Package 'RPMM'

July 21, 2025

Type Package

Title Recursively Partitioned Mixture Model

Version 1.25

Date 2017-02-28

Author E. Andres Houseman, Sc.D. and Devin C. Koestler, Ph.D.

Maintainer E. Andres Houseman <eahouseman@gmail.com>

Depends R (>= 2.3.12), cluster

Description Recursively Partitioned Mixture Model for Beta and Gaussian Mixtures. This is a model-based clustering algorithm that returns a hierarchy of classes, similar to hierarchical clustering, but also similar to finite mixture models.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2017-02-28 23:05:39

Contents

betaEst
betaEstMultiple
betaObjf
blc
blcInitializeSplitDichotomizeUsingMean 5
blcInitializeSplitEigen
blcInitializeSplitFanny 6
blcInitializeSplitHClust
blcSplit
blcSplitCriterionBIC
blcSplitCriterionBICICL
blcSplitCriterionJustRecordEverything
blcSplitCriterionLevelWtdBIC
blcSplitCriterionLRT

43

blcSubTree	4
blcTree	4
blcTreeApply	7
blcTreeLeafClasses	8
blcTreeLeafMatrix	8
blcTreeOverallBIC	9
ebayes	9
gaussEstMultiple	0
glc	0
glcInitializeSplitEigen	1
glcInitializeSplitFanny	2
glcInitializeSplitHClust	2
glcSplit	3
glcSplitCriterionBIC	4
glcSplitCriterionBICICL	5
glcSplitCriterionJustRecordEverything	6
glcSplitCriterionLevelWtdBIC	7
glcSplitCriterionLRT	8
glcSubTree	9
glcTree	9
glcTreeApply	2
glcTreeLeafClasses	3
glcTreeLeafMatrix	3
glcTreeOverallBIC	4
glmLC	4
IlluminaMethylation	5
llikeRPMMObject	5
plot.blcTree	6
plot.glcTree	6
plotImage.blcTree	7
plotImage.glcTree	8
plotTree.blcTree	9
plotTree.glcTree	9
predict.blcTree	0
predict.glcTree	1
print.blcTree	1
print.glcTree	2

Index

betaEst

Beta Distribution Maximum Likelihood Estimator

Description

Estimates a beta distribution via Maximum Likelihood

betaEstMultiple

Usage

betaEst(y, w, weights)

Arguments

У	data vector
W	posterior weights
weights	case weights

Details

Typically not be called by user.

Value

(a,b) parameters

betaEstMultiple Beta Maximum Likelihood on a Matrix

Description

Maximum likelihood estimator for beta model on matrix of values (columns having different, independent beta distributions)

Usage

betaEstMultiple(Y, weights = NULL)

Arguments

Y	data matrix
weights	case weights

Value

A list of beta parameters and BIC

betaObjf

Description

Objective function for fitting a beta model using maximum likelihood

Usage

```
betaObjf(logab, ydata, wdata, weights)
```

Arguments

logab	log(a,b) parameters
ydata	data vector
wdata	posterior weights
weights	case weights

Details

Typically not be called by user.

Value

negative log-likelihood

blc

Beta Latent Class Model

Description

Fits a beta mixture model for any number of classes

Usage

blc(Y, w, maxiter = 25, tol = 1e-06, weights = NULL, verbose = TRUE)

Arguments

Y	Data matrix (n x j) on which to perform clustering
W	Initial weight matrix (n x k) representing classification
maxiter	Maximum number of EM iterations
tol	Convergence tolerance
weights	Case weights
verbose	Verbose output?

Details

Typically not be called by user.

Value

A list of parameters representing mixture model fit, including posterior weights and log-likelihood

blcInitializeSplitDichotomizeUsingMean Initialize Gaussian Latent Class via Mean Dichotomization

Description

Creates a function for initializing latent class model by dichotomizing via mean over all responses

Usage

```
blcInitializeSplitDichotomizeUsingMean(threshold = 0.5, fuzz = 0.95)
```

Arguments

threshold	Mean threshold for determining class
fuzz	"fuzz" factor for producing imperfectly clustered subjects

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class latent class model. Here, a simple threshold will be applied to the mean over all item responses. See **blcTree** for example of using "blcInitializeSplit..." to create starting values.

Value

A function f(x) (see Details.)

See Also

glcInitializeSplitFanny, glcInitializeSplitHClust

```
blcInitializeSplitEigen
```

Initialize Gaussian Latent Class via Eigendecomposition

Description

Creates a function for initializing latent class model based on Eigendecomposition

Usage

```
blcInitializeSplitEigen(eigendim = 1,
    assignmentf = function(s) (rank(s) - 0.5)/length(s))
```

Arguments

eigendim	How many eigenvalues to use
assignmentf	assignment function for transforming eigenvector to weight

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class latent class model. Here, the initialized classes will be based on eigendecomposition of the variance of x. See blcTree for example of using "blcSplitCriterion..." to control split.

Value

A function f(x) (see Details.)

See Also

blcInitializeSplitDichotomizeUsingMean, glcInitializeSplitFanny, glcInitializeSplitHClust

blcInitializeSplitFanny

Initialize Beta Latent Class via Fanny

Description

Creates a function for initializing latent class model using the fanny algorithm

Usage

```
blcInitializeSplitFanny(nu = 2, nufac = 0.875, metric = "euclidean")
```

Arguments

nu	memb.exp parameter in fanny
nufac	Factor by which to multiply nu if an error occurs
metric	Metric to use for fanny

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class latent class model. Here, the "fanny" algorithm will be used. See **blcTree** for example of using "blcSplitCriterion..." to control split.

Value

A function f(x) (see Details.)

See Also

blcInitializeSplitDichotomizeUsingMean, blcInitializeSplitEigen, blcInitializeSplitHClust

blcInitializeSplitHClust

Initialize Beta Latent Class via Hierarchical Clustering

Description

Creates a function for initializing latent class model using hierarchical clustering.

Usage

```
blcInitializeSplitHClust(metric = "manhattan", method = "ward")
```

Arguments

metric	Dissimilarity metric used for hierarchical clustering
method	Linkage method used for hierarchical clustering

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class latent class model. Here, a two-branch split from hierarchical clustering will be used. See **blcTree** for example of using "blcSplitCriterion..." to control split.

Value

A function f(x) (see Details.)

See Also

blcInitializeSplitDichotomizeUsingMean, blcInitializeSplitEigen, blcInitializeSplitFanny

blcSplit

Description

Splits a data set into two via a beta mixture model

Usage

```
blcSplit(x, initFunctions, weight = NULL, index = NULL, level = NULL,
  wthresh = 1e-09, verbose = TRUE, nthresh = 5,
  splitCriterion = NULL)
```

Arguments

x	Data matrix (n x j) on which to perform clustering
initFunctions	List of functions of type "blcInitialize" for initializing latent class model. See blcInitializeFanny for an example of arguments and return values.
weight	Weight corresponding to the indices passed (see index). Defaults to 1 for all indices
index	Row indices of data matrix to include. Defaults to all (1 to n).
level	Current level.
wthresh	Weight threshold for filtering data to children. Indices having weight less than this value will not be passed to children nodes.
verbose	Level of verbosity. Default=2 (too much). 0 for quiet.
nthresh	Total weight in node required for node to be a candidate for splitting. Nodes with weight less than this value will never split.
splitCriterion	Function of type "blcSplitCriterion" for determining whether split should oc- cur. See blcSplitCriterionBIC for an example of arguments and return val- ues. Default behavior is blcSplitCriterionBIC (though the function is by- passed by internal calculations for some modest computational efficiency gains).

Details

Should not be called by user.

Value

A list of objects representing split.

Description

Split criterion function: compare BICs to determine split.

Usage

```
blcSplitCriterionBIC(llike1, llike2, weight, ww, J, level)
```

Arguments

llike1	one-class likelihood.
llike2	two-class likelihood.
weight	weights from RPMM node.
ww	"ww" from RPMM node.
J	Number of items.
level	Node level.

Details

This is a function of the form "glcSplitCriterion...", which is required to return a list with at least a boolean value split, along with supporting information. See blcTree for example of using "blcSplitCriterion..." to control split.

Value

bic1	one-class (weighted) BIC
bic2	two-class (weighted) BIC
split	TRUE=split the node, FALSE=do not split the node.

See Also

```
blcSplitCriterionBIC, blcSplitCriterionJustRecordEverything, blcSplitCriterionLevelWtdBIC,
blcSplitCriterionLRT
```

```
blcSplitCriterionBICICL
```

Beta RPMM Split Criterion: Use ICL-BIC

Description

Split criterion function: compare ICL-BICs to determine split (i.e. include entropy term in comparison).

Usage

```
blcSplitCriterionBICICL(llike1, llike2, weight, ww, J, level)
```

Arguments

llike1	one-class likelihood.
llike2	two-class likelihood.
weight	weights from RPMM node.
ww	"ww" from RPMM node.
J	Number of items.
level	Node level.

Details

This is a function of the form "glcSplitCriterion...", which is required to return a list with at least a boolean value split, along with supporting information. See blcTree for example of using "blcSplitCriterion..." to control split.

Value

bic1	one-class (weighted) BIC
bic2	two-class (weighted) BIC
entropy	two-class entropy
split	TRUE=split the node, FALSE=do not split the node.

See Also

```
blcSplitCriterionBICICL, blcSplitCriterionJustRecordEverything, blcSplitCriterionLevelWtdBIC,
blcSplitCriterionLRT
```

blcSplitCriterionJustRecordEverything Beta RPMM Split Criterion: Always Split and Record Everything

Description

Split criterion function: always split, but record everything as you go.

Usage

blcSplitCriterionJustRecordEverything(llike1, llike2, weight, ww, J, level)

Arguments

llike1	one-class likelihood.
llike2	two-class likelihood.
weight	weights from RPMM node.
ww	"ww" from RPMM node.
J	Number of items.
level	Node level.

Details

This is a function of the form "glcSplitCriterion...", which is required to return a list with at least a boolean value split, along with supporting information. This function ALWAYS returns split=TRUE. Useful for gathering information. It is recommended that you set the maxlev argument in the main function to something less than infinity (say, 3 or 4). See blcTree for example of using "blcSplitCriterion..." to control split.

Value

llike1	Just returns llike1
llike2	Just returns llike2
J	Just returns J
weight	Just returns weight
WW	Just returns ww
degFreedom	Degrees-of-freedom for LRT
chiSquareStat	Chi-square statistic
split	TRUE=split the node, FALSE=do not split the node.

See Also

blcSplitCriterionBIC, blcSplitCriterionBICICL, blcSplitCriterionLevelWtdBIC, blcSplitCriterionLRT

blcSplitCriterionLevelWtdBIC

Beta RPMM Split Criterion: Level-Weighted BIC

Description

Split criterion function: use a level-weighted version of BIC to determine split; there is an additional penalty incorporated for deep recursion.

Usage

```
blcSplitCriterionLevelWtdBIC(llike1, llike2, weight, ww, J, level)
```

Arguments

llike1	one-class likelihood.
llike2	two-class likelihood.
weight	weights from RPMM node.
WW	"ww" from RPMM node.
J	Number of items.
level	Node level.

Details

This is a function of the form "glcSplitCriterion...", which is required to return a list with at least a boolean value split, along with supporting information. See blcTree for example of using "blcSplitCriterion..." to control split.

Value

bic1	One-class BIC, with additional penalty for deeper levels
bic2	Two-class BIC, with additional penalty for deeper levels
split	TRUE=split the node, FALSE=do not split the node.

See Also

blcSplitCriterionBIC, blcSplitCriterionBICICL, blcSplitCriterionJustRecordEverything, blcSplitCriterionLRT blcSplitCriterionLRT Beta RPMM Split Criterion: use likelihood ratio test p value

Description

Split criterion function: Use likelihood ratio test p value to determine split.

Usage

```
blcSplitCriterionLRT(llike1, llike2, weight, ww, J, level)
```

Arguments

llike1	one-class likelihood.
llike2	two-class likelihood.
weight	weights from RPMM node.
ww	"ww" from RPMM node.
J	Number of items.
level	Node level.

Details

This is a function of the form "blcSplitCriterion...", which is required to return a list with at least a boolean value split, along with supporting information. See blcTree for example of using "blcSplitCriterion..." to control split.

Value

llike1	Just returns llike1
llike2	Just returns 11ike2
J	Just returns J
weight	Just returns weight
degFreedom	Degrees-of-freedom for LRT
chiSquareStat	Chi-square statistic
split	TRUE=split the node, FALSE=do not split the node.

See Also

```
blcSplitCriterionBIC, blcSplitCriterionBICICL, blcSplitCriterionJustRecordEverything,
blcSplitCriterionLevelWtdBIC
```

blcSubTree

Description

Subsets a "blcTree" object, i.e. considers the tree whose root is a given node.

Usage

blcSubTree(tr, node)

Arguments

tr	"blcTree" object to subset
node	Name of node to make root.

Details

Typically not be called by user.

Value

A "blcTree" object whose root is the given node of tr

blcTree

Beta RPMM Tree

Description

Performs beta latent class modeling using recursively-partitioned mixture model

Usage

```
blcTree(x, initFunctions = list(blcInitializeSplitFanny()),
  weight = NULL, index = NULL, wthresh = 1e-08, nodename = "root",
  maxlevel = Inf, verbose = 2, nthresh = 5, level = 0, env = NULL,
  unsplit = NULL, splitCriterion = blcSplitCriterionBIC)
```

blcTree

Arguments

x	Data matrix (n x j) on which to perform clustering. Missing values are supported. All values should lie strictly between 0 and 1.
initFunctions	List of functions of type "blcInitialize" for initializing latent class model. See blcInitializeFanny for an example of arguments and return values.
weight	Weight corresponding to the indices passed (see index). Defaults to 1 for all indices
index	Row indices of data matrix to include. Defaults to all (1 to n).
wthresh	Weight threshold for filtering data to children. Indices having weight less than this value will not be passed to children nodes. Default=1E-8.
nodename	Name of object that will represent node in tree data object. Defaults to "root". USER SHOULD NOT SET THIS.
maxlevel	Maximum depth to recurse. Default=Inf.
verbose	Level of verbosity. Default=2 (too much). 0 for quiet.
nthresh	Total weight in node required for node to be a candidate for splitting. Nodes with weight less than this value will never split. Defaults to 5.
level	Current level. Defaults to 0. USER SHUOLD NOT SET THIS.
env	Object of class "blcTree" to store tree data. Defaults to a new object. USER SHOULD NOT SET THIS.
unsplit	Latent class parameters from parent, to store in current node. Defaults to NULL for root. This is used in plotting functions. USER SHOULD NOT SET THIS.
splitCriterion	Function of type "blcSplitCriterion" for determining whether a node should be split. See blcSplitCriterionBIC for an example of arguments and return values.

Details

This function is called recursively by itself. Upon each recursion, certain arguments (e.g. nodename) are reset. Do not attempt to set these arguments yourself.

Value

An object of class "blcTree". This is an environment, each of whose component objects represents a node in the tree.

Note

The class "blcTree" is currently implemented as an environment object with nodes represented flatly, with name indicating positition in hierarchy (e.g. "rLLR" = "right child of left child of left child of left child of root") This implementation is to make certain plotting and update functions simpler than would be required if the data were stored in a more natural "list of list" format.

The following error may appear during the course of the algorithm:

This is merely an indication that the node being split is too small, in which case the splitting will terminate at that node; in other words, it is nothing to worry about.

Author(s)

E. Andres Houseman

References

Houseman et al., Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions. BMC Bioinformatics 9:365, 2008.

See Also

glcTree

Examples

```
## Not run:
data(IlluminaMethylation)
heatmap(IllumBeta, scale="n",
  col=colorRampPalette(c("yellow", "black", "blue"), space="Lab")(128))
# Fit Gaussian RPMM
rpmm <- blcTree(IllumBeta, verbose=0)</pre>
rpmm
# Get weight matrix and show first few rows
rpmmWeightMatrix <- blcTreeLeafMatrix(rpmm)</pre>
rpmmWeightMatrix[1:3,]
# Get class assignments and compare with tissue
rpmmClass <- blcTreeLeafClasses(rpmm)</pre>
table(rpmmClass,tissue)
# Plot fit
par(mfrow=c(2,2))
plot(rpmm) ; title("Image of RPMM Profile")
plotTree.blcTree(rpmm) ; title("Dendrogram with Labels")
plotTree.blcTree(rpmm,
  labelFunction=function(u,digits) table(as.character(tissue[u$index])))
title("Dendrogram with Tissue Counts")
# Alternate initialization
rpmm2 <- blcTree(IllumBeta, verbose=0,</pre>
  initFunctions=list(blcInitializeSplitEigen(),
                      blcInitializeSplitFanny(nu=2.5)))
rpmm2
# Alternate split criterion
```

blcTreeApply

```
rpmm3 <- blcTree(IllumBeta, verbose=0, maxlev=3,
    splitCriterion=blcSplitCriterionLevelWtdBIC)
rpmm3
rpmm4 <- blcTree(IllumBeta, verbose=0, maxlev=3,
    splitCriterion=blcSplitCriterionJustRecordEverything)
rpmm4$rLL$splitInfo$llike1
rpmm4$rLL$splitInfo$llike2
## End(Not run)
```

blcTreeApply Recursive Apply Function for Beta RPMM Objects

Description

Recursively applies a function down the nodes of a Gaussian RPMM tree.

Usage

```
blcTreeApply(tr, f, start = "root", terminalOnly = FALSE, asObject = TRUE, ...)
```

Arguments

tr	Tree object to recurse	
f	Function to apply to every node	
start	Starting node. Default = "root".	
terminalOnly	TRUE=only terminal nodes, FALSE=all nodes.	
asObject	TRUE: f accepts node as object. FALSE: f accepts node by node name and object name, $f(nn,tr)$	
. In the latter case, f should be defined as $f \le function(nn, tree) \{ \dots \}$.		
	Additional arguments to pass to f	

Value

A list of results; names of elements are names of nodes.

blcTreeLeafClasses Posterior Class Assignments for Beta RPMM

Description

Gets a vector of posterior class membership assignments for terminal nodes.

Usage

```
blcTreeLeafClasses(tr)
```

Arguments

tr

Tree from which to create assignments.

Details

See **blcTree** for example.

Value

Vector of class assignments

See Also

blcTreeLeafMatrix

blcTreeLeafMatrix Posterior Weight Matrix for Beta RPMM

Description

Gets a matrix of posterior class membership weights for terminal nodes.

Usage

```
blcTreeLeafMatrix(tr, rounding = 3)
```

Arguments

tr	Tree from which to create matrix.
rounding	Digits to round.

Details

See **blcTree** for example.

blcTreeOverallBIC

Value

N x K matrix of posterior weights

See Also

blcTreeLeafClasses

blcTreeOverallBIC Overall BIC for Entire RPMM Tree (Beta version)

Description

Computes the BIC for the latent class model represented by terminal nodes

Usage

```
blcTreeOverallBIC(tr, ICL = FALSE)
```

Arguments

tr	Tree object on which to compute BIC
ICL	Include ICL entropy term?

Value

BIC or BIC-ICL.

```
ebayes
```

Empirical Bayes predictions for a specific RPMM model

Description

Empirical Bayes predictions for a specific RPMM model

Usage

```
ebayes(rpmm, x, type, nodelist=NULL)
```

Arguments

rpmm	RPMM object
x	Data matrix
type	RPMM type ("blc" or "glc")
nodelist	RPMM subnode to use (default = root)

Details

Typically not be called by user.

Value

Matrix of empirical bayes predictions corresponding to x.

gaussEstMultiple Gaussian Maximum Likelihood on a Matrix

Description

Maximum likelihood estimator for Gaussian model on matrix of values (columns having different, independent Gaussian distributions)

Usage

```
gaussEstMultiple(Y, weights = NULL)
```

Arguments

Y	data matrix
weights	case weights

Value

A list of beta parameters and BIC

glc

Gaussian Finite Mixture Model

Description

Fits a Gaussian mixture model for any number of classes

Usage

glc(Y, w, maxiter = 100, tol = 1e-06, weights = NULL, verbose = TRUE)

Arguments

Y	Data matrix (n x j) on which to perform clustering
W	Initial weight matrix (n x k) representing classification
maxiter	Maximum number of EM iterations
tol	Convergence tolerance
weights	Case weights
verbose	Verbose output?

Details

Typically not be called by user.

Value

A list of parameters representing mixture model fit, including posterior weights and log-likelihood

glcInitializeSplitEigen

Initialize Gaussian Latent Class via Eigendecomposition

Description

Creates a function for initializing latent class model based on Eigendecomposition

Usage

```
glcInitializeSplitEigen(eigendim = 1,
    assignmentf = function(s) (rank(s) - 0.5)/length(s))
```

Arguments

eigendim	How many eigenvalues to use
assignmentf	assignment function for transforming eigenvector to weight

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class latent class model. Here, the initialized classes will be based on eigendecomposition of the variance of x. See glcTree for example of using "glcInitializeSplit..." to create starting values.

Value

A function f(x) (see Details.)

See Also

glcInitializeSplitFanny, glcInitializeSplitHClust

```
glcInitializeSplitFanny
```

Initialize Gaussian Latent Class via Fanny

Description

Creates a function for initializing latent class model using the fanny algorithm

Usage

```
glcInitializeSplitFanny(nu = 2, nufac = 0.875, metric = "euclidean")
```

Arguments

nu	memb.exp parameter in fanny
nufac	Factor by which to multiply nu if an error occurs
metric	Metric to use for fanny

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class latent class model. Here, the "fanny" algorithm will be used. See glcTree for example of using "glcInitializeSplit..." to create starting values.

Value

A function f(x) (see Details.)

See Also

glcInitializeSplitEigen, glcInitializeSplitHClust

glcInitializeSplitHClust

Initialize Gaussian Latent Class via Hierarchical Clustering

Description

Creates a function for initializing latent class model using hierarchical clustering.

Usage

```
glcInitializeSplitHClust(metric = "manhattan", method = "ward")
```

glcSplit

Arguments

metric	Dissimilarity metric used for hierarchical clustering
method	Linkage method used for hierarchical clustering

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class latent class model. Here, a two-branch split from hierarchical clustering will be used. See glcTree for example of using "glcInitializeSplit..." to create starting values.

Value

A function f(x) (see Details.)

See Also

glcInitializeSplitEigen, glcInitializeSplitFanny

glcSplit

Gaussian Latent Class Splitter

Description

Splits a data set into two via a Gaussian mixture models

Usage

Arguments

x	Data matrix (n x j) on which to perform clustering
initFunctions	List of functions of type "glcInitialize" for initializing latent class model. See glcInitializeFanny for an example of arguments and return values.
weight	Weight corresponding to the indices passed (see index). Defaults to 1 for all indices
index	Row indices of data matrix to include. Defaults to all (1 to n).
level	Current level.
wthresh	Weight threshold for filtering data to children. Indices having weight less than this value will not be passed to children nodes.
verbose	Level of verbosity. Default=2 (too much). 0 for quiet.
nthresh	Total weight in node required for node to be a candidate for splitting. Nodes with weight less than this value will never split.

splitCriterion Function of type "glcSplitCriterion..." for determining whether split should occur. See glcSplitCriterionBIC for an example of arguments and return values.

Details

Should not be called by user.

Value

A list of objects representing split.

glcSplitCriterionBIC Gaussian RPMM Split Criterion: Use BIC

Description

Split criterion function: compare BICs to determine split.

Usage

glcSplitCriterionBIC(llike1, llike2, weight, ww, J, level)

Arguments

llike1	one-class likelihood.
llike2	two-class likelihood.
weight	weights from RPMM node.
ww	"ww" from RPMM node.
J	Number of items.
level	Node level.

Details

This is a function of the form "glcSplitCriterion...", which is required to return a list with at least a boolean value split, along with supporting information. See glcTree for example of using "glcSplitCriterion..." to control split.

Value

bic1	one-class (weighted) BIC
bic2	two-class (weighted) BIC
split	TRUE=split the node, FALSE=do not split the node.

See Also

glcSplitCriterionBIC,glcSplitCriterionJustRecordEverything,glcSplitCriterionLevelWtdBIC, glcSplitCriterionLRT

24

glcSplitCriterionBICICL

Gaussian RPMM Split Criterion: Use ICL-BIC

Description

Split criterion function: compare ICL-BICs to determine split (i.e. include entropy term in comparison).

Usage

```
glcSplitCriterionBICICL(llike1, llike2, weight, ww, J, level)
```

Arguments

llike1	one-class likelihood.
llike2	two-class likelihood.
weight	weights from RPMM node.
ww	"ww" from RPMM node.
J	Number of items.
level	Node level.

Details

This is a function of the form "glcSplitCriterion...", which is required to return a list with at least a boolean value split, along with supporting information. See glcTree for example of using "glcSplitCriterion..." to control split.

Value

bic1	one-class (weighted) BIC
bic2	two-class (weighted) BIC
entropy	two-class entropy
split	TRUE=split the node, FALSE=do not split the node.

See Also

```
glcSplitCriterionBICICL,glcSplitCriterionJustRecordEverything,glcSplitCriterionLevelWtdBIC,
glcSplitCriterionLRT
```

glcSplitCriterionJustRecordEverything

Gaussian RPMM Split Criterion: Always Split and Record Everything

Description

Split criterion function: always split, but record everything as you go.

Usage

glcSplitCriterionJustRecordEverything(llike1, llike2, weight, ww, J, level)

Arguments

llike1	one-class likelihood.
llike2	two-class likelihood.
weight	weights from RPMM node.
ww	"ww" from RPMM node.
J	Number of items.
level	Node level.

Details

This is a function of the form "glcSplitCriterion...", which is required to return a list with at least a boolean value split, along with supporting information. This function ALWAYS returns split=TRUE. Useful for gathering information. It is recommended that you set the maxlev argument in the main function to something less than infinity (say, 3 or 4). See glcTree for example of using "glcSplitCriterion..." to control split.

Value

llike1	Just returns llike1
llike2	Just returns 11ike2
J	Just returns J
weight	Just returns weight
WW	Just returns ww
degFreedom	Degrees-of-freedom for LRT
chiSquareStat	Chi-square statistic
split	TRUE=split the node, FALSE=do not split the node.

See Also

glcSplitCriterionBIC,glcSplitCriterionBICICL,glcSplitCriterionLevelWtdBIC,glcSplitCriterionLRT

glcSplitCriterionLevelWtdBIC

Gaussian RPMM Split Criterion: Level-Weighted BIC

Description

Split criterion function: use a level-weighted version of BIC to determine split; there is an additional penalty incorporated for deep recursion.

Usage

```
glcSplitCriterionLevelWtdBIC(llike1, llike2, weight, ww, J, level)
```

Arguments

llike1	one-class likelihood.
llike2	two-class likelihood.
weight	weights from RPMM node.
WW	"ww" from RPMM node.
J	Number of items.
level	Node level.

Details

This is a function of the form "glcSplitCriterion...", which is required to return a list with at least a boolean value split, along with supporting information. See glcTree for example of using "glcSplitCriterion..." to control split.

Value

bic1	One-class BIC, with additional penalty for deeper levels
bic2	Two-class BIC, with additional penalty for deeper levels
split	TRUE=split the node, FALSE=do not split the node.

See Also

glcSplitCriterionBIC,glcSplitCriterionBICICL,glcSplitCriterionJustRecordEverything, glcSplitCriterionLRT glcSplitCriterionLRT Gaussian RPMM Split Criterion: Use likelihood ratio test p value

Description

Split criterion function: use likelihood ratio test p value to determine split.

Usage

```
glcSplitCriterionLRT(llike1, llike2, weight, ww, J, level)
```

Arguments

llike1	one-class likelihood.
llike2	two-class likelihood.
weight	weights from RPMM node.
ww	"ww" from RPMM node.
J	Number of items.
level	Node level.

Details

This is a function of the form "glcSplitCriterion...", which is required to return a list with at least a boolean value split, along with supporting information. See glcTree for example of using "glcSplitCriterion..." to control split.

Value

llike1	Just returns llike1
llike2	Just returns 11ike2
J	Just returns J
weight	Just returns weight
degFreedom	Degrees-of-freedom for LRT
chiSquareStat	Chi-square statistic
split	TRUE=split the node, FALSE=do not split the node.

See Also

```
glcSplitCriterionBIC,glcSplitCriterionBICICL,glcSplitCriterionJustRecordEverything,
glcSplitCriterionLevelWtdBIC
```

glcSubTree

Description

Subsets a "glcTree" object, i.e. considers the tree whose root is a given node.

Usage

glcSubTree(tr, node)

Arguments

tr	"glcTree" object to subset
node	Name of node to make root.

Details

Typically not be called by user.

Value

A "glcTree" object whose root is the given node of tr

glcTree

Gaussian RPMM Tree

Description

Performs Gaussian latent class modeling using recursively-partitioned mixture model

Usage

```
glcTree(x, initFunctions = list(glcInitializeSplitFanny(nu=1.5)),
  weight = NULL, index = NULL, wthresh = 1e-08,
  nodename = "root", maxlevel = Inf, verbose = 2, nthresh = 5, level = 0,
  env = NULL, unsplit = NULL, splitCriterion = glcSplitCriterionBIC)
```

Arguments

x	Data matrix (n x j) on which to perform clustering. Missing values are supported.
initFunctions	List of functions of type "glcInitialize" for initializing latent class model. See glcInitializeFanny for an example of arguments and return values.
weight	Weight corresponding to the indices passed (see index). Defaults to 1 for all indices
index	Row indices of data matrix to include. Defaults to all (1 to n).
wthresh	Weight threshold for filtering data to children. Indices having weight less than this value will not be passed to children nodes. Default=1E-8.
nodename	Name of object that will represent node in tree data object. Defaults to "root". USER SHOULD NOT SET THIS.
maxlevel	Maximum depth to recurse. Default=Inf.
verbose	Level of verbosity. Default=2 (too much). 0 for quiet.
nthresh	Total weight in node required for node to be a candidate for splitting. Nodes with weight less than this value will never split. Defaults to 5.
level	Current level. Defaults to 0. USER SHUOLD NOT SET THIS.
env	Object of class "glcTree" to store tree data. Defaults to a new object. USER SHOULD NOT SET THIS.
unsplit	Latent class parameters from parent, to store in current node. Defaults to NULL for root. This is used in plotting functions. USER SHOULD NOT SET THIS.
splitCriterion	Function of type "glcSplitCriterion" for determining whether a node should be split. See glcSplitCriterionBIC for an example of arguments and return values.

Details

This function is called recursively by itself. Upon each recursion, certain arguments (e.g. nodename) are reset. Do not attempt to set these arguments yourself.

Value

An object of class "glcTree". This is an environment, each of whose component objects represents a node in the tree.

Note

The class "glcTree" is currently implemented as an environment object with nodes represented flatly, with name indicating positition in hierarchy (e.g. "rLLR" = "right child of left child of left child of left child of root") This implementation is to make certain plotting and update functions simpler than would be required if the data were stored in a more natural "list of list" format.

The following error may appear during the course of the algorithm:

glcTree

This is merely an indication that the node being split is too small, in which case the splitting will terminate at that node; in other words, it is nothing to worry about.

Author(s)

E. Andres Houseman

References

Houseman et al., Model-based clustering of DNA methylation array data: a recursive-partitioning algorithm for high-dimensional data arising as a mixture of beta distributions. BMC Bioinformatics 9:365, 2008.

See Also

blcTree

Examples

```
data(IlluminaMethylation)
## Not run:
heatmap(IllumBeta, scale="n",
  col=colorRampPalette(c("yellow", "black", "blue"), space="Lab")(128))
## End(Not run)
# Fit Gaussian RPMM
rpmm <- glcTree(IllumBeta, verbose=0)</pre>
rpmm
# Get weight matrix and show first few rows
rpmmWeightMatrix <- glcTreeLeafMatrix(rpmm)</pre>
rpmmWeightMatrix[1:3,]
# Get class assignments and compare with tissue
rpmmClass <- glcTreeLeafClasses(rpmm)</pre>
table(rpmmClass,tissue)
## Not run:
# Plot fit
par(mfrow=c(2,2))
plot(rpmm) ; title("Image of RPMM Profile")
plotTree.glcTree(rpmm) ; title("Dendrogram with Labels")
plotTree.glcTree(rpmm,
  labelFunction=function(u,digits) table(as.character(tissue[u$index])))
title("Dendrogram with Tissue Counts")
# Alternate initialization
rpmm2 <- glcTree(IllumBeta, verbose=0,</pre>
  initFunctions=list(glcInitializeSplitEigen(),
                      glcInitializeSplitFanny(nu=2.5)))
```

```
rpmm2
# Alternate split criterion
rpmm3 <- glcTree(IllumBeta, verbose=0, maxlev=3,
    splitCriterion=glcSplitCriterionLevelWtdBIC)
rpmm4
rpmm4 <- glcTree(IllumBeta, verbose=0, maxlev=3,
    splitCriterion=glcSplitCriterionJustRecordEverything)
rpmm4$rLL$splitInfo$llike1
rpmm4$rLL$splitInfo$llike2
## End(Not run)</pre>
```

glcTreeApply

Recursive Apply Function for Gaussian RPMM Objects

Description

Recursively applies a function down the nodes of a Gaussian RPMM tree.

Usage

Arguments

tr	Tree object to recurse	
f	Function to apply to every node	
start	Starting node. Default = "root".	
terminalOnly	TRUE=only terminal nodes, FALSE=all nodes.	
asObject	TRUE: f accepts node as object. FALSE: f accepts node by node name and object name, $f(nn,tr)$	
. In the latter case, f should be defined as $f \leq function(nn, tree) \{ \dots \}$.		

... Additional arguments to pass to f

Value

A list of results; names of elements are names of nodes.

32

glcTreeLeafClasses Posterior Class Assignments for Gaussian RPMM

Description

Gets a vector of posterior class membership assignments for terminal nodes.

Usage

```
glcTreeLeafClasses(tr)
```

Arguments

tr

Tree from which to create assignments.

Details

See glcTree for example.

Value

Vector of class assignments

See Also

glcTreeLeafMatrix

glcTreeLeafMatrix Posterior Weight Matrix for Gaussian RPMM

Description

Gets a matrix of posterior class membership weights for terminal nodes.

Usage

```
glcTreeLeafMatrix(tr, rounding = 3)
```

Arguments

tr	Tree from which to create matrix.
rounding	Digits to round.

Details

See glcTree for example.

Value

N x K matrix of posterior weights

See Also

glcTreeLeafClasses

glcTreeOverallBIC Overall BIC for Entire RPMM Tree (Gaussian version)

Description

Computes the BIC for the latent class model represented by terminal nodes

Usage

```
glcTreeOverallBIC(tr, ICL = FALSE)
```

Arguments

tr	Tree object on which to compute BIC
ICL	Include ICL entropy term?

Value

BIC or BIC-ICL.

glmLC

Weighted GLM for latent class covariates

Description

Wrapper for glm function to incorporate weights corresponding to latent classes

Usage

```
glmLC(y,W,family=quasibinomial(),eps=1E-8,Z=NULL)
```

Arguments

У	outcome
W	weight matrix (rows=cases, # rows = length of y)
family	glm family (default = quasibinomial for logistic regression)
eps	threshold below which to delete pseudo-subject corresponding to a specific weight
Z	matrix of additional covariates

34

IlluminaMethylation

Details

This function is a wrapper for glm to incorporate weights corresponding to latent classes (e.g. from an RPMM prediction)

Value

a glm object

IlluminaMethylation DNA Methylation Data for Normal Tissue Types

Description

Illumina GoldenGate DNA methylation data for 217 normal tissues. 100 most variable CpG sites.

Usage

IlluminaMethylation

Format

a 217 x 100 matrix containing Illumina Avg Beta values (IllumBeta), and a corresponding factor vector of 217 tissue types (tissue).

References

Christensen BC, Houseman EA, et al. 2009 Aging and Environmental Exposures Alter Tissue-Specific DNA Methylation Dependent upon CpG Island Context. PLoS Genet 5(8): e1000602.

11ikeRPMMObject Data log-likelihood implied by a specific RPMM model

Description

Data log-likelihood implied by a specific RPMM model

Usage

llikeRPMMObject(o, x, type)

Arguments

0	RPMM object
х	Data matrix
type	RPMM type ("blc" or "glc")

Details

Typically not be called by user.

Value

Vector of loglikelihoods corresponding to rows of x.

plot.blcTree P

Plot a Beta RPMM Tree Profile

Description

Plot method for objects of type "blcTree". Plots profiles of terminal nodes in color. Method wrapper for plotImage.blcTree.

Usage

S3 method for class 'blcTree'
plot(x,...)

Arguments

Х	RPMM object to plot.
•••	Additional arguments to pass to plotImage.blcTree.

Details

See **blcTree** for example.

plot.glcTree

Plot a Gaussian RPMM Tree Profile

Description

Plot method for objects of type "glcTree". Plots profiles of terminal nodes in color. Method wrapper for plotImage.glcTree.

Usage

S3 method for class 'glcTree'
plot(x,...)

Arguments

Х	RPMM object to plot.
• • •	Additional arguments to pass to plotImage.glcTree

36

plotImage.blcTree

Details

See glcTree for example.

plotImage.blcTree Plot a Beta RPMM Tree Profile

Description

Plots profiles of terminal nodes in color.

Usage

```
plotImage.blcTree(env,
  start = "r", method = "weight",
  palette = colorRampPalette(c("yellow", "black", "blue"), space = "Lab")(128),
  divcol = "red", xorder = NULL, dimensions = NULL, labelType = "LR")
```

Arguments

env	RPMM object to plot.
start	Node to plot (usually root)
method	Method to determine width of columns that represent classes: "weight" (subject weight in class) or dQuotebinary (depth in tree).
palette	Color palette to use for image plot.
divcol	Divider color
xorder	Order of variables. Can be useful for constant ordering across multiple plots.
dimensions	Subset of dimensions of source data to show. Defaults to all. Useful to show a subset of dimensions.
labelType	Label name type: "LR" or "01".

Details

See **blcTree** for example.

Value

Returns a vector of indices similar to the order function, representing the ordering of items used in the plot. This is useful for replicating the order in another plot, or for axis labeling. plotImage.glcTree Plot a Gaussian RPMM Tree Profile

Description

Plots profiles of terminal nodes in color.

Usage

```
plotImage.glcTree(env,
    start = "r", method = "weight",
    palette = colorRampPalette(c("yellow", "black", "blue"), space = "Lab")(128),
    divcol = "red", xorder = NULL, dimensions = NULL, labelType = "LR", muColorEps = 1e-08)
```

Arguments

env	RPMM object to print.
start	Node to plot (usually root)
method	Method to determine width of columns that represent classes: "weight" (subject weight in class) or dQuotebinary (depth in tree).
palette	Color palette to use for image plot.
divcol	Divider color
xorder	Order of variables. Can be useful for constant ordering across multiple plots.
dimensions	Subset of dimensions of source data to show. Defaults to all. Useful to show a subset of dimensions.
labelType	Label name type: "LR" or "01".
muColorEps	Small value to stabilize color generation.

Details

See glcTree for example.

Value

Returns a vector of indices similar to the order function, representing the ordering of items used in the plot. This is useful for replicating the order in another plot, or for axis labeling. plotTree.blcTree Plot a Beta RPMM Tree Dendrogram

Description

Alternate plot function for objects of type blcTree: plots a dendrogram

Usage

```
plotTree.blcTree(env, start = "r", labelFunction = NULL,
    buff = 4, cex = 0.9, square = TRUE, labelAllNodes = FALSE, labelDigits = 1, ...)
```

Arguments

env	Tree object to print
start	Note from which to start. Default="r" for "root".
labelFunction	Function for generating node labels. Useful for labeling each node with a value.
buff	Buffer for placing tree in plot window.
cex	Text size
square	Square dendrogram or "V" shaped
labelAllNodes	TRUE=All nodes will be labeled; FALSE=Terminal nodes only.
labelDigits	Digits to include in labels, if labelFunction returns numeric values.
	Other parameters to be passed to labelFunction.

Details

This plots a dendrogram based on RPMM tree, with labels constructed from summaries of tree object. See **blcTree** for example.

plotTree.glcTree Plot a Gaussian RPMM Tree Dendrogram

Description

Alternate plot function for objects of type glcTree: plots a dendrogram

Usage

Arguments

env	Tree object to print
start	Note from which to start. Default="r" for "root".
labelFunction	Function for generating node labels. Useful for labeling each node with a value.
buff	Buffer for placing tree in plot window.
cex	Text size
square	Square dendrogram or "V" shaped
labelAllNodes	TRUE=All nodes will be labeled; FALSE=Terminal nodes only.
labelDigits	Digits to include in labels, if labelFunction returns numeric values.
	Other parameters to be passed to labelFunction.

Details

This plots a dendrogram based on RPMM tree, with labels constructed from summaries of tree object. See glcTree for example.

predict.blcTree *Predict using a Beta RPMM object*

Description

Prediction method for objects of type blcTree

Usage

```
## S3 method for class 'blcTree'
predict(object, newdata=NULL, nodelist=NULL, type="weight",...)
```

Arguments

object	RPMM object to print
newdata	external data matrix from which to apply predictions
nodelist	RPMM subnode to use (default = root)
type	output type: "weight" produces output similar to blcTreeLeafMatrix, "class" produces output similar to blcTreeLeafClasses.
	(Unused).

Details

This function is similar to blcTreeLeafMatrix and blcTreeLeafClasses, except that it supports prediction on an external data set via the argument newdata.

See Also

blcTreeLeafMatrix

40

predict.glcTree Predict u

Description

Prediction method for objects of type glcTree

Usage

```
## S3 method for class 'glcTree'
predict(object, newdata=NULL, nodelist=NULL, type="weight",...)
```

Arguments

object	RPMM object to print
newdata	external data matrix from which to apply predictions
nodelist	RPMM subnode to use (default = root)
type	output type: "weight" produces output similar to glcTreeLeafMatrix, "class" produces output similar to glcTreeLeafClasses.
	(Unused).

Details

This function is similar to glcTreeLeafMatrix and glcTreeLeafClasses, except that it supports prediction on an external data set via the argument newdata.

See Also

glcTreeLeafMatrix

print.blcTree Print a Beta RPMM object

Description

Print method for objects of type blcTree

Usage

S3 method for class 'blcTree'
print(x,...)

Arguments

Х	RPMM object to print
	(Unused).

Details

See **blcTree** for example.

print.glcTree Print a Gaussian RPMM object

Description

Print method for objects of type blcTree

Usage

S3 method for class 'glcTree'
print(x,...)

Arguments

х	RPMM object to print
	(Unused).

Details

See glcTree for example.

Index

* cluster betaEst, 2 betaEstMultiple, 3 betaObjf, 4 blc.4 blcInitializeSplitDichotomizeUsingMean, 5 blcInitializeSplitEigen, 6 blcInitializeSplitFanny, 6 blcInitializeSplitHClust, 7 blcSplit, 8 blcSplitCriterionBIC,9 blcSplitCriterionBICICL, 10 blcSplitCriterionJustRecordEverything, 11 blcSplitCriterionLevelWtdBIC, 12 blcSplitCriterionLRT, 13 blcSubTree. 14 blcTree, 14 blcTreeApply, 17 blcTreeLeafClasses, 18 blcTreeLeafMatrix, 18 blcTreeOverallBIC, 19 gaussEstMultiple, 20 glc, 20 glcInitializeSplitEigen, 21 glcInitializeSplitFanny, 22 glcInitializeSplitHClust, 22 glcSplit, 23 glcSplitCriterionBIC, 24 glcSplitCriterionBICICL, 25 glcSplitCriterionJustRecordEverything, 26glcSplitCriterionLevelWtdBIC, 27 glcSplitCriterionLRT, 28 glcSubTree, 29 glcTree, 29 glcTreeApply, 32 glcTreeLeafClasses, 33

```
glcTreeLeafMatrix, 33
    glcTreeOverallBIC, 34
    plot.blcTree, 36
    plot.glcTree, 36
    plotImage.blcTree, 37
    plotImage.glcTree, 38
    plotTree.blcTree, 39
    plotTree.glcTree, 39
    predict.blcTree, 40
    predict.glcTree, 41
    print.blcTree, 41
    print.glcTree, 42
* datasets
    IlluminaMethylation, 35
* tree
    blcInitializeSplitDichotomizeUsingMean,
        5
    blcInitializeSplitEigen, 6
    blcInitializeSplitFanny, 6
    blcInitializeSplitHClust, 7
    blcSplit, 8
    blcSplitCriterionBIC, 9
    blcSplitCriterionBICICL, 10
    blcSplitCriterionJustRecordEverything,
        11
    blcSplitCriterionLevelWtdBIC, 12
    blcSplitCriterionLRT, 13
    blcSubTree, 14
    blcTree, 14
    blcTreeApply, 17
    blcTreeLeafClasses, 18
    blcTreeLeafMatrix, 18
    blcTreeOverallBIC, 19
    glcInitializeSplitEigen, 21
    glcInitializeSplitFanny, 22
    glcInitializeSplitHClust, 22
    glcSplit, 23
    glcSplitCriterionBIC, 24
    glcSplitCriterionBICICL, 25
```

```
glcSplitCriterionJustRecordEverything,
         26
    glcSplitCriterionLevelWtdBIC, 27
    glcSplitCriterionLRT, 28
    glcSubTree, 29
    glcTree, 29
    glcTreeApply, 32
    glcTreeLeafClasses, 33
    glcTreeLeafMatrix, 33
    glcTreeOverallBIC, 34
    plot.blcTree, 36
    plot.glcTree, 36
    plotImage.blcTree, 37
    plotImage.glcTree, 38
    plotTree.blcTree, 39
    plotTree.glcTree, 39
    predict.blcTree, 40
    predict.glcTree,41
    print.blcTree, 41
    print.glcTree, 42
betaEst. 2
betaEstMultiple, 3
betaObjf, 4
blc,4
blcInitializeSplitDichotomizeUsingMean,
        5.6.7
blcInitializeSplitEigen, 6, 7
blcInitializeSplitFanny, 6, 7
blcInitializeSplitHClust, 7, 7
blcSplit, 8
blcSplitCriterionBIC, 9, 9, 11–13
blcSplitCriterionBICICL, 10, 10, 11–13
blcSplitCriterionJustRecordEverything,
         9, 10, 11, 12, 13
blcSplitCriterionLevelWtdBIC, 9-11, 12,
        13
blcSplitCriterionLRT, 9-12, 13
blcSubTree, 14
blcTree, 5-7, 9-13, 14, 18, 31, 36, 37, 39, 42
blcTreeApply, 17
blcTreeLeafClasses, 18, 19, 40
blcTreeLeafMatrix, 18, 18, 40
blcTreeOverallBIC, 19
ebayes, 19
gaussEstMultiple, 20
```

```
glcInitializeSplitEigen, 21, 22, 23
glcInitializeSplitFanny, 5, 6, 21, 22, 23
glcInitializeSplitHClust, 5, 6, 21, 22, 22
glcSplit, 23
glcSplitCriterionBIC, 24, 24, 26–28
glcSplitCriterionBICICL, 25, 25, 26–28
glcSplitCriterionJustRecordEverything,
        24, 25, 26, 27, 28
glcSplitCriterionLevelWtdBIC, 24-26, 27,
        28
glcSplitCriterionLRT, 24-27, 28
glcSubTree, 29
glcTree, 16, 21-28, 29, 33, 37, 38, 40, 42
glcTreeApply, 32
glcTreeLeafClasses, 33, 34, 41
glcTreeLeafMatrix, 33, 33, 41
glcTreeOverallBIC, 34
glmLC, 34
IllumBeta (IlluminaMethylation), 35
IlluminaMethylation, 35
llikeRPMMObject, 35
plot.blcTree, 36
plot.glcTree, 36
plotImage.blcTree, 37
plotImage.glcTree, 38
plotTree.blcTree, 39
plotTree.glcTree, 39
predict.blcTree, 40
predict.glcTree, 41
print.blcTree, 41
print.glcTree,42
```

tissue (IlluminaMethylation), 35

glc, 20