Version: | 1.1.0 |
Title: | Connect R with MOA for Massive Online Analysis |
Description: | Connect R with MOA (Massive Online Analysis - https://moa.cms.waikato.ac.nz/) to build classification models and regression models on streaming data or out-of-RAM data. Also streaming recommendation models are made available. |
Depends: | RMOAjars (≥ 1.0), rJava (≥ 0.6-3), methods |
Suggests: | ff, recommenderlab |
SystemRequirements: | Java (>= 5.0) |
License: | GPL-3 |
Copyright: | Code is Copyright (C) Jan Wijffels and BNOSAC |
Maintainer: | Jan Wijffels <jwijffels@bnosac.be> |
URL: | http://www.bnosac.be, https://github.com/jwijffels/RMOA, https://moa.cms.waikato.ac.nz/ |
RoxygenNote: | 7.1.1 |
NeedsCompilation: | no |
Packaged: | 2022-07-17 20:39:47 UTC; jwijf |
Author: | Jan Wijffels [aut, cre], BNOSAC [cph] |
Repository: | CRAN |
Date/Publication: | 2022-07-17 21:00:02 UTC |
MOA active learning classification
Description
MOA active learning classification
Usage
ActiveClassifier(control = NULL, ...)
Arguments
control |
an object of class |
... |
options of parameters passed on to |
Value
An object of class MOA_classifier
which sets up an untrained MOA model,
which can be trained using trainMOA
See Also
Examples
ctrl <- MOAoptions(model = "ActiveClassifier")
mymodel <- ActiveClassifier(control=ctrl)
mymodel
MOA bayesian classification
Description
MOA bayesian classification
Usage
NaiveBayes(control = NULL, ...)
NaiveBayesMultinomial(control = NULL, ...)
Arguments
control |
an object of class |
... |
options of parameters passed on to |
Value
An object of class MOA_classifier
which sets up an untrained MOA model,
which can be trained using trainMOA
See Also
Examples
ctrl <- MOAoptions(model = "NaiveBayes")
mymodel <- NaiveBayes(control=ctrl)
mymodel
MOA classification using ensembles
Description
MOA classification using ensembles (bagging/boosting/stacking/other)
Usage
AccuracyUpdatedEnsemble(control = NULL, ...)
AccuracyWeightedEnsemble(control = NULL, ...)
ADACC(control = NULL, ...)
DACC(control = NULL, ...)
LeveragingBag(control = NULL, ...)
LimAttClassifier(control = NULL, ...)
OCBoost(control = NULL, ...)
OnlineAccuracyUpdatedEnsemble(control = NULL, ...)
OzaBag(control = NULL, ...)
OzaBagAdwin(control = NULL, ...)
OzaBagASHT(control = NULL, ...)
OzaBoost(control = NULL, ...)
OzaBoostAdwin(control = NULL, ...)
TemporallyAugmentedClassifier(control = NULL, ...)
WeightedMajorityAlgorithm(control = NULL, ...)
Arguments
control |
an object of class |
... |
options of parameters passed on to |
Value
An object of class MOA_classifier
which sets up an untrained MOA model,
which can be trained using trainMOA
See Also
Examples
ctrl <- MOAoptions(model = "OzaBoostAdwin")
mymodel <- OzaBoostAdwin(control=ctrl)
mymodel
MOA classification trees
Description
MOA classification trees
Usage
AdaHoeffdingOptionTree(control = NULL, ...)
ASHoeffdingTree(control = NULL, ...)
DecisionStump(control = NULL, ...)
HoeffdingAdaptiveTree(control = NULL, ...)
HoeffdingOptionTree(control = NULL, ...)
HoeffdingTree(control = NULL, ...)
LimAttHoeffdingTree(control = NULL, ...)
RandomHoeffdingTree(control = NULL, ...)
Arguments
control |
an object of class |
... |
options of parameters passed on to |
Value
An object of class MOA_classifier
which sets up an untrained MOA model,
which can be trained using trainMOA
See Also
Examples
ctrl <- MOAoptions(model = "HoeffdingTree", leafprediction = "MC",
removePoorAtts = TRUE, binarySplits = TRUE, tieThreshold = 0.20)
hdt <- HoeffdingTree(control=ctrl)
hdt
hdt <- HoeffdingTree(numericEstimator = "GaussianNumericAttributeClassObserver")
hdt
Create a MOA classifier
Description
Create a MOA classifier
Usage
MOA_classifier(model, control = NULL, ...)
Arguments
model |
character string with a model.
E.g. HoeffdingTree, DecisionStump, NaiveBayes, HoeffdingOptionTree, ...
The list of known models can be obtained by typing RMOA:::.moaknownmodels.
See the examples and |
control |
an object of class |
... |
options of parameters passed on to |
Value
An object of class MOA_classifier
See Also
Examples
RMOA:::.moaknownmodels
ctrl <- MOAoptions(model = "HoeffdingTree", leafprediction = "MC",
removePoorAtts = TRUE, binarySplits = TRUE, tieThreshold = 0.20)
hdt <- MOA_classifier(model = "HoeffdingTree", control=ctrl)
hdt
hdt <- MOA_classifier(
model = "HoeffdingTree",
numericEstimator = "GaussianNumericAttributeClassObserver")
hdt
MOA recommendation engines
Description
MOA recommendation engines
Usage
BRISMFPredictor(control = NULL, ...)
BaselinePredictor(control = NULL, ...)
Arguments
control |
an object of class |
... |
options of parameters passed on to |
Value
An object of class MOA_recommender
which sets up an untrained MOA model,
which can be trained using trainMOA
See Also
Examples
ctrl <- MOAoptions(model = "BRISMFPredictor", features = 10)
brism <- BRISMFPredictor(control=ctrl)
brism
baseline <- BaselinePredictor()
baseline
Create a MOA recommendation engine
Description
Create a MOA recommendation engine
Usage
MOA_recommender(model, control = NULL, ...)
Arguments
model |
character string with a model.
E.g. BRISMFPredictor, BaselinePredictor
The list of known models can be obtained by typing RMOA:::.moaknownmodels.
See the examples and |
control |
an object of class |
... |
options of parameters passed on to |
Value
An object of class MOA_recommender
See Also
Examples
RMOA:::.moaknownmodels
ctrl <- MOAoptions(model = "BRISMFPredictor", features = 10, lRate=0.002)
brism <- MOA_recommender(model = "BRISMFPredictor", control=ctrl)
brism
MOAoptions(model = "BaselinePredictor")
baseline <- MOA_recommender(model = "BaselinePredictor")
baseline
Create a MOA regressor
Description
Create a MOA regressor
Usage
MOA_regressor(model, control = NULL, ...)
Arguments
model |
character string with a model.
E.g. AMRulesRegressor, FadingTargetMean, FIMTDD, ORTO, Perceptron, RandomRules, SGD, TargetMean, ...
The list of known models can be obtained by typing RMOA:::.moaknownmodels.
See the examples and |
control |
an object of class |
... |
options of parameters passed on to |
Value
An object of class MOA_regressor
See Also
Examples
mymodel <- MOA_regressor(model = "FIMTDD")
mymodel
data(iris)
iris <- factorise(iris)
irisdatastream <- datastream_dataframe(data=iris)
## Train the model
mytrainedmodel <- trainMOA(model = mymodel,
Sepal.Length ~ Petal.Length + Species, data = irisdatastream)
mytrainedmodel$model
summary(lm(Sepal.Length ~ Petal.Length + Species, data = iris))
predict(mytrainedmodel, newdata=iris)
MOA regressors
Description
MOA regressors
Usage
TargetMean(control = NULL, ...)
FadingTargetMean(control = NULL, ...)
Perceptron(control = NULL, ...)
AMRulesRegressor(control = NULL, ...)
FIMTDD(control = NULL, ...)
ORTO(control = NULL, ...)
Arguments
control |
an object of class |
... |
options of parameters passed on to |
Value
An object of class MOA_classifier
which sets up an untrained MOA model,
which can be trained using trainMOA
See Also
Examples
ctrl <- MOAoptions(model = "FIMTDD", DoNotDetectChanges = TRUE, noAnomalyDetection=FALSE,
univariateAnomalyprobabilityThreshold = 0.5, verbosity = 5)
mymodel <- FIMTDD(control=ctrl)
mymodel
mymodel <- FIMTDD(ctrlDoNotDetectChanges = FALSE)
mymodel
Define the attributes of a dataset (factor levels, numeric or string data) in a MOA setting
Description
Define the attributes of a dataset (factor levels, numeric or string data) in a MOA setting
Usage
MOAattributes(data, ...)
Arguments
data |
object of class data.frame |
... |
other parameters currently not used yet |
Value
An object of class MOAmodelAttributes
Examples
data(iris)
mydata <- factorise(iris)
atts <- MOAattributes(data=mydata)
atts
Get and set options for models build with MOA.
Description
Get and set options for models build with MOA.
Usage
MOAoptions(model, ...)
Arguments
model |
character string with a model or an object of class |
... |
other parameters specifying the MOA modelling options of each model. See the examples. |
Value
An object of class MOAmodelOptions
.
This is a list with elements:
model: The name of the model
moamodelname: The purpose of the model known by MOA (getPurposeString)
javaObj: a java reference of MOA options
options: a list with options of the MOA model. Each list element contains the
Name
of the option, thePurpose
of the option and the currentValue
See the examples.
Examples
control <- MOAoptions(model = "HoeffdingTree")
control
MOAoptions(model = "HoeffdingTree", leafprediction = "MC",
removePoorAtts = TRUE, binarySplits = TRUE, tieThreshold = 0.20)
## Other models known by RMOA
RMOA:::.moaknownmodels
## Classification Trees
MOAoptions(model = "AdaHoeffdingOptionTree")
MOAoptions(model = "ASHoeffdingTree")
MOAoptions(model = "DecisionStump")
MOAoptions(model = "HoeffdingAdaptiveTree")
MOAoptions(model = "HoeffdingOptionTree")
MOAoptions(model = "HoeffdingTree")
MOAoptions(model = "LimAttHoeffdingTree")
MOAoptions(model = "RandomHoeffdingTree")
## Classification using Bayes rule
MOAoptions(model = "NaiveBayes")
MOAoptions(model = "NaiveBayesMultinomial")
## Classification using Active learning
MOAoptions(model = "ActiveClassifier")
## Classification using Ensemble learning
MOAoptions(model = "AccuracyUpdatedEnsemble")
MOAoptions(model = "AccuracyWeightedEnsemble")
MOAoptions(model = "ADACC")
MOAoptions(model = "DACC")
MOAoptions(model = "LeveragingBag")
MOAoptions(model = "OCBoost")
MOAoptions(model = "OnlineAccuracyUpdatedEnsemble")
MOAoptions(model = "OzaBag")
MOAoptions(model = "OzaBagAdwin")
MOAoptions(model = "OzaBagASHT")
MOAoptions(model = "OzaBoost")
MOAoptions(model = "OzaBoostAdwin")
MOAoptions(model = "TemporallyAugmentedClassifier")
MOAoptions(model = "WeightedMajorityAlgorithm")
## Regressions
MOAoptions(model = "AMRulesRegressor")
MOAoptions(model = "FadingTargetMean")
MOAoptions(model = "FIMTDD")
MOAoptions(model = "ORTO")
MOAoptions(model = "Perceptron")
MOAoptions(model = "SGD")
MOAoptions(model = "TargetMean")
## Recommendation engines
MOAoptions(model = "BRISMFPredictor")
MOAoptions(model = "BaselinePredictor")
Datastream objects and methods
Description
Reference object of class datastream. This is a generic class which holds general
information about the data stream.
Currently streams are implemented for data in table format (streams of read.table, read.csv, read.csv2,
read.delim, read.delim2), data in RAM (data.frame, matrix), data in ff (on disk).
See the documentation of datastream_file
, datastream_dataframe
, datastream_matrix
,
and datastream_ffdf
Arguments
description |
The name how the stream is labelled |
args |
a list with arguments used to set up the stream and used in the datastream methods |
Value
A class of type datastream which contains
- description:
character with the name how the stream is labelled.
- state:
integer with the current state at which the stream will read new instances of data
- processed:
integer with the number of instances already processed
- finished:
logical indicating if the stream has finished processing all the instances
- args:
list with arguments passed on to the stream when it is created (e.g. arguments of read.table)
See Also
Examples
## Basic example, showing the general methods available for a datastream object
x <- datastream(description = "My own datastream", args = list(a = "TEST"))
x
str(x)
try(x$get_points(x))
data streams on a data.frame
Description
Reference object of class datastream_dataframe
.
This is a class which inherits from class datastream
and which can be used to read in a stream
from a data.frame.
Arguments
data |
a data.frame to extract data from in a streaming way |
Value
A class of type datastream_dataframe
which contains
- data:
The data.frame to extract instances from
- all fields of the datastream superclass:
See
datastream
Methods
-
get_points(n)
Get data from a datastream object.- n
integer, indicating the number of instances to retrieve from the datastream
See Also
Examples
x <- datastream_dataframe(data=iris)
x$get_points(10)
x
x$get_points(10)
x
data streams on an ffdf
Description
Reference object of class datastream_ffdf
.
This is a class which inherits from class datastream
and which can be used to read in a stream
from a ffdf from the ff package.
Arguments
data |
a data.frame to extract data from in a streaming way |
Value
A class of type datastream_ffdf
which contains
- data:
The ffdf to extract instances from
- all fields of the datastream superclass:
See
datastream
Methods
-
get_points(n)
Get data from a datastream object.- n
integer, indicating the number of instances to retrieve from the datastream
See Also
Examples
## You need to load package ff before you can use datastream_ffdf
require(ff)
irisff <- as.ffdf(factorise(iris))
x <- datastream_ffdf(data=irisff)
x$get_points(10)
x
x$get_points(10)
x
File data stream
Description
Reference object of class datastream_file
.
This is a class which inherits from class datastream
and which can be used to read in a stream
from a file. A number of file readers have been implemented, namely
datastream_table
, datastream_csv
, datastream_csv2
,
datastream_delim
, datastream_delim2
.
See the examples.
Arguments
description |
The name how the stream is labelled |
FUN |
The function to use to read in the file.
Defaults to |
columnnames |
optional character vector of column to overwrite the column names of the data read in with in |
file |
The file to read in. See e.g. |
... |
parameters passed on to |
Value
A class of type datastream_file
which contains
- FUN:
The function to use to read in the file
- connection:
A connection to the file
- columnnames:
A character vector of column names to overwrite the column names with in
get_points
- all fields of the datastream superclass:
See
datastream
Methods
-
get_points(n)
Get data from a datastream object.- n
integer, indicating the number of instances to retrieve from the datastream
See Also
read.table
, read.csv
, read.csv2
, read.delim
, read.delim2
Examples
mydata <- iris
mydata$Species[2:3] <- NA
## Example of a CSV file stream
myfile <- tempfile()
write.csv(iris, file = myfile, row.names=FALSE, na = "")
x <- datastream_csv(file = myfile, na.strings = "")
x
x$get_points(n=10)
x
x$get_points(n=10)
x
x$stop()
## Create your own specific file stream
write.table(iris, file = myfile, row.names=FALSE, na = "")
x <- datastream_file(description="My file defintion stream", FUN=read.table,
file = myfile, header=TRUE, na.strings="")
x$get_points(n=10)
x
x$stop()
## Clean up for CRAN
file.remove(myfile)
data streams on a matrix
Description
Reference object of class datastream_matrix
.
This is a class which inherits from class datastream
and which can be used to read in a stream
from a matrix.
Arguments
data |
a matrix to extract data from in a streaming way |
Value
A class of type datastream_matrix
which contains
- data:
The matrix to extract instances from
- all fields of the datastream superclass:
See
datastream
Methods
-
get_points(n)
Get data from a datastream object.- n
integer, indicating the number of instances to retrieve from the datastream
See Also
Examples
data <- matrix(rnorm(1000*10), nrow = 1000, ncol = 10)
x <- datastream_matrix(data=data)
x$get_points(10)
x
x$get_points(10)
x
Convert character strings to factors in a dataset
Description
Convert character strings to factors in a dataset
Usage
factorise(x, ...)
Arguments
x |
object of class data.frame |
... |
other parameters currently not used yet |
Value
a data.frame with the information in x
where character columns are converted to factors
Examples
data(iris)
str(iris)
mydata <- factorise(iris)
str(mydata)
Predict using a MOA classifier, MOA regressor or MOA recommender on a new dataset
Description
Predict using a MOA classifier, MOA regressor or MOA recommender on a new dataset. \
Make sure the new dataset has the same structure
and the same levels as get_points
returns on the datastream which was used in trainMOA
Usage
## S3 method for class 'MOA_trainedmodel'
predict(object, newdata, type = "response",
transFUN = object$transFUN, na.action = na.fail, ...)
Arguments
object |
an object of class |
newdata |
a data.frame with the same structure and the same levels as used in |
type |
a character string, either 'response' or 'votes' |
transFUN |
a function which is used on |
na.action |
passed on to model.frame when constructing the model.matrix from |
... |
other arguments, currently not used yet |
Value
A matrix of votes or a vector with the predicted class for MOA classifier or MOA regressor. A
See Also
Examples
## Hoeffdingtree
hdt <- HoeffdingTree(numericEstimator = "GaussianNumericAttributeClassObserver")
data(iris)
## Make a training set
iris <- factorise(iris)
traintest <- list()
traintest$trainidx <- sample(nrow(iris), size=nrow(iris)/2)
traintest$trainingset <- iris[traintest$trainidx, ]
traintest$testset <- iris[-traintest$trainidx, ]
irisdatastream <- datastream_dataframe(data=traintest$trainingset)
## Train the model
hdtreetrained <- trainMOA(model = hdt,
Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = irisdatastream)
## Score the model on the holdoutset
scores <- predict(hdtreetrained,
newdata=traintest$testset[, c("Sepal.Length","Sepal.Width","Petal.Length","Petal.Width")],
type="response")
str(scores)
table(scores, traintest$testset$Species)
scores <- predict(hdtreetrained, newdata=traintest$testset, type="votes")
head(scores)
## Prediction based on recommendation engine
require(recommenderlab)
data(MovieLense)
x <- getData.frame(MovieLense)
x$itemid <- as.integer(as.factor(x$item))
x$userid <- as.integer(as.factor(x$user))
x$rating <- as.numeric(x$rating)
x <- head(x, 2000)
movielensestream <- datastream_dataframe(data=x)
movielensestream$get_points(3)
ctrl <- MOAoptions(model = "BRISMFPredictor", features = 10)
brism <- BRISMFPredictor(control=ctrl)
mymodel <- trainMOA(model = brism, rating ~ userid + itemid,
data = movielensestream, chunksize = 1000, trace=TRUE)
overview <- summary(mymodel$model)
str(overview)
predict(mymodel, head(x, 10), type = "response")
x <- expand.grid(userid=overview$users[1:10], itemid=overview$items)
predict(mymodel, x, type = "response")
Summary statistics of a MOA classifier
Description
Summary statistics of a MOA classifier
Usage
## S3 method for class 'MOA_classifier'
summary(object, ...)
Arguments
object |
an object of class |
... |
other arguments, currently not used yet |
Value
the form of the return value depends on the type of MOA model
Examples
hdt <- HoeffdingTree(numericEstimator = "GaussianNumericAttributeClassObserver")
hdt
data(iris)
iris <- factorise(iris)
irisdatastream <- datastream_dataframe(data=iris)
## Train the model
hdtreetrained <- trainMOA(model = hdt,
Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,
data = irisdatastream)
summary(hdtreetrained$model)
Summary statistics of a MOA recommender
Description
Summary statistics of a MOA recommender
Usage
## S3 method for class 'MOA_recommender'
summary(object, ...)
Arguments
object |
an object of class |
... |
other arguments, currently not used yet |
Value
the form of the return value depends on the type of MOA model
Examples
require(recommenderlab)
data(MovieLense)
x <- getData.frame(MovieLense)
x$itemid <- as.integer(as.factor(x$item))
x$userid <- as.integer(as.factor(x$user))
x$rating <- as.numeric(x$rating)
x <- head(x, 2000)
movielensestream <- datastream_dataframe(data=x)
movielensestream$get_points(3)
ctrl <- MOAoptions(model = "BRISMFPredictor", features = 10)
brism <- BRISMFPredictor(control=ctrl)
mymodel <- trainMOA(model = brism, rating ~ userid + itemid,
data = movielensestream, chunksize = 1000, trace=TRUE)
overview <- summary(mymodel$model)
str(overview)
predict(mymodel, head(x, 10), type = "response")
Summary statistics of a MOA regressor
Description
Summary statistics of a MOA regressor
Usage
## S3 method for class 'MOA_regressor'
summary(object, ...)
Arguments
object |
an object of class |
... |
other arguments, currently not used yet |
Value
the form of the return value depends on the type of MOA model
Examples
## TODO
Train a MOA classifier/regressor/recommendation engine on a datastream
Description
Train a MOA classifier/regressor/recommendation engine on a datastream
Usage
trainMOA(model, ...)
Arguments
model |
an object of class |
... |
other parameters passed on to the methods |
Value
An object of class MOA_trainedmodel which is returned by the methods for the specific model.
See trainMOA.MOA_classifier
, trainMOA.MOA_regressor
, trainMOA.MOA_recommender
See Also
trainMOA.MOA_classifier
, trainMOA.MOA_regressor
, trainMOA.MOA_recommender
Train a MOA classifier (e.g. a HoeffdingTree) on a datastream
Description
Train a MOA classifier (e.g. a HoeffdingTree) on a datastream
Usage
## S3 method for class 'MOA_classifier'
trainMOA(model, formula, data, subset,
na.action = na.exclude, transFUN = identity, chunksize = 1000,
reset = TRUE, trace = FALSE, options = list(maxruntime = +Inf), ...)
Arguments
model |
an object of class |
formula |
a symbolic description of the model to be fit. |
data |
an object of class |
subset |
an optional vector specifying a subset of observations to be used in the fitting process. |
na.action |
a function which indicates what should happen when the data contain |
transFUN |
a function which is used after obtaining |
chunksize |
the number of rows to obtain from the |
reset |
logical indicating to reset the |
trace |
logical, indicating to show information on how many datastream chunks are already processed
as a |
options |
a names list of further options. Currently not used. |
... |
other arguments, currently not used yet |
Value
An object of class MOA_trainedmodel which is a list with elements
model: the updated supplied
model
object of classMOA_classifier
call: the matched call
na.action: the value of na.action
terms: the
terms
in the modeltransFUN: the transFUN argument
See Also
MOA_classifier
, datastream_file
, datastream_dataframe
,
datastream_matrix
, datastream_ffdf
, datastream
,
predict.MOA_trainedmodel
Examples
hdt <- HoeffdingTree(numericEstimator = "GaussianNumericAttributeClassObserver")
hdt
data(iris)
iris <- factorise(iris)
irisdatastream <- datastream_dataframe(data=iris)
irisdatastream$get_points(3)
mymodel <- trainMOA(model = hdt, Species ~ Sepal.Length + Sepal.Width + Petal.Length,
data = irisdatastream, chunksize = 10)
mymodel$model
irisdatastream$reset()
mymodel <- trainMOA(model = hdt,
Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Length^2,
data = irisdatastream, chunksize = 10, reset=TRUE, trace=TRUE)
mymodel$model
Train a MOA recommender (e.g. a BRISMFPredictor) on a datastream
Description
Train a MOA recommender (e.g. a BRISMFPredictor) on a datastream
Usage
## S3 method for class 'MOA_recommender'
trainMOA(model, formula, data, subset,
na.action = na.exclude, transFUN = identity, chunksize = 1000,
trace = FALSE, options = list(maxruntime = +Inf), ...)
Arguments
model |
an object of class |
formula |
a symbolic description of the model to be fit. This should be of the form rating ~ userid + itemid, in that sequence.
These should be columns in the |
data |
an object of class |
subset |
an optional vector specifying a subset of observations to be used in the fitting process. |
na.action |
a function which indicates what should happen when the data contain |
transFUN |
a function which is used after obtaining |
chunksize |
the number of rows to obtain from the |
trace |
logical, indicating to show information on how many datastream chunks are already processed
as a |
options |
a names list of further options. Currently not used. |
... |
other arguments, currently not used yet |
Value
An object of class MOA_trainedmodel which is a list with elements
model: the updated supplied
model
object of classMOA_recommender
call: the matched call
na.action: the value of na.action
terms: the
terms
in the modeltransFUN: the transFUN argument
See Also
MOA_recommender
, datastream_file
, datastream_dataframe
,
datastream_matrix
, datastream_ffdf
, datastream
,
predict.MOA_trainedmodel
Examples
require(recommenderlab)
data(MovieLense)
x <- getData.frame(MovieLense)
x$itemid <- as.integer(as.factor(x$item))
x$userid <- as.integer(as.factor(x$user))
x$rating <- as.numeric(x$rating)
x <- head(x, 5000)
movielensestream <- datastream_dataframe(data=x)
movielensestream$get_points(3)
ctrl <- MOAoptions(model = "BRISMFPredictor", features = 10)
brism <- BRISMFPredictor(control=ctrl)
mymodel <- trainMOA(model = brism, rating ~ userid + itemid,
data = movielensestream, chunksize = 1000, trace=TRUE)
summary(mymodel$model)
Train a MOA regressor (e.g. a FIMTDD) on a datastream
Description
Train a MOA regressor (e.g. a FIMTDD) on a datastream
Usage
## S3 method for class 'MOA_regressor'
trainMOA(model, formula, data, subset,
na.action = na.exclude, transFUN = identity, chunksize = 1000,
reset = TRUE, trace = FALSE, options = list(maxruntime = +Inf), ...)
Arguments
model |
an object of class |
formula |
a symbolic description of the model to be fit. |
data |
an object of class |
subset |
an optional vector specifying a subset of observations to be used in the fitting process. |
na.action |
a function which indicates what should happen when the data contain |
transFUN |
a function which is used after obtaining |
chunksize |
the number of rows to obtain from the |
reset |
logical indicating to reset the |
trace |
logical, indicating to show information on how many datastream chunks are already processed
as a |
options |
a names list of further options. Currently not used. |
... |
other arguments, currently not used yet |
Value
An object of class MOA_trainedmodel which is a list with elements
model: the updated supplied
model
object of classMOA_regressor
call: the matched call
na.action: the value of na.action
terms: the
terms
in the modeltransFUN: the transFUN argument
See Also
MOA_regressor
, datastream_file
, datastream_dataframe
,
datastream_matrix
, datastream_ffdf
, datastream
,
predict.MOA_trainedmodel
Examples
mymodel <- MOA_regressor(model = "FIMTDD")
mymodel
data(iris)
iris <- factorise(iris)
irisdatastream <- datastream_dataframe(data=iris)
irisdatastream$get_points(3)
## Train the model
mytrainedmodel <- trainMOA(model = mymodel,
Sepal.Length ~ Petal.Length + Species, data = irisdatastream)
mytrainedmodel$model
irisdatastream$reset()
mytrainedmodel <- trainMOA(model = mytrainedmodel$model,
Sepal.Length ~ Petal.Length + Species, data = irisdatastream,
chunksize = 10, reset=FALSE, trace=TRUE)
mytrainedmodel$model