
Package ‘RPMM’
July 21, 2025

Type Package

Title Recursively Partitioned Mixture Model

Version 1.25

Date 2017-02-28

Author E. Andres Houseman, Sc.D. and Devin C. Koestler, Ph.D.

Maintainer E. Andres Houseman <eahouseman@gmail.com>

Depends R (>= 2.3.12), cluster

Description Recursively Partitioned Mixture Model for Beta and Gaussian Mixtures.
This is a model-based clustering algorithm that returns a hierarchy
of classes, similar to hierarchical clustering, but also similar to
finite mixture models.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2017-02-28 23:05:39

Contents
betaEst . 2
betaEstMultiple . 3
betaObjf . 4
blc . 4
blcInitializeSplitDichotomizeUsingMean . 5
blcInitializeSplitEigen . 6
blcInitializeSplitFanny . 6
blcInitializeSplitHClust . 7
blcSplit . 8
blcSplitCriterionBIC . 9
blcSplitCriterionBICICL . 10
blcSplitCriterionJustRecordEverything . 11
blcSplitCriterionLevelWtdBIC . 12
blcSplitCriterionLRT . 13

1

2 betaEst

blcSubTree . 14
blcTree . 14
blcTreeApply . 17
blcTreeLeafClasses . 18
blcTreeLeafMatrix . 18
blcTreeOverallBIC . 19
ebayes . 19
gaussEstMultiple . 20
glc . 20
glcInitializeSplitEigen . 21
glcInitializeSplitFanny . 22
glcInitializeSplitHClust . 22
glcSplit . 23
glcSplitCriterionBIC . 24
glcSplitCriterionBICICL . 25
glcSplitCriterionJustRecordEverything . 26
glcSplitCriterionLevelWtdBIC . 27
glcSplitCriterionLRT . 28
glcSubTree . 29
glcTree . 29
glcTreeApply . 32
glcTreeLeafClasses . 33
glcTreeLeafMatrix . 33
glcTreeOverallBIC . 34
glmLC . 34
IlluminaMethylation . 35
llikeRPMMObject . 35
plot.blcTree . 36
plot.glcTree . 36
plotImage.blcTree . 37
plotImage.glcTree . 38
plotTree.blcTree . 39
plotTree.glcTree . 39
predict.blcTree . 40
predict.glcTree . 41
print.blcTree . 41
print.glcTree . 42

Index 43

betaEst Beta Distribution Maximum Likelihood Estimator

Description

Estimates a beta distribution via Maximum Likelihood

betaEstMultiple 3

Usage

betaEst(y, w, weights)

Arguments

y data vector

w posterior weights

weights case weights

Details

Typically not be called by user.

Value

(a,b) parameters

betaEstMultiple Beta Maximum Likelihood on a Matrix

Description

Maximum likelihood estimator for beta model on matrix of values (columns having different, inde-
pendent beta distributions)

Usage

betaEstMultiple(Y, weights = NULL)

Arguments

Y data matrix

weights case weights

Value

A list of beta parameters and BIC

4 blc

betaObjf Beta Maximum Likelihood Objective Function

Description

Objective function for fitting a beta model using maximum likelihood

Usage

betaObjf(logab, ydata, wdata, weights)

Arguments

logab log(a,b) parameters

ydata data vector

wdata posterior weights

weights case weights

Details

Typically not be called by user.

Value

negative log-likelihood

blc Beta Latent Class Model

Description

Fits a beta mixture model for any number of classes

Usage

blc(Y, w, maxiter = 25, tol = 1e-06, weights = NULL, verbose = TRUE)

Arguments

Y Data matrix (n x j) on which to perform clustering

w Initial weight matrix (n x k) representing classification

maxiter Maximum number of EM iterations

tol Convergence tolerance

weights Case weights

verbose Verbose output?

blcInitializeSplitDichotomizeUsingMean 5

Details

Typically not be called by user.

Value

A list of parameters representing mixture model fit, including posterior weights and log-likelihood

blcInitializeSplitDichotomizeUsingMean

Initialize Gaussian Latent Class via Mean Dichotomization

Description

Creates a function for initializing latent class model by dichotomizing via mean over all responses

Usage

blcInitializeSplitDichotomizeUsingMean(threshold = 0.5, fuzz = 0.95)

Arguments

threshold Mean threshold for determining class

fuzz “fuzz” factor for producing imperfectly clustered subjects

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class
latent class model. Here, a simple threshold will be applied to the mean over all item responses.
See blcTree for example of using “blcInitializeSplit...” to create starting values.

Value

A function f(x) (see Details.)

See Also

glcInitializeSplitFanny, glcInitializeSplitHClust

6 blcInitializeSplitFanny

blcInitializeSplitEigen

Initialize Gaussian Latent Class via Eigendecomposition

Description

Creates a function for initializing latent class model based on Eigendecomposition

Usage

blcInitializeSplitEigen(eigendim = 1,
assignmentf = function(s) (rank(s) - 0.5)/length(s))

Arguments

eigendim How many eigenvalues to use

assignmentf assignment function for transforming eigenvector to weight

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class
latent class model. Here, the initialized classes will be based on eigendecomposition of the variance
of x. See blcTree for example of using “blcSplitCriterion...” to control split.

Value

A function f(x) (see Details.)

See Also

blcInitializeSplitDichotomizeUsingMean, glcInitializeSplitFanny, glcInitializeSplitHClust

blcInitializeSplitFanny

Initialize Beta Latent Class via Fanny

Description

Creates a function for initializing latent class model using the fanny algorithm

Usage

blcInitializeSplitFanny(nu = 2, nufac = 0.875, metric = "euclidean")

blcInitializeSplitHClust 7

Arguments

nu memb.exp parameter in fanny

nufac Factor by which to multiply nu if an error occurs
metric Metric to use for fanny

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class
latent class model. Here, the “fanny” algorithm will be used. See blcTree for example of using
“blcSplitCriterion...” to control split.

Value

A function f(x) (see Details.)

See Also

blcInitializeSplitDichotomizeUsingMean, blcInitializeSplitEigen, blcInitializeSplitHClust

blcInitializeSplitHClust

Initialize Beta Latent Class via Hierarchical Clustering

Description

Creates a function for initializing latent class model using hierarchical clustering.

Usage

blcInitializeSplitHClust(metric = "manhattan", method = "ward")

Arguments

metric Dissimilarity metric used for hierarchical clustering
method Linkage method used for hierarchical clustering

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class
latent class model. Here, a two-branch split from hierarchical clustering will be used. See blcTree
for example of using “blcSplitCriterion...” to control split.

Value

A function f(x) (see Details.)

See Also

blcInitializeSplitDichotomizeUsingMean, blcInitializeSplitEigen, blcInitializeSplitFanny

8 blcSplit

blcSplit Beta Latent Class Splitter

Description

Splits a data set into two via a beta mixture model

Usage

blcSplit(x, initFunctions, weight = NULL, index = NULL, level = NULL,
wthresh = 1e-09, verbose = TRUE, nthresh = 5,
splitCriterion = NULL)

Arguments

x Data matrix (n x j) on which to perform clustering

initFunctions List of functions of type “blcInitialize...” for initializing latent class model. See
blcInitializeFanny for an example of arguments and return values.

weight Weight corresponding to the indices passed (see index). Defaults to 1 for all
indices

index Row indices of data matrix to include. Defaults to all (1 to n).

level Current level.

wthresh Weight threshold for filtering data to children. Indices having weight less than
this value will not be passed to children nodes.

verbose Level of verbosity. Default=2 (too much). 0 for quiet.

nthresh Total weight in node required for node to be a candidate for splitting. Nodes
with weight less than this value will never split.

splitCriterion Function of type “blcSplitCriterion...” for determining whether split should oc-
cur. See blcSplitCriterionBIC for an example of arguments and return val-
ues. Default behavior is blcSplitCriterionBIC (though the function is by-
passed by internal calculations for some modest computational efficiency gains).

Details

Should not be called by user.

Value

A list of objects representing split.

blcSplitCriterionBIC 9

blcSplitCriterionBIC Beta RPMM Split Criterion: Use BIC

Description

Split criterion function: compare BICs to determine split.

Usage

blcSplitCriterionBIC(llike1, llike2, weight, ww, J, level)

Arguments

llike1 one-class likelihood.

llike2 two-class likelihood.

weight weights from RPMM node.

ww “ww” from RPMM node.

J Number of items.

level Node level.

Details

This is a function of the form “glcSplitCriterion...”, which is required to return a list with at least
a boolean value split, along with supporting information. See blcTree for example of using
“blcSplitCriterion...” to control split.

Value

bic1 one-class (weighted) BIC

bic2 two-class (weighted) BIC

split TRUE=split the node, FALSE=do not split the node.

See Also

blcSplitCriterionBIC, blcSplitCriterionJustRecordEverything, blcSplitCriterionLevelWtdBIC,
blcSplitCriterionLRT

10 blcSplitCriterionBICICL

blcSplitCriterionBICICL

Beta RPMM Split Criterion: Use ICL-BIC

Description

Split criterion function: compare ICL-BICs to determine split (i.e. include entropy term in compar-
ison).

Usage

blcSplitCriterionBICICL(llike1, llike2, weight, ww, J, level)

Arguments

llike1 one-class likelihood.

llike2 two-class likelihood.

weight weights from RPMM node.

ww “ww” from RPMM node.

J Number of items.

level Node level.

Details

This is a function of the form “glcSplitCriterion...”, which is required to return a list with at least
a boolean value split, along with supporting information. See blcTree for example of using
“blcSplitCriterion...” to control split.

Value

bic1 one-class (weighted) BIC

bic2 two-class (weighted) BIC

entropy two-class entropy

split TRUE=split the node, FALSE=do not split the node.

See Also

blcSplitCriterionBICICL, blcSplitCriterionJustRecordEverything, blcSplitCriterionLevelWtdBIC,
blcSplitCriterionLRT

blcSplitCriterionJustRecordEverything 11

blcSplitCriterionJustRecordEverything

Beta RPMM Split Criterion: Always Split and Record Everything

Description

Split criterion function: always split, but record everything as you go.

Usage

blcSplitCriterionJustRecordEverything(llike1, llike2, weight, ww, J, level)

Arguments

llike1 one-class likelihood.

llike2 two-class likelihood.

weight weights from RPMM node.

ww “ww” from RPMM node.

J Number of items.

level Node level.

Details

This is a function of the form “glcSplitCriterion...”, which is required to return a list with at
least a boolean value split, along with supporting information. This function ALWAYS returns
split=TRUE. Useful for gathering information. It is recommended that you set the maxlev argu-
ment in the main function to something less than infinity (say, 3 or 4). See blcTree for example of
using “blcSplitCriterion...” to control split.

Value

llike1 Just returns llike1

llike2 Just returns llike2

J Just returns J

weight Just returns weight

ww Just returns ww

degFreedom Degrees-of-freedom for LRT

chiSquareStat Chi-square statistic

split TRUE=split the node, FALSE=do not split the node.

See Also

blcSplitCriterionBIC, blcSplitCriterionBICICL, blcSplitCriterionLevelWtdBIC, blcSplitCriterionLRT

12 blcSplitCriterionLevelWtdBIC

blcSplitCriterionLevelWtdBIC

Beta RPMM Split Criterion: Level-Weighted BIC

Description

Split criterion function: use a level-weighted version of BIC to determine split; there is an additional
penalty incorporated for deep recursion.

Usage

blcSplitCriterionLevelWtdBIC(llike1, llike2, weight, ww, J, level)

Arguments

llike1 one-class likelihood.

llike2 two-class likelihood.

weight weights from RPMM node.

ww “ww” from RPMM node.

J Number of items.

level Node level.

Details

This is a function of the form “glcSplitCriterion...”, which is required to return a list with at least
a boolean value split, along with supporting information. See blcTree for example of using
“blcSplitCriterion...” to control split.

Value

bic1 One-class BIC, with additional penalty for deeper levels

bic2 Two-class BIC, with additional penalty for deeper levels

split TRUE=split the node, FALSE=do not split the node.

See Also

blcSplitCriterionBIC, blcSplitCriterionBICICL, blcSplitCriterionJustRecordEverything,
blcSplitCriterionLRT

blcSplitCriterionLRT 13

blcSplitCriterionLRT Beta RPMM Split Criterion: use likelihood ratio test p value

Description

Split criterion function: Use likelihood ratio test p value to determine split.

Usage

blcSplitCriterionLRT(llike1, llike2, weight, ww, J, level)

Arguments

llike1 one-class likelihood.

llike2 two-class likelihood.

weight weights from RPMM node.

ww “ww” from RPMM node.

J Number of items.

level Node level.

Details

This is a function of the form “blcSplitCriterion...”, which is required to return a list with at least
a boolean value split, along with supporting information. See blcTree for example of using
“blcSplitCriterion...” to control split.

Value

llike1 Just returns llike1

llike2 Just returns llike2

J Just returns J

weight Just returns weight

degFreedom Degrees-of-freedom for LRT

chiSquareStat Chi-square statistic

split TRUE=split the node, FALSE=do not split the node.

See Also

blcSplitCriterionBIC, blcSplitCriterionBICICL, blcSplitCriterionJustRecordEverything,
blcSplitCriterionLevelWtdBIC

14 blcTree

blcSubTree Beta Subtree

Description

Subsets a “blcTree” object, i.e. considers the tree whose root is a given node.

Usage

blcSubTree(tr, node)

Arguments

tr “blcTree” object to subset

node Name of node to make root.

Details

Typically not be called by user.

Value

A “blcTree” object whose root is the given node of tr

blcTree Beta RPMM Tree

Description

Performs beta latent class modeling using recursively-partitioned mixture model

Usage

blcTree(x, initFunctions = list(blcInitializeSplitFanny()),
weight = NULL, index = NULL, wthresh = 1e-08, nodename = "root",
maxlevel = Inf, verbose = 2, nthresh = 5, level = 0, env = NULL,
unsplit = NULL, splitCriterion = blcSplitCriterionBIC)

blcTree 15

Arguments

x Data matrix (n x j) on which to perform clustering. Missing values are sup-
ported. All values should lie strictly between 0 and 1.

initFunctions List of functions of type “blcInitialize...” for initializing latent class model. See
blcInitializeFanny for an example of arguments and return values.

weight Weight corresponding to the indices passed (see index). Defaults to 1 for all
indices

index Row indices of data matrix to include. Defaults to all (1 to n).
wthresh Weight threshold for filtering data to children. Indices having weight less than

this value will not be passed to children nodes. Default=1E-8.
nodename Name of object that will represent node in tree data object. Defaults to “root”.

USER SHOULD NOT SET THIS.
maxlevel Maximum depth to recurse. Default=Inf.
verbose Level of verbosity. Default=2 (too much). 0 for quiet.
nthresh Total weight in node required for node to be a candidate for splitting. Nodes

with weight less than this value will never split. Defaults to 5.
level Current level. Defaults to 0. USER SHUOLD NOT SET THIS.
env Object of class “blcTree” to store tree data. Defaults to a new object. USER

SHOULD NOT SET THIS.
unsplit Latent class parameters from parent, to store in current node. Defaults to NULL

for root. This is used in plotting functions. USER SHOULD NOT SET THIS.
splitCriterion Function of type “blcSplitCriterion...” for determining whether a node should

be split. See blcSplitCriterionBIC for an example of arguments and return
values.

Details

This function is called recursively by itself. Upon each recursion, certain arguments (e.g. node-
name) are reset. Do not attempt to set these arguments yourself.

Value

An object of class “blcTree”. This is an environment, each of whose component objects represents
a node in the tree.

Note

The class “blcTree” is currently implemented as an environment object with nodes represented
flatly, with name indicating positition in hierarchy (e.g. “rLLR” = “right child of left child of left
child of root”) This implementation is to make certain plotting and update functions simpler than
would be required if the data were stored in a more natural “list of list” format.

The following error may appear during the course of the algorithm:

Error in optim(logab, betaObjf, ydata = y, wdata = w, weights = weights, :
non-finite value supplied by optim

16 blcTree

This is merely an indication that the node being split is too small, in which case the splitting will
terminate at that node; in other words, it is nothing to worry about.

Author(s)

E. Andres Houseman

References

Houseman et al., Model-based clustering of DNA methylation array data: a recursive-partitioning
algorithm for high-dimensional data arising as a mixture of beta distributions. BMC Bioinformatics
9:365, 2008.

See Also

glcTree

Examples

Not run:
data(IlluminaMethylation)

heatmap(IllumBeta, scale="n",
col=colorRampPalette(c("yellow","black","blue"),space="Lab")(128))

Fit Gaussian RPMM
rpmm <- blcTree(IllumBeta, verbose=0)
rpmm

Get weight matrix and show first few rows
rpmmWeightMatrix <- blcTreeLeafMatrix(rpmm)
rpmmWeightMatrix[1:3,]

Get class assignments and compare with tissue
rpmmClass <- blcTreeLeafClasses(rpmm)
table(rpmmClass,tissue)

Plot fit
par(mfrow=c(2,2))
plot(rpmm) ; title("Image of RPMM Profile")
plotTree.blcTree(rpmm) ; title("Dendrogram with Labels")
plotTree.blcTree(rpmm,

labelFunction=function(u,digits) table(as.character(tissue[u$index])))
title("Dendrogram with Tissue Counts")

Alternate initialization
rpmm2 <- blcTree(IllumBeta, verbose=0,

initFunctions=list(blcInitializeSplitEigen(),
blcInitializeSplitFanny(nu=2.5)))

rpmm2

Alternate split criterion

blcTreeApply 17

rpmm3 <- blcTree(IllumBeta, verbose=0, maxlev=3,
splitCriterion=blcSplitCriterionLevelWtdBIC)

rpmm3

rpmm4 <- blcTree(IllumBeta, verbose=0, maxlev=3,
splitCriterion=blcSplitCriterionJustRecordEverything)

rpmm4rLLsplitInfo$llike1
rpmm4rLLsplitInfo$llike2

End(Not run)

blcTreeApply Recursive Apply Function for Beta RPMM Objects

Description

Recursively applies a function down the nodes of a Gaussian RPMM tree.

Usage

blcTreeApply(tr, f, start = "root", terminalOnly = FALSE, asObject = TRUE, ...)

Arguments

tr Tree object to recurse

f Function to apply to every node

start Starting node. Default = “root”.

terminalOnly TRUE=only terminal nodes, FALSE=all nodes.

asObject TRUE: f accepts node as object. FALSE: f accepts node by node name and object
name, f(nn,tr)

. In the latter case, f should be defined as f <- function(nn,tree){...}.

... Additional arguments to pass to f

Value

A list of results; names of elements are names of nodes.

18 blcTreeLeafMatrix

blcTreeLeafClasses Posterior Class Assignments for Beta RPMM

Description

Gets a vector of posterior class membership assignments for terminal nodes.

Usage

blcTreeLeafClasses(tr)

Arguments

tr Tree from which to create assignments.

Details

See blcTree for example.

Value

Vector of class assignments

See Also

blcTreeLeafMatrix

blcTreeLeafMatrix Posterior Weight Matrix for Beta RPMM

Description

Gets a matrix of posterior class membership weights for terminal nodes.

Usage

blcTreeLeafMatrix(tr, rounding = 3)

Arguments

tr Tree from which to create matrix.

rounding Digits to round.

Details

See blcTree for example.

blcTreeOverallBIC 19

Value

N x K matrix of posterior weights

See Also

blcTreeLeafClasses

blcTreeOverallBIC Overall BIC for Entire RPMM Tree (Beta version)

Description

Computes the BIC for the latent class model represented by terminal nodes

Usage

blcTreeOverallBIC(tr, ICL = FALSE)

Arguments

tr Tree object on which to compute BIC

ICL Include ICL entropy term?

Value

BIC or BIC-ICL.

ebayes Empirical Bayes predictions for a specific RPMM model

Description

Empirical Bayes predictions for a specific RPMM model

Usage

ebayes(rpmm, x, type, nodelist=NULL)

Arguments

rpmm RPMM object

x Data matrix

type RPMM type ("blc" or "glc")

nodelist RPMM subnode to use (default = root)

20 glc

Details

Typically not be called by user.

Value

Matrix of empirical bayes predictions corresponding to x.

gaussEstMultiple Gaussian Maximum Likelihood on a Matrix

Description

Maximum likelihood estimator for Gaussian model on matrix of values (columns having different,
independent Gaussian distributions)

Usage

gaussEstMultiple(Y, weights = NULL)

Arguments

Y data matrix
weights case weights

Value

A list of beta parameters and BIC

glc Gaussian Finite Mixture Model

Description

Fits a Gaussian mixture model for any number of classes

Usage

glc(Y, w, maxiter = 100, tol = 1e-06, weights = NULL, verbose = TRUE)

Arguments

Y Data matrix (n x j) on which to perform clustering
w Initial weight matrix (n x k) representing classification
maxiter Maximum number of EM iterations
tol Convergence tolerance
weights Case weights
verbose Verbose output?

glcInitializeSplitEigen 21

Details

Typically not be called by user.

Value

A list of parameters representing mixture model fit, including posterior weights and log-likelihood

glcInitializeSplitEigen

Initialize Gaussian Latent Class via Eigendecomposition

Description

Creates a function for initializing latent class model based on Eigendecomposition

Usage

glcInitializeSplitEigen(eigendim = 1,
assignmentf = function(s) (rank(s) - 0.5)/length(s))

Arguments

eigendim How many eigenvalues to use

assignmentf assignment function for transforming eigenvector to weight

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class
latent class model. Here, the initialized classes will be based on eigendecomposition of the variance
of x. See glcTree for example of using “glcInitializeSplit...” to create starting values.

Value

A function f(x) (see Details.)

See Also

glcInitializeSplitFanny, glcInitializeSplitHClust

22 glcInitializeSplitHClust

glcInitializeSplitFanny

Initialize Gaussian Latent Class via Fanny

Description

Creates a function for initializing latent class model using the fanny algorithm

Usage

glcInitializeSplitFanny(nu = 2, nufac = 0.875, metric = "euclidean")

Arguments

nu memb.exp parameter in fanny

nufac Factor by which to multiply nu if an error occurs

metric Metric to use for fanny

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class
latent class model. Here, the “fanny” algorithm will be used. See glcTree for example of using
“glcInitializeSplit...” to create starting values.

Value

A function f(x) (see Details.)

See Also

glcInitializeSplitEigen, glcInitializeSplitHClust

glcInitializeSplitHClust

Initialize Gaussian Latent Class via Hierarchical Clustering

Description

Creates a function for initializing latent class model using hierarchical clustering.

Usage

glcInitializeSplitHClust(metric = "manhattan", method = "ward")

glcSplit 23

Arguments

metric Dissimilarity metric used for hierarchical clustering

method Linkage method used for hierarchical clustering

Details

Creates a function f(x) that will take a data matrix x and initialize a weight matrix for a two-class
latent class model. Here, a two-branch split from hierarchical clustering will be used. See glcTree
for example of using “glcInitializeSplit...” to create starting values.

Value

A function f(x) (see Details.)

See Also

glcInitializeSplitEigen, glcInitializeSplitFanny

glcSplit Gaussian Latent Class Splitter

Description

Splits a data set into two via a Gaussian mixture models

Usage

glcSplit(x, initFunctions, weight = NULL, index = NULL, level =
0, wthresh = 1e-09, verbose = TRUE, nthresh = 5,
splitCriterion = glcSplitCriterionBIC)

Arguments

x Data matrix (n x j) on which to perform clustering

initFunctions List of functions of type “glcInitialize...” for initializing latent class model. See
glcInitializeFanny for an example of arguments and return values.

weight Weight corresponding to the indices passed (see index). Defaults to 1 for all
indices

index Row indices of data matrix to include. Defaults to all (1 to n).

level Current level.

wthresh Weight threshold for filtering data to children. Indices having weight less than
this value will not be passed to children nodes.

verbose Level of verbosity. Default=2 (too much). 0 for quiet.

nthresh Total weight in node required for node to be a candidate for splitting. Nodes
with weight less than this value will never split.

24 glcSplitCriterionBIC

splitCriterion Function of type “glcSplitCriterion...” for determining whether split should oc-
cur. See glcSplitCriterionBIC for an example of arguments and return val-
ues.

Details

Should not be called by user.

Value

A list of objects representing split.

glcSplitCriterionBIC Gaussian RPMM Split Criterion: Use BIC

Description

Split criterion function: compare BICs to determine split.

Usage

glcSplitCriterionBIC(llike1, llike2, weight, ww, J, level)

Arguments

llike1 one-class likelihood.
llike2 two-class likelihood.
weight weights from RPMM node.
ww “ww” from RPMM node.
J Number of items.
level Node level.

Details

This is a function of the form “glcSplitCriterion...”, which is required to return a list with at least
a boolean value split, along with supporting information. See glcTree for example of using
“glcSplitCriterion...” to control split.

Value

bic1 one-class (weighted) BIC
bic2 two-class (weighted) BIC
split TRUE=split the node, FALSE=do not split the node.

See Also

glcSplitCriterionBIC, glcSplitCriterionJustRecordEverything, glcSplitCriterionLevelWtdBIC,
glcSplitCriterionLRT

glcSplitCriterionBICICL 25

glcSplitCriterionBICICL

Gaussian RPMM Split Criterion: Use ICL-BIC

Description

Split criterion function: compare ICL-BICs to determine split (i.e. include entropy term in compar-
ison).

Usage

glcSplitCriterionBICICL(llike1, llike2, weight, ww, J, level)

Arguments

llike1 one-class likelihood.

llike2 two-class likelihood.

weight weights from RPMM node.

ww “ww” from RPMM node.

J Number of items.

level Node level.

Details

This is a function of the form “glcSplitCriterion...”, which is required to return a list with at least
a boolean value split, along with supporting information. See glcTree for example of using
“glcSplitCriterion...” to control split.

Value

bic1 one-class (weighted) BIC

bic2 two-class (weighted) BIC

entropy two-class entropy

split TRUE=split the node, FALSE=do not split the node.

See Also

glcSplitCriterionBICICL, glcSplitCriterionJustRecordEverything, glcSplitCriterionLevelWtdBIC,
glcSplitCriterionLRT

26 glcSplitCriterionJustRecordEverything

glcSplitCriterionJustRecordEverything

Gaussian RPMM Split Criterion: Always Split and Record Everything

Description

Split criterion function: always split, but record everything as you go.

Usage

glcSplitCriterionJustRecordEverything(llike1, llike2, weight, ww, J, level)

Arguments

llike1 one-class likelihood.

llike2 two-class likelihood.

weight weights from RPMM node.

ww “ww” from RPMM node.

J Number of items.

level Node level.

Details

This is a function of the form “glcSplitCriterion...”, which is required to return a list with at
least a boolean value split, along with supporting information. This function ALWAYS returns
split=TRUE. Useful for gathering information. It is recommended that you set the maxlev argu-
ment in the main function to something less than infinity (say, 3 or 4). See glcTree for example of
using “glcSplitCriterion...” to control split.

Value

llike1 Just returns llike1

llike2 Just returns llike2

J Just returns J

weight Just returns weight

ww Just returns ww

degFreedom Degrees-of-freedom for LRT

chiSquareStat Chi-square statistic

split TRUE=split the node, FALSE=do not split the node.

See Also

glcSplitCriterionBIC, glcSplitCriterionBICICL, glcSplitCriterionLevelWtdBIC, glcSplitCriterionLRT

glcSplitCriterionLevelWtdBIC 27

glcSplitCriterionLevelWtdBIC

Gaussian RPMM Split Criterion: Level-Weighted BIC

Description

Split criterion function: use a level-weighted version of BIC to determine split; there is an additional
penalty incorporated for deep recursion.

Usage

glcSplitCriterionLevelWtdBIC(llike1, llike2, weight, ww, J, level)

Arguments

llike1 one-class likelihood.

llike2 two-class likelihood.

weight weights from RPMM node.

ww “ww” from RPMM node.

J Number of items.

level Node level.

Details

This is a function of the form “glcSplitCriterion...”, which is required to return a list with at least
a boolean value split, along with supporting information. See glcTree for example of using
“glcSplitCriterion...” to control split.

Value

bic1 One-class BIC, with additional penalty for deeper levels

bic2 Two-class BIC, with additional penalty for deeper levels

split TRUE=split the node, FALSE=do not split the node.

See Also

glcSplitCriterionBIC, glcSplitCriterionBICICL, glcSplitCriterionJustRecordEverything,
glcSplitCriterionLRT

28 glcSplitCriterionLRT

glcSplitCriterionLRT Gaussian RPMM Split Criterion: Use likelihood ratio test p value

Description

Split criterion function: use likelihood ratio test p value to determine split.

Usage

glcSplitCriterionLRT(llike1, llike2, weight, ww, J, level)

Arguments

llike1 one-class likelihood.

llike2 two-class likelihood.

weight weights from RPMM node.

ww “ww” from RPMM node.

J Number of items.

level Node level.

Details

This is a function of the form “glcSplitCriterion...”, which is required to return a list with at least
a boolean value split, along with supporting information. See glcTree for example of using
“glcSplitCriterion...” to control split.

Value

llike1 Just returns llike1

llike2 Just returns llike2

J Just returns J

weight Just returns weight

degFreedom Degrees-of-freedom for LRT

chiSquareStat Chi-square statistic

split TRUE=split the node, FALSE=do not split the node.

See Also

glcSplitCriterionBIC, glcSplitCriterionBICICL, glcSplitCriterionJustRecordEverything,
glcSplitCriterionLevelWtdBIC

glcSubTree 29

glcSubTree Gaussian Subtree

Description

Subsets a “glcTree” object, i.e. considers the tree whose root is a given node.

Usage

glcSubTree(tr, node)

Arguments

tr “glcTree” object to subset

node Name of node to make root.

Details

Typically not be called by user.

Value

A “glcTree” object whose root is the given node of tr

glcTree Gaussian RPMM Tree

Description

Performs Gaussian latent class modeling using recursively-partitioned mixture model

Usage

glcTree(x, initFunctions = list(glcInitializeSplitFanny(nu=1.5)),
weight = NULL, index = NULL, wthresh = 1e-08,
nodename = "root", maxlevel = Inf, verbose = 2, nthresh = 5, level = 0,
env = NULL, unsplit = NULL, splitCriterion = glcSplitCriterionBIC)

30 glcTree

Arguments

x Data matrix (n x j) on which to perform clustering. Missing values are sup-
ported.

initFunctions List of functions of type “glcInitialize...” for initializing latent class model. See
glcInitializeFanny for an example of arguments and return values.

weight Weight corresponding to the indices passed (see index). Defaults to 1 for all
indices

index Row indices of data matrix to include. Defaults to all (1 to n).
wthresh Weight threshold for filtering data to children. Indices having weight less than

this value will not be passed to children nodes. Default=1E-8.
nodename Name of object that will represent node in tree data object. Defaults to “root”.

USER SHOULD NOT SET THIS.
maxlevel Maximum depth to recurse. Default=Inf.
verbose Level of verbosity. Default=2 (too much). 0 for quiet.
nthresh Total weight in node required for node to be a candidate for splitting. Nodes

with weight less than this value will never split. Defaults to 5.
level Current level. Defaults to 0. USER SHUOLD NOT SET THIS.
env Object of class “glcTree” to store tree data. Defaults to a new object. USER

SHOULD NOT SET THIS.
unsplit Latent class parameters from parent, to store in current node. Defaults to NULL

for root. This is used in plotting functions. USER SHOULD NOT SET THIS.
splitCriterion Function of type “glcSplitCriterion...” for determining whether a node should

be split. See glcSplitCriterionBIC for an example of arguments and return
values.

Details

This function is called recursively by itself. Upon each recursion, certain arguments (e.g. node-
name) are reset. Do not attempt to set these arguments yourself.

Value

An object of class “glcTree”. This is an environment, each of whose component objects represents
a node in the tree.

Note

The class “glcTree” is currently implemented as an environment object with nodes represented
flatly, with name indicating positition in hierarchy (e.g. “rLLR” = “right child of left child of left
child of root”) This implementation is to make certain plotting and update functions simpler than
would be required if the data were stored in a more natural “list of list” format.

The following error may appear during the course of the algorithm:

Error in optim(logab, betaObjf, ydata = y, wdata = w, weights = weights, :
non-finite value supplied by optim

glcTree 31

This is merely an indication that the node being split is too small, in which case the splitting will
terminate at that node; in other words, it is nothing to worry about.

Author(s)

E. Andres Houseman

References

Houseman et al., Model-based clustering of DNA methylation array data: a recursive-partitioning
algorithm for high-dimensional data arising as a mixture of beta distributions. BMC Bioinformatics
9:365, 2008.

See Also

blcTree

Examples

data(IlluminaMethylation)

Not run:
heatmap(IllumBeta, scale="n",

col=colorRampPalette(c("yellow","black","blue"),space="Lab")(128))

End(Not run)

Fit Gaussian RPMM
rpmm <- glcTree(IllumBeta, verbose=0)
rpmm

Get weight matrix and show first few rows
rpmmWeightMatrix <- glcTreeLeafMatrix(rpmm)
rpmmWeightMatrix[1:3,]

Get class assignments and compare with tissue
rpmmClass <- glcTreeLeafClasses(rpmm)
table(rpmmClass,tissue)

Not run:
Plot fit
par(mfrow=c(2,2))
plot(rpmm) ; title("Image of RPMM Profile")
plotTree.glcTree(rpmm) ; title("Dendrogram with Labels")
plotTree.glcTree(rpmm,

labelFunction=function(u,digits) table(as.character(tissue[u$index])))
title("Dendrogram with Tissue Counts")

Alternate initialization
rpmm2 <- glcTree(IllumBeta, verbose=0,

initFunctions=list(glcInitializeSplitEigen(),
glcInitializeSplitFanny(nu=2.5)))

32 glcTreeApply

rpmm2

Alternate split criterion
rpmm3 <- glcTree(IllumBeta, verbose=0, maxlev=3,

splitCriterion=glcSplitCriterionLevelWtdBIC)
rpmm3

rpmm4 <- glcTree(IllumBeta, verbose=0, maxlev=3,
splitCriterion=glcSplitCriterionJustRecordEverything)

rpmm4rLLsplitInfo$llike1
rpmm4rLLsplitInfo$llike2

End(Not run)

glcTreeApply Recursive Apply Function for Gaussian RPMM Objects

Description

Recursively applies a function down the nodes of a Gaussian RPMM tree.

Usage

glcTreeApply(tr, f, start = "root", terminalOnly = FALSE,
asObject = TRUE, ...)

Arguments

tr Tree object to recurse

f Function to apply to every node

start Starting node. Default = “root”.

terminalOnly TRUE=only terminal nodes, FALSE=all nodes.

asObject TRUE: f accepts node as object. FALSE: f accepts node by node name and object
name, f(nn,tr)

. In the latter case, f should be defined as f <- function(nn,tree){...}.

... Additional arguments to pass to f

Value

A list of results; names of elements are names of nodes.

glcTreeLeafClasses 33

glcTreeLeafClasses Posterior Class Assignments for Gaussian RPMM

Description

Gets a vector of posterior class membership assignments for terminal nodes.

Usage

glcTreeLeafClasses(tr)

Arguments

tr Tree from which to create assignments.

Details

See glcTree for example.

Value

Vector of class assignments

See Also

glcTreeLeafMatrix

glcTreeLeafMatrix Posterior Weight Matrix for Gaussian RPMM

Description

Gets a matrix of posterior class membership weights for terminal nodes.

Usage

glcTreeLeafMatrix(tr, rounding = 3)

Arguments

tr Tree from which to create matrix.

rounding Digits to round.

Details

See glcTree for example.

34 glmLC

Value

N x K matrix of posterior weights

See Also

glcTreeLeafClasses

glcTreeOverallBIC Overall BIC for Entire RPMM Tree (Gaussian version)

Description

Computes the BIC for the latent class model represented by terminal nodes

Usage

glcTreeOverallBIC(tr, ICL = FALSE)

Arguments

tr Tree object on which to compute BIC

ICL Include ICL entropy term?

Value

BIC or BIC-ICL.

glmLC Weighted GLM for latent class covariates

Description

Wrapper for glm function to incorporate weights corresponding to latent classes

Usage

glmLC(y,W,family=quasibinomial(),eps=1E-8,Z=NULL)

Arguments

y outcome

W weight matrix (rows=cases, # rows = length of y)

family glm family (default = quasibinomial for logistic regression)

eps threshold below which to delete pseudo-subject corresponding to a specific weight

Z matrix of additional covariates

IlluminaMethylation 35

Details

This function is a wrapper for glm to incorporate weights corresponding to latent classes (e.g. from
an RPMM prediction)

Value

a glm object

IlluminaMethylation DNA Methylation Data for Normal Tissue Types

Description

Illumina GoldenGate DNA methylation data for 217 normal tissues. 100 most variable CpG sites.

Usage

IlluminaMethylation

Format

a 217 x 100 matrix containing Illumina Avg Beta values (IllumBeta), and a corresponding factor
vector of 217 tissue types (tissue).

References

Christensen BC, Houseman EA, et al. 2009 Aging and Environmental Exposures Alter Tissue-
Specific DNA Methylation Dependent upon CpG Island Context. PLoS Genet 5(8): e1000602.

llikeRPMMObject Data log-likelihood implied by a specific RPMM model

Description

Data log-likelihood implied by a specific RPMM model

Usage

llikeRPMMObject(o, x, type)

Arguments

o RPMM object

x Data matrix

type RPMM type ("blc" or "glc")

36 plot.glcTree

Details

Typically not be called by user.

Value

Vector of loglikelihoods corresponding to rows of x.

plot.blcTree Plot a Beta RPMM Tree Profile

Description

Plot method for objects of type “blcTree”. Plots profiles of terminal nodes in color. Method wrapper
for plotImage.blcTree.

Usage

S3 method for class 'blcTree'
plot(x,...)

Arguments

x RPMM object to plot.

... Additional arguments to pass to plotImage.blcTree.

Details

See blcTree for example.

plot.glcTree Plot a Gaussian RPMM Tree Profile

Description

Plot method for objects of type “glcTree”. Plots profiles of terminal nodes in color. Method wrapper
for plotImage.glcTree.

Usage

S3 method for class 'glcTree'
plot(x,...)

Arguments

x RPMM object to plot.

... Additional arguments to pass to plotImage.glcTree.

plotImage.blcTree 37

Details

See glcTree for example.

plotImage.blcTree Plot a Beta RPMM Tree Profile

Description

Plots profiles of terminal nodes in color.

Usage

plotImage.blcTree(env,
start = "r", method = "weight",
palette = colorRampPalette(c("yellow", "black", "blue"), space = "Lab")(128),
divcol = "red", xorder = NULL, dimensions = NULL, labelType = "LR")

Arguments

env RPMM object to plot.

start Node to plot (usually root)

method Method to determine width of columns that represent classes: “weight” (subject
weight in class) or dQuotebinary (depth in tree).

palette Color palette to use for image plot.

divcol Divider color

xorder Order of variables. Can be useful for constant ordering across multiple plots.

dimensions Subset of dimensions of source data to show. Defaults to all. Useful to show a
subset of dimensions.

labelType Label name type: “LR” or “01”.

Details

See blcTree for example.

Value

Returns a vector of indices similar to the order function, representing the orrdering of items used
in the plot. This is useful for replicating the order in another plot, or for axis labeling.

38 plotImage.glcTree

plotImage.glcTree Plot a Gaussian RPMM Tree Profile

Description

Plots profiles of terminal nodes in color.

Usage

plotImage.glcTree(env,
start = "r", method = "weight",
palette = colorRampPalette(c("yellow", "black", "blue"), space = "Lab")(128),
divcol = "red", xorder = NULL, dimensions = NULL, labelType = "LR", muColorEps = 1e-08)

Arguments

env RPMM object to print.

start Node to plot (usually root)

method Method to determine width of columns that represent classes: “weight” (subject
weight in class) or dQuotebinary (depth in tree).

palette Color palette to use for image plot.

divcol Divider color

xorder Order of variables. Can be useful for constant ordering across multiple plots.

dimensions Subset of dimensions of source data to show. Defaults to all. Useful to show a
subset of dimensions.

labelType Label name type: “LR” or “01”.

muColorEps Small value to stabilize color generation.

Details

See glcTree for example.

Value

Returns a vector of indices similar to the order function, representing the orrdering of items used
in the plot. This is useful for replicating the order in another plot, or for axis labeling.

plotTree.blcTree 39

plotTree.blcTree Plot a Beta RPMM Tree Dendrogram

Description

Alternate plot function for objects of type blcTree: plots a dendrogram

Usage

plotTree.blcTree(env, start = "r", labelFunction = NULL,
buff = 4, cex = 0.9, square = TRUE, labelAllNodes = FALSE, labelDigits = 1, ...)

Arguments

env Tree object to print

start Note from which to start. Default=“r” for “root”.

labelFunction Function for generating node labels. Useful for labeling each node with a value.

buff Buffer for placing tree in plot window.

cex Text size

square Square dendrogram or “V” shaped

labelAllNodes TRUE=All nodes will be labeled; FALSE=Terminal nodes only.

labelDigits Digits to include in labels, if labelFunction returns numeric values.

... Other parameters to be passed to labelFunction.

Details

This plots a dendrogram based on RPMM tree, with labels constructed from summaries of tree
object. See blcTree for example.

plotTree.glcTree Plot a Gaussian RPMM Tree Dendrogram

Description

Alternate plot function for objects of type glcTree: plots a dendrogram

Usage

plotTree.glcTree(env, start = "r", labelFunction = NULL,
buff = 4, cex = 0.9, square = TRUE, labelAllNodes = FALSE, labelDigits = 1, ...)

40 predict.blcTree

Arguments

env Tree object to print
start Note from which to start. Default=“r” for “root”.
labelFunction Function for generating node labels. Useful for labeling each node with a value.
buff Buffer for placing tree in plot window.
cex Text size
square Square dendrogram or “V” shaped
labelAllNodes TRUE=All nodes will be labeled; FALSE=Terminal nodes only.
labelDigits Digits to include in labels, if labelFunction returns numeric values.
... Other parameters to be passed to labelFunction.

Details

This plots a dendrogram based on RPMM tree, with labels constructed from summaries of tree
object. See glcTree for example.

predict.blcTree Predict using a Beta RPMM object

Description

Prediction method for objects of type blcTree

Usage

S3 method for class 'blcTree'
predict(object, newdata=NULL, nodelist=NULL, type="weight",...)

Arguments

object RPMM object to print
newdata external data matrix from which to apply predictions
nodelist RPMM subnode to use (default = root)
type output type: "weight" produces output similar to blcTreeLeafMatrix, "class"

produces output similar to blcTreeLeafClasses.
... (Unused).

Details

This function is similar to blcTreeLeafMatrix and blcTreeLeafClasses, except that it supports
prediction on an external data set via the argument newdata.

See Also

blcTreeLeafMatrix

predict.glcTree 41

predict.glcTree Predict using a Gaussian RPMM object

Description

Prediction method for objects of type glcTree

Usage

S3 method for class 'glcTree'
predict(object, newdata=NULL, nodelist=NULL, type="weight",...)

Arguments

object RPMM object to print

newdata external data matrix from which to apply predictions

nodelist RPMM subnode to use (default = root)

type output type: "weight" produces output similar to glcTreeLeafMatrix, "class"
produces output similar to glcTreeLeafClasses.

... (Unused).

Details

This function is similar to glcTreeLeafMatrix and glcTreeLeafClasses, except that it supports
prediction on an external data set via the argument newdata.

See Also

glcTreeLeafMatrix

print.blcTree Print a Beta RPMM object

Description

Print method for objects of type blcTree

Usage

S3 method for class 'blcTree'
print(x,...)

Arguments

x RPMM object to print

... (Unused).

42 print.glcTree

Details

See blcTree for example.

print.glcTree Print a Gaussian RPMM object

Description

Print method for objects of type blcTree

Usage

S3 method for class 'glcTree'
print(x,...)

Arguments

x RPMM object to print

... (Unused).

Details

See glcTree for example.

Index

∗ cluster
betaEst, 2
betaEstMultiple, 3
betaObjf, 4
blc, 4
blcInitializeSplitDichotomizeUsingMean,

5
blcInitializeSplitEigen, 6
blcInitializeSplitFanny, 6
blcInitializeSplitHClust, 7
blcSplit, 8
blcSplitCriterionBIC, 9
blcSplitCriterionBICICL, 10
blcSplitCriterionJustRecordEverything,

11
blcSplitCriterionLevelWtdBIC, 12
blcSplitCriterionLRT, 13
blcSubTree, 14
blcTree, 14
blcTreeApply, 17
blcTreeLeafClasses, 18
blcTreeLeafMatrix, 18
blcTreeOverallBIC, 19
gaussEstMultiple, 20
glc, 20
glcInitializeSplitEigen, 21
glcInitializeSplitFanny, 22
glcInitializeSplitHClust, 22
glcSplit, 23
glcSplitCriterionBIC, 24
glcSplitCriterionBICICL, 25
glcSplitCriterionJustRecordEverything,

26
glcSplitCriterionLevelWtdBIC, 27
glcSplitCriterionLRT, 28
glcSubTree, 29
glcTree, 29
glcTreeApply, 32
glcTreeLeafClasses, 33

glcTreeLeafMatrix, 33
glcTreeOverallBIC, 34
plot.blcTree, 36
plot.glcTree, 36
plotImage.blcTree, 37
plotImage.glcTree, 38
plotTree.blcTree, 39
plotTree.glcTree, 39
predict.blcTree, 40
predict.glcTree, 41
print.blcTree, 41
print.glcTree, 42

∗ datasets
IlluminaMethylation, 35

∗ tree
blcInitializeSplitDichotomizeUsingMean,

5
blcInitializeSplitEigen, 6
blcInitializeSplitFanny, 6
blcInitializeSplitHClust, 7
blcSplit, 8
blcSplitCriterionBIC, 9
blcSplitCriterionBICICL, 10
blcSplitCriterionJustRecordEverything,

11
blcSplitCriterionLevelWtdBIC, 12
blcSplitCriterionLRT, 13
blcSubTree, 14
blcTree, 14
blcTreeApply, 17
blcTreeLeafClasses, 18
blcTreeLeafMatrix, 18
blcTreeOverallBIC, 19
glcInitializeSplitEigen, 21
glcInitializeSplitFanny, 22
glcInitializeSplitHClust, 22
glcSplit, 23
glcSplitCriterionBIC, 24
glcSplitCriterionBICICL, 25

43

44 INDEX

glcSplitCriterionJustRecordEverything,
26

glcSplitCriterionLevelWtdBIC, 27
glcSplitCriterionLRT, 28
glcSubTree, 29
glcTree, 29
glcTreeApply, 32
glcTreeLeafClasses, 33
glcTreeLeafMatrix, 33
glcTreeOverallBIC, 34
plot.blcTree, 36
plot.glcTree, 36
plotImage.blcTree, 37
plotImage.glcTree, 38
plotTree.blcTree, 39
plotTree.glcTree, 39
predict.blcTree, 40
predict.glcTree, 41
print.blcTree, 41
print.glcTree, 42

betaEst, 2
betaEstMultiple, 3
betaObjf, 4
blc, 4
blcInitializeSplitDichotomizeUsingMean,

5, 6, 7
blcInitializeSplitEigen, 6, 7
blcInitializeSplitFanny, 6, 7
blcInitializeSplitHClust, 7, 7
blcSplit, 8
blcSplitCriterionBIC, 9, 9, 11–13
blcSplitCriterionBICICL, 10, 10, 11–13
blcSplitCriterionJustRecordEverything,

9, 10, 11, 12, 13
blcSplitCriterionLevelWtdBIC, 9–11, 12,

13
blcSplitCriterionLRT, 9–12, 13
blcSubTree, 14
blcTree, 5–7, 9–13, 14, 18, 31, 36, 37, 39, 42
blcTreeApply, 17
blcTreeLeafClasses, 18, 19, 40
blcTreeLeafMatrix, 18, 18, 40
blcTreeOverallBIC, 19

ebayes, 19

gaussEstMultiple, 20
glc, 20

glcInitializeSplitEigen, 21, 22, 23
glcInitializeSplitFanny, 5, 6, 21, 22, 23
glcInitializeSplitHClust, 5, 6, 21, 22, 22
glcSplit, 23
glcSplitCriterionBIC, 24, 24, 26–28
glcSplitCriterionBICICL, 25, 25, 26–28
glcSplitCriterionJustRecordEverything,

24, 25, 26, 27, 28
glcSplitCriterionLevelWtdBIC, 24–26, 27,

28
glcSplitCriterionLRT, 24–27, 28
glcSubTree, 29
glcTree, 16, 21–28, 29, 33, 37, 38, 40, 42
glcTreeApply, 32
glcTreeLeafClasses, 33, 34, 41
glcTreeLeafMatrix, 33, 33, 41
glcTreeOverallBIC, 34
glmLC, 34

IllumBeta (IlluminaMethylation), 35
IlluminaMethylation, 35

llikeRPMMObject, 35

plot.blcTree, 36
plot.glcTree, 36
plotImage.blcTree, 37
plotImage.glcTree, 38
plotTree.blcTree, 39
plotTree.glcTree, 39
predict.blcTree, 40
predict.glcTree, 41
print.blcTree, 41
print.glcTree, 42

tissue (IlluminaMethylation), 35

	betaEst
	betaEstMultiple
	betaObjf
	blc
	blcInitializeSplitDichotomizeUsingMean
	blcInitializeSplitEigen
	blcInitializeSplitFanny
	blcInitializeSplitHClust
	blcSplit
	blcSplitCriterionBIC
	blcSplitCriterionBICICL
	blcSplitCriterionJustRecordEverything
	blcSplitCriterionLevelWtdBIC
	blcSplitCriterionLRT
	blcSubTree
	blcTree
	blcTreeApply
	blcTreeLeafClasses
	blcTreeLeafMatrix
	blcTreeOverallBIC
	ebayes
	gaussEstMultiple
	glc
	glcInitializeSplitEigen
	glcInitializeSplitFanny
	glcInitializeSplitHClust
	glcSplit
	glcSplitCriterionBIC
	glcSplitCriterionBICICL
	glcSplitCriterionJustRecordEverything
	glcSplitCriterionLevelWtdBIC
	glcSplitCriterionLRT
	glcSubTree
	glcTree
	glcTreeApply
	glcTreeLeafClasses
	glcTreeLeafMatrix
	glcTreeOverallBIC
	glmLC
	IlluminaMethylation
	llikeRPMMObject
	plot.blcTree
	plot.glcTree
	plotImage.blcTree
	plotImage.glcTree
	plotTree.blcTree
	plotTree.glcTree
	predict.blcTree
	predict.glcTree
	print.blcTree
	print.glcTree
	Index

