for
which the function computes the estimates. Row names match the row names
of knownpts and column names match the row names of unknownpts. matdist
can contain any distance metric (time distance or euclidean distance for ex-
ample). If matdist is not set, the distance matrix is automaticly built with
CreateDistMatrix. (optional)

varname character; name of the variable in the knownpts dataframe from which values
are computed. Quantitative variable with no negative values.

typefct character; spatial interaction function. Options are "pareto" (means power law)
or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDis-
tance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha *
mDistance ^ beta). The alpha parameter is computed from parameters given by
the user (beta and span).

span numeric; distance where the density of probability of the spatial interaction func-
tion equals 0.5.

beta numeric; impedance factor for the spatial interaction function.

resolution numeric; resolution of the output grid (in map units). If resolution is not set, the
grid will contain around 7000 points. (optional)

mask sp or sf object; the spatial extent of this object is used to create the regularly
spaced points output. (optional)

bypassctrl logical; bypass the distance matrix size control (see CreateDistMatrix De-
tails).

longlat logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid)
distance.

returnclass "sp" or "sf"; class of the returned object.

Value

Point object with the computed catchment areas in a new field named OUTPUT.

References

HUFF D. (1964) Defining and Estimating a Trading Area. Journal of Marketing, 28: 34-38.

See Also

huff, rasterHuff, plotHuff, CreateGrid, CreateDistMatrix.

6 isopoly

Examples

Create a grid of paris extent and 200 meters
resolution
data(hospital)
mygrid <- CreateGrid(w = paris, resolution = 200, returnclass = "sf")
Create a distance matrix between known points (hospital) and mygrid
mymat <- CreateDistMatrix(knownpts = hospital, unknownpts = mygrid,

longlat = FALSE)
Compute Huff catchment areas from known points (hospital) on a given
grid (mygrid) using a given distance matrix (mymat)
myhuff <- huff(knownpts = hospital, unknownpts = mygrid,

matdist = mymat, varname = "capacity",
typefct = "exponential", span = 1250,
beta = 3, mask = paris, returnclass = "sf")

Compute Huff catchment areas from known points (hospital) on a
grid defined by its resolution
myhuff2 <- huff(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 1250, beta = 3,
resolution = 200, mask = paris, returnclass= "sf")

The two methods have the same result
identical(myhuff, myhuff2)
the function output an sf object
class(myhuff)

isopoly Create Spatial Polygons Contours from a Raster

Description

This function creates spatial polygons of contours from a raster.

Usage

isopoly(
x,
nclass = 8,
breaks,
mask,
xcoords = "COORDX",
ycoords = "COORDY",
var = "OUTPUT",
returnclass = "sp"

)

Arguments

x sf POINT data.frame; must contain X, Y and OUTPUT fields.

nclass numeric; a number of class.

isopoly 7

breaks numeric; a vector of break values.

mask sf POLYGON data.frame; mask used to clip contour shapes.

xcoords character; name of the X coordinates field in x.

ycoords character; name of the Y coordinates field in x.

var character; name of the OUTPUT field in x.

returnclass "sp" or "sf"; class of the returned object.

Value

The output is an sf POLYGON data.frame. The data frame contains four fields: id (id of each
polygon), min and max (minimum and maximum breaks of the polygon), center (central values of
classes).

See Also

stewart.

Examples

data(hospital)
Compute Stewart potentials
mystewart <- stewart(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 1000, beta = 3,
mask = paris, returnclass = "sf")

Create contour
contourpoly <- isopoly(x = mystewart,

nclass = 6,
mask = paris, returnclass = "sf")

library(sf)
plot(st_geometry(contourpoly))
if(require(cartography)){

Created breaks
bks <- sort(unique(c(contourpoly$min, contourpoly$max)))
opar <- par(mar = c(0,0,1.2,0))
Display the map
choroLayer(x = contourpoly,

var = "center", legend.pos = "topleft",
breaks = bks, border = "grey90",
lwd = 0.2,
legend.title.txt = "Potential number\nof beds in the\nneighbourhood",
legend.values.rnd = 0)

plot(st_geometry(paris), add = TRUE)
propSymbolsLayer(x = hospital, var = "capacity",

legend.pos = "right",
legend.title.txt = "Number of beds",
col = "#ff000020")

layoutLayer(title = "Global Accessibility to Public Hospitals",
sources = "", author = "")

par(opar)
}

8 mcStewart

mcStewart Stewart Potentials Parallel

Description

This function computes Stewart potentials using parallel computation.

Usage

mcStewart(
knownpts,
unknownpts,
varname,
typefct = "exponential",
span,
beta,
resolution,
mask,
cl,
size = 1000,
longlat = TRUE,
returnclass = "sp"

)

Arguments

knownpts sp or sf object; this is the set of known observations to estimate the potentials
from.

unknownpts sp or sf object; this is the set of unknown units for which the function computes
the estimates. Not used when resolution is set up. (optional)

varname character; name of the variable in the knownpts dataframe from which potentials
are computed. Quantitative variable with no negative values.

typefct character; spatial interaction function. Options are "pareto" (means power law)
or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDis-
tance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha *
mDistance ^ beta). The alpha parameter is computed from parameters given by
the user (beta and span).

span numeric; distance where the density of probability of the spatial interaction func-
tion equals 0.5.

beta numeric; impedance factor for the spatial interaction function.

resolution numeric; resolution of the output SpatialPointsDataFrame (in map units). If
resolution is not set, the grid will contain around 7250 points. (optional)

mask sp or sf object; the spatial extent of this object is used to create the regularly
spaced points output. (optional)

cl numeric; number of clusters. By default cl is determined using parallel::detectCores().

mcStewart 9

size numeric; mcStewart splits unknownpts in chunks, size indicates the size of each
chunks.

longlat logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid)
distance.

returnclass "sp" or "sf"; class of the returned object.

Details

The parallel implementation splits potentials computations along chunks of unknownpts (or chunks
of the grid defined using resolution).

Value

Point object with the computed potentials in a new field named OUTPUT.

See Also

stewart.

Examples

Not run:
if(require(cartography)){

nuts3.spdf@data <- nuts3.df
t1 <- system.time(
s1 <- stewart(knownpts = nuts3.spdf,resolution = 40000,

varname = "pop2008",
typefct = "exponential", span = 100000,
beta = 3, mask = nuts3.spdf, returnclass = "sf")

)
t2 <- system.time(

s2 <- mcStewart(knownpts = nuts3.spdf, resolution = 40000,
varname = "pop2008",
typefct = "exponential", span = 100000,
beta = 3, mask = nuts3.spdf, cl = 3, size = 500,
returnclass = "sf")

)
identical(s1, s2)
cat("Elapsed time\n", "stewart:", t1[3], "\n mcStewart:",t2[3])

iso <- isopoly(x = s2,
breaks = c(0,1000000,2000000, 5000000, 10000000, 20000000,

200004342),
mask = nuts3.spdf, returnclass = "sf")

cartography
opar <- par(mar = c(0,0,1.2,0))
bks <- sort(unique(c(isomin, isomax)))
choroLayer(x = iso, var = "center", breaks = bks, border = NA,

legend.title.txt = "pop")
layoutLayer("potential population", "","", scale = NULL)
par(opar)

10 plotHuff

}

End(Not run)

paris Paris Polygon

Description

An sf POLYGON data frame of the Paris perimeter.

plotHuff Plot a Huff Raster

Description

This function plots the raster produced by the rasterHuff function.

Usage

plotHuff(x, add = FALSE)

Arguments

x raster; output of the rasterHuff function.

add logical; if TRUE the raster is added to the current plot, if FALSE the raster is
displayed in a new plot.

Value

Display the raster nicely.

See Also

huff, rasterHuff.

Examples

data(hospital)
Compute Huff catchment areas from known points (hospital) on a
grid defined by its resolution
myhuff <- huff(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 750, beta = 2,
resolution = 100, mask = paris, returnclass = "sf")

Create a raster of huff values
myhuffraster <- rasterHuff(x = myhuff, mask = paris)
plotHuff(myhuffraster)

plotReilly 11

plotReilly Plot a Reilly Raster

Description

This function plots the raster produced by the rasterReilly function.

Usage

plotReilly(x, add = FALSE, col = rainbow)

Arguments

x raster; output of the rasterReilly function.

add logical; if TRUE the raster is added to the current plot, if FALSE the raster is
displayed in a new plot.

col function; color ramp function, such as colorRampPalette.

Details

Display the raster nicely.

See Also

reilly, rasterReilly.

Examples

data(hospital)
Compute Reilly catchment areas from known points (hospital) on a
grid defined by its resolution
myreilly <- reilly(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 1250, beta = 3,
resolution = 200, mask = paris, returnclass = 'sf')

Create a raster of reilly values
myreillyraster <- rasterReilly(x = myreilly, mask = paris)
Plot the raster nicely
plotReilly(x = myreillyraster)

12 plotStewart

plotStewart Plot a Stewart Raster

Description

This function plots the raster produced by the rasterStewart function.

Usage

plotStewart(
x,
add = FALSE,
breaks = NULL,
typec = "equal",
nclass = 5,
legend.rnd = 0,
col = colorRampPalette(c("#FEA3A3", "#980000"))

)

Arguments

x raster; output of the rasterStewart function.

add logical; if TRUE the raster is added to the current plot, if FALSE the raster is
displayed in a new plot.

breaks numeric; vector of break values to map. If used, this parameter overrides typec
and nclass parameters

typec character; either "equal" or "quantile", how to discretize the values.

nclass numeric (integer), number of classes.

legend.rnd numeric (integer); number of digits used to round the values displayed in the
legend.

col function; color ramp function, such as colorRampPalette.

Value

Display the raster nicely and return the list of break values (invisible).

See Also

stewart, rasterStewart, quickStewart, CreateGrid, CreateDistMatrix.

quickStewart 13

Examples

data(hospital)
Compute Stewart potentials from known points (hospital) on a
grid defined by its resolution
mystewart <- stewart(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 1000, beta = 3,
resolution = 100, mask = paris)

Create a raster of potentials values
mystewartraster <- rasterStewart(x = mystewart, mask = paris)
Plot stewart potentials nicely
plotStewart(x = mystewartraster, add = FALSE, nclass = 5)
Can be used to obtain break values
break.values <- plotStewart(x = mystewartraster, add = FALSE, nclass = 5)
break.values

quickStewart Create Polygons of Potentials Contours

Description

This function is a wrapper around stewart, and isopoly functions. Providing only the main pa-
rameters of these functions, it simplifies a lot the computation of potentials. This function creates
polygons of potential values. It also allows to compute directly the ratio between the potentials of
two variables.

Usage

quickStewart(
x,
spdf,
df,
spdfid = NULL,
dfid = NULL,
var,
var2,
typefct = "exponential",
span,
beta,
resolution,
mask,
nclass = 8,
breaks,
bypassctrl = FALSE,
returnclass = "sp"

)

14 quickStewart

Arguments

x sp or sf object; this is the set of known observations to estimate the potentials
from.

spdf a SpatialPolygonsDataFrame.

df a data frame that contains the values to compute

spdfid name of the identifier field in spdf, default to the first column of the spdf data
frame. (optional)

dfid name of the identifier field in df, default to the first column of df. (optional)

var name of the numeric field in df used to compute potentials.

var2 name of the numeric field in df used to compute potentials. This field is used for
ratio computation (see Details).

typefct character; spatial interaction function. Options are "pareto" (means power law)
or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDis-
tance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha *
mDistance ^ beta). The alpha parameter is computed from parameters given by
the user (beta and span).

span numeric; distance where the density of probability of the spatial interaction func-
tion equals 0.5.

beta numeric; impedance factor for the spatial interaction function.

resolution numeric; resolution of the output SpatialPointsDataFrame (in map units). If
resolution is not set, the grid will contain around 7250 points. (optional)

mask sp or sf object; the spatial extent of this object is used to create the regularly
spaced points output. (optional)

nclass numeric; a targeted number of classes (default to 8). Not used if breaks is set.

breaks numeric; a vector of values used to discretize the potentials.

bypassctrl logical; bypass the distance matrix size control (see CreateDistMatrix De-
tails).

returnclass "sp" or "sf"; class of the returned object.

Details

If var2 is provided, the ratio between the potentials of var (numerator) and var2 (denominator) is
computed.

Value

A polyfon object is returned ("sp" or "sf", see isopoly Value).

See Also

stewart, isopoly

rasterHuff 15

Examples

load data
data("hospital")
Compute potentials
pot <- quickStewart(x = hospital,

var = "capacity",
span = 1000,
beta = 2, mask = paris,
returnclass = "sf")

cartography
if(require("cartography")){

breaks <- sort(c(unique(pot$min), max(pot$max)), decreasing = FALSE)
choroLayer(x = pot,

var = "center", breaks = breaks,
legend.pos = "topleft",
legend.title.txt = "Nb. of Beds")

}

Compute a ratio of potentials
hospital$dummy <- hospital$capacity + c(rep(50, 18))
pot2 <- quickStewart(x = hospital,

var = "capacity",
var2 = "dummy",
span = 1000,
beta = 2,
mask = paris,
returnclass = "sf")

cartography
if(require("cartography")){

breaks <- sort(c(unique(pot2$min), max(pot2$max)), decreasing = FALSE)
choroLayer(x = pot2,

var = "center", breaks = breaks,
legend.pos = "topleft",legend.values.rnd = 3,
legend.title.txt = "Nb. of DummyBeds")

}

rasterHuff Create a Raster from a Huff SpatialPointsDataFrame

Description

This function creates a raster from a regularly spaced Huff grid (output of the huff function).

Usage

rasterHuff(x, mask = NULL)

Arguments

x sp or sf object; output of the huff function.
mask sp or sf object; this object is used to clip the raster. (optional)

16 rasterReilly

Value

Raster of catchment areas values.

See Also

huff, plotHuff.

Examples

library(raster)
data(hospital)
Compute Huff catchment areas from known points (hospital) on a
grid defined by its resolution
myhuff <- huff(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 750, beta = 2,
resolution = 100, mask = paris, returnclass = "sf")

Create a raster of huff values
myhuffraster <- rasterHuff(x = myhuff, mask = paris)
plot(myhuffraster)

rasterReilly Create a Raster from a Reilly Regular Grid

Description

This function creates a raster from a regularly spaced Reilly grid (output of the reilly function).

Usage

rasterReilly(x, mask = NULL)

Arguments

x sp or sf object; output of the reilly function.

mask sp or sf object; this object is used to clip the raster. (optional)

Value

Raster of catchment areas values. The raster uses a RAT (ratify) that contains the correspondance
between raster values and catchement areas values. Use unique(levels(rasterName)[[1]]) to
see the correpondance table.

See Also

reilly, plotReilly.

rasterStewart 17

Examples

library(raster)
data(hospital)
Compute Reilly catchment areas from known points (hospital) on a
grid defined by its resolution
myreilly <- reilly(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 1250, beta = 3,
resolution = 200, mask = paris, returnclass = "sf")

Create a raster of reilly values
myreillyraster <- rasterReilly(x = myreilly, mask = paris)
plot(myreillyraster, col = rainbow(18))
Correspondance between raster values and reilly areas
head(unique(levels(myreillyraster)[[1]]))

rasterStewart Create a Raster from a Stewart Regular Grid

Description

This function creates a raster from a regularly spaced Stewart points grid (output of the stewart
function).

Usage

rasterStewart(x, mask = NULL)

Arguments

x sp or sf object; output of the stewart function.

mask sp or sf object; this object is used to clip the raster. (optional)

Value

Raster of potential values.

See Also

stewart, quickStewart, plotStewart, CreateGrid, CreateDistMatrix.

Examples

library(raster)
data(hospital)
Compute Stewart potentials from known points (hospital) on a
grid defined by its resolution
mystewart <- stewart(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 1000, beta = 3,
resolution = 100, mask = paris)

Create a raster of potentials values

18 reilly

mystewartraster <- rasterStewart(x = mystewart, mask = paris)
plot(mystewartraster)

reilly Reilly Catchment Areas

Description

This function computes the catchment areas as defined by W.J. Reilly (1931).

Usage

reilly(
knownpts,
unknownpts,
matdist,
varname,
typefct = "exponential",
span,
beta,
resolution,
mask,
bypassctrl = FALSE,
longlat = TRUE,
returnclass = "sp"

)

Arguments

knownpts sp or sf object; this is the set of known observations to estimate the catchment
areas from.

unknownpts sp or sf object; this is the set of unknown units for which the function computes
the estimates. Not used when resolution is set up. (optional)

matdist matrix; distance matrix between known observations and unknown units for
which the function computes the estimates. Row names match the row names
of knownpts and column names match the row names of unknownpts. matdist
can contain any distance metric (time distance or euclidean distance for exam-
ple). If matdist is not set, the distance matrix is built with CreateDistMatrix.
(optional)

varname character; name of the variable in the knownpts dataframe from which values
are computed. Quantitative variable with no negative values.

typefct character; spatial interaction function. Options are "pareto" (means power law)
or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDis-
tance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha *
mDistance ^ beta). The alpha parameter is computed from parameters given by
the user (beta and span).

reilly 19

span numeric; distance where the density of probability of the spatial interaction func-
tion equals 0.5.

beta numeric; impedance factor for the spatial interaction function.

resolution numeric; resolution of the output grid (in map units). If resolution is not set, the
grid will contain around 7250 points. (optional)

mask sp or sf object; the spatial extent of this object is used to create the regularly
spaced points output. (optional)

bypassctrl logical; bypass the distance matrix size control (see CreateDistMatrix De-
tails).

longlat logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid)
distance.

returnclass "sp" or "sf"; class of the returned object.

Value

Point object with the computed catchment areas in a new field named OUTPUT. Values match the
row names of knownpts.

References

REILLY, W. J. (1931) The law of retail gravitation, W. J. Reilly, New York.

See Also

reilly, rasterReilly, plotReilly, CreateGrid, CreateDistMatrix.

Examples

Create a grid of paris extent and 200 meters
resolution
data(hospital)
mygrid <- CreateGrid(w = hospital, resolution = 200, returnclass = "sf")
Create a distance matrix between known points (hospital) and mygrid
mymat <- CreateDistMatrix(knownpts = hospital, unknownpts = mygrid)
Compute Reilly catchment areas from known points (hospital) on a given
grid (mygrid) using a given distance matrix (mymat)
myreilly2 <- reilly(knownpts = hospital, unknownpts = mygrid,

matdist = mymat, varname = "capacity",
typefct = "exponential", span = 1250,
beta = 3, mask = paris, returnclass = "sf")

Compute Reilly catchment areas from known points (hospital) on a
grid defined by its resolution
myreilly <- reilly(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 1250, beta = 3,
resolution = 200, mask = paris, returnclass = "sf")

The function output an sf object
class(myreilly)
The OUTPUT field values match knownpts row names
head(unique(myreilly$OUTPUT))

20 smoothy

smoothy Stewart Smooth

Description

This function computes a distance weighted mean. It offers the same parameters as stewart: user
defined distance matrix, user defined impedance function (power or exponential), user defined ex-
ponent.

Usage

smoothy(
knownpts,
unknownpts,
matdist,
varname,
typefct = "exponential",
span,
beta,
resolution,
mask,
bypassctrl = FALSE,
longlat = TRUE,
returnclass = "sp"

)

Arguments

knownpts sp or sf object; this is the set of known observations to estimate the potentials
from.

unknownpts sp or sf object; this is the set of unknown units for which the function computes
the estimates. Not used when resolution is set up. (optional)

matdist matrix; distance matrix between known observations and unknown units for
which the function computes the estimates. Row names match the row names
of knownpts and column names match the row names of unknownpts. matdist
can contain any distance metric (time distance or euclidean distance for exam-
ple). If matdist is NULL, the distance matrix is built with CreateDistMatrix.
(optional)

varname character; name of the variable in the knownpts dataframe from which potentials
are computed. Quantitative variable with no negative values.

typefct character; spatial interaction function. Options are "pareto" (means power law)
or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDis-
tance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha *
mDistance ^ beta). The alpha parameter is computed from parameters given by
the user (beta and span).

smoothy 21

span numeric; distance where the density of probability of the spatial interaction func-
tion equals 0.5.

beta numeric; impedance factor for the spatial interaction function.

resolution numeric; resolution of the output grid (in map units). If resolution is not set, the
grid will contain around 7250 points. (optional)

mask sp or sf object; the spatial extent of this object is used to create the regularly
spaced points output. (optional)

bypassctrl logical; bypass the distance matrix size control (see CreateDistMatrix De-
tails).

longlat logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid)
distance.

returnclass "sp" or "sf"; class of the returned object.

Value

Point object with the computed distance weighted mean in a new field named OUTPUT.

See Also

stewart.

Examples

Create a grid of paris extent and 200 meters
resolution
data(hospital)
mygrid <- CreateGrid(w = paris, resolution = 200, returnclass = "sf")
Create a distance matrix between known points (hospital) and mygrid
mymat <- CreateDistMatrix(knownpts = hospital, unknownpts = mygrid)
Compute distance weighted mean from known points (hospital) on a given
grid (mygrid) using a given distance matrix (mymat)
mysmoothy <- smoothy(knownpts = hospital, unknownpts = mygrid,

matdist = mymat, varname = "capacity",
typefct = "exponential", span = 1250,
beta = 3, mask = paris, returnclass = "sf")

Compute distance weighted mean from known points (hospital) on a
grid defined by its resolution
mysmoothy2 <- smoothy(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 1250, beta = 3,
resolution = 200, mask = paris, returnclass = "sf")

The two methods have the same result
identical(mysmoothy, mysmoothy2)
Computed values
summary(mysmoothy$OUTPUT)

22 SpatialPosition

SpatialPosition Spatial Position Package

Description

Computes spatial position models:

• Stewart potentials,

• Reilly catchment areas,

• Huff catchment areas.

An introduction to the package conceptual background and usage:
- vignette(topic = "SpatialPosition")
A Stewart potentials use case:
- vignette(topic = "StewartExample").

Author(s)

Maintainer: Timothée Giraud <timothee.giraud@cnrs.fr> (ORCID)

Authors:

• Hadrien Commenges

Other contributors:

• Joël Boulier [contributor]

References

COMMENGES H., GIRAUD, T., LAMBERT, N. (2016) "ESPON FIT: Functional Indicators for
Spatial-Aware Policy-Making", Cartographica: The International Journal for Geographic Informa-
tion and Geovisualization, 51(3): 127-136.

See Also

Useful links:

• https://github.com/riatelab/SpatialPosition

• Report bugs at https://github.com/riatelab/SpatialPosition/issues

https://orcid.org/0000-0002-1932-3323
https://github.com/riatelab/SpatialPosition
https://github.com/riatelab/SpatialPosition/issues

stewart 23

stewart Stewart Potentials

Description

This function computes the potentials as defined by J.Q. Stewart (1942).

Usage

stewart(
knownpts,
unknownpts,
matdist,
varname,
typefct = "exponential",
span,
beta,
resolution,
mask,
bypassctrl = FALSE,
longlat = TRUE,
returnclass = "sp"

)

Arguments

knownpts sp or sf object; this is the set of known observations to estimate the potentials
from.

unknownpts sp or sf object; this is the set of unknown units for which the function computes
the estimates. Not used when resolution is set up. (optional)

matdist matrix; distance matrix between known observations and unknown units for
which the function computes the estimates. Row names match the row names
of knownpts and column names match the row names of unknownpts. matdist
can contain any distance metric (time distance or euclidean distance for exam-
ple). If matdist is missing, the distance matrix is built with CreateDistMatrix.
(optional)

varname character; name of the variable in the knownpts dataframe from which potentials
are computed. Quantitative variable with no negative values.

typefct character; spatial interaction function. Options are "pareto" (means power law)
or "exponential". If "pareto" the interaction is defined as: (1 + alpha * mDis-
tance) ^ (-beta). If "exponential" the interaction is defined as: exp(- alpha *
mDistance ^ beta). The alpha parameter is computed from parameters given by
the user (beta and span).

span numeric; distance where the density of probability of the spatial interaction func-
tion equals 0.5.

24 stewart

beta numeric; impedance factor for the spatial interaction function.

resolution numeric; resolution of the output grid (in map units). If resolution is not set, the
grid will contain around 7250 points. (optional)

mask sp or sf object; the spatial extent of this object is used to create the regularly
spaced points output. (optional)

bypassctrl logical; bypass the distance matrix size control (see CreateDistMatrix De-
tails).

longlat logical; if FALSE, Euclidean distance, if TRUE Great Circle (WGS84 ellipsoid)
distance.

returnclass "sp" or "sf"; class of the returned object.

Value

Point object with the computed potentials in a new field named OUTPUT.

References

STEWART J.Q. (1942) "Measure of the influence of a population at a distance", Sociometry, 5(1):
63-71.

See Also

rasterStewart, plotStewart, quickStewart, isopoly, CreateGrid, CreateDistMatrix.

Examples

Create a grid of paris extent and 200 meters
resolution
data(hospital)
mygrid <- CreateGrid(w = paris, resolution = 200, returnclass = "sf")
Create a distance matrix between known points (spatPts) and mygrid
mymat <- CreateDistMatrix(knownpts = hospital, unknownpts = mygrid)
Compute Stewart potentials from known points (spatPts) on a given
grid (mygrid) using a given distance matrix (mymat)
mystewart <- stewart(knownpts = hospital, unknownpts = mygrid,

matdist = mymat, varname = "capacity",
typefct = "exponential", span = 1250,
beta = 3, mask = paris, returnclass = "sf")

Compute Stewart potentials from known points (spatPts) on a
grid defined by its resolution
mystewart2 <- stewart(knownpts = hospital, varname = "capacity",

typefct = "exponential", span = 1250, beta = 3,
resolution = 200, mask = paris, returnclass = "sf")

The two methods have the same result
identical(mystewart, mystewart2)
the function output a sf data.frame
class(mystewart)
Computed values
summary(mystewart$OUTPUT)

Index

colorRampPalette, 11, 12
CreateDistMatrix, 2, 3, 5, 12, 14, 17–21, 23,

24
CreateGrid, 3, 3, 5, 12, 17, 19, 24

hospital, 4
huff, 4, 5, 10, 15, 16

isopoly, 6, 13, 14, 24

mcStewart, 8

paris, 10
plotHuff, 5, 10, 16
plotReilly, 11, 16, 19
plotStewart, 12, 17, 24

quickStewart, 12, 13, 17, 24

rasterHuff, 5, 10, 15
rasterReilly, 11, 16, 19
rasterStewart, 12, 17, 24
ratify, 16
reilly, 11, 16, 18, 19

smoothy, 20
SpatialPosition, 22
SpatialPosition-package

(SpatialPosition), 22
stewart, 7, 9, 12–14, 17, 20, 21, 23

25

	CreateDistMatrix
	CreateGrid
	hospital
	huff
	isopoly
	mcStewart
	paris
	plotHuff
	plotReilly
	plotStewart
	quickStewart
	rasterHuff
	rasterReilly
	rasterStewart
	reilly
	smoothy
	SpatialPosition
	stewart
	Index

