Type: Package
Title: ICU Length of Stay Prediction and Efficiency Evaluation
Version: 1.0.1
Maintainer: Joana da Matta <joana.damatta02@gmail.com>
Description: Provides tools for predicting ICU length of stay and assessing ICU efficiency. It is based on the methodologies proposed by Peres et al. (2022, 2023), which utilize data-driven approaches for modeling and validation, offering insights into ICU performance and patient outcomes. References: Peres et al. (2022)https://pubmed.ncbi.nlm.nih.gov/35988701/, Peres et al. (2023)https://pubmed.ncbi.nlm.nih.gov/37922007/. More information: https://github.com/igor-peres/ICU-Length-of-Stay-Prediction.
License: MIT + file LICENSE
Encoding: UTF-8
Imports: httr, MLmetrics, ems, dplyr, ggplot2, magrittr, caretEnsemble, ranger
Suggests: testthat
RoxygenNote: 7.3.2
NeedsCompilation: no
Packaged: 2025-02-06 13:46:47 UTC; jodamatta
Depends: R (≥ 3.5.0)
Author: Igor Peres [aut], Joana da Matta [cre]
Repository: CRAN
Date/Publication: 2025-02-06 14:10:02 UTC

SLOS function

Description

This function is the core of the SLOS package. It generates the prediction for each unit, a funnel plot for the SLOS analysis and a plot comparing observed vs predicted SLOS. To access the funnel plot, run ems::plot(result$funnel_plot).

Usage

SLOS(data)

Arguments

data

Data frame or matrix containing testing data

Value

Displays the funnel plot, returns the comparing plot as a ggplot object and the SLOS table.

Examples


# Load example data
data(SampledData)

# Call the SLOS function on your data
result <- SLOS(sampled_data)

# Access the comparison plot
result$plot_SLOS_obv_prev

# Access the predictions for each unit
result$df_unit_slos

# The funnel plot will be displayed automatically, and you can access it again by calling
plot(result$funnel_plot)



Load the SLOS model

Description

This function loads the pre-trained model from the package.It's available on GitHub

Usage

load_SLOSModel()

Value

The SLOS model


Predict using the SLOS model

Description

This function makes predictions using the pre-trained SLOS model and evaluates it based on RMSE, MAE, and R2 values.

Usage

predict_and_evaluate(data)

Arguments

data

A data frame or matrix of new data for prediction.

Value

A list containing the predictions made on the input data, a data frame combining the observed values and predictions side by side, and the RMSE, MAE, and R2.

Examples


# Load example data
data(SampledData)

# Make predictions and evaluate
results <- predict_and_evaluate(sampled_data)

# View results
print(results$RMSE)
print(results$MAE)
print(results$R2)


Sampled Data

Description

An anonymized dataset with 1000 entries used for testing the SLOS prediction model.

Usage

data(SampledData)

Format

An object of class "data.frame"