Package 'QuClu'

July 21, 2025

Type Package

Title Quantile-Based Clustering Algorithms

Version 1.0.1
Date 2022-05-26
Author Christian Hennig, Cinzia Viroli and Laura Anderlucci
Maintainer Laura Anderlucci <laura.anderlucci@unibo.it></laura.anderlucci@unibo.it>
Description Various quantile-based clustering algorithms: algorithm CU (Common theta and Unscaled variables), algorithm CS (Common theta and Scaled variables through lambda_j), algorithm VU (Variable-wise theta_j and Unscaled variables) and algorithm VW (Variable-wise theta_j and Scaled variables through lambda_j). Hennig, C., Viroli, C., Anderlucci, L. (2019) ``Quantile-based clustering." Electronic Journal of Statistics. 13 (2) 4849 - 4883 <doi:10.1214 19-ejs1640="">.</doi:10.1214>
License GPL-2 GPL-3
Encoding UTF-8
RoxygenNote 7.2.0
Imports stats
NeedsCompilation no
Repository CRAN
Date/Publication 2022-05-26 16:40:02 UTC
Contents
alg.CS
alg.CU
alg.VS 4 alg.VU 5
kquantiles
Index 9

alg.CS

alg.CS	CS quantile-based clustering algorithm	

Description

This function allows to run the CS (Common theta and Scaled variables through lambda_j) version of the quantile-based clustering algorithm.

Usage

```
alg.CS(data, k = 2, eps = 1e-08, it.max = 100, B = 30, lambda = rep(1, p))
```

Arguments

data	A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
k	The number of clusters. The default is $k=2$.
eps	The relative convergence tolerances for objective function. The default is set to 1e-8.
it.max	A number that gives integer limits on the number of the CS algorithm iterations. By default, it is set to 100.
В	The number of times the initialization step is repeated; the default is 30.
lambda	The initial value for lambda_j, the variable scaling parameters. By default, lambdas are set to be equal to 1.

Details

Algorithm CS: Common theta and Scaled variables via lambda_j. A common value of theta is taken but variables are scaled through lambda_j.

Value

A list containing the following elements:

cl	A vector whose [i]th entry is classification of observation i in the test data.
qq	A matrix whose $[h,j]$ th entry is the theta-quantile of variable j in cluster h .
theta	The estimated common theta.
Vseq	The values of the objective function V at each step of the algorithm.
V	The final value of the objective function V.
lambda	A vector containing the scaling factor for each variable.

References

Hennig, C., Viroli, C., Anderlucci, L. (2019) "Quantile-based clustering" *Electronic Journal of Statistics*, 13 (2) 4849-4883 <doi:10.1214/19-EJS1640>

alg.CU

Examples

```
out <- alg.CS(iris[,-5],k=3)
out$theta
out$qq
out$lambda
table(out$cl)</pre>
```

alg.CU

CU quantile-based clustering algorithm

Description

This function allows to run the CU (Common theta and Unscaled variables) version of the quantile-based clustering algorithm.

Usage

```
alg.CU(data, k = 2, eps = 1e-08, it.max = 100, B = 30)
```

Arguments

data	A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
k	The number of clusters. The default is $k=2$.
eps	The relative convergence tolerances for objective function. The default is set to 1e-8.
it.max	A number that gives integer limits on the number of the CU algorithm iterations. By default, it is set to 100.
В	The number of times the initialization step is repeated; the default is 30.

Details

Algorithm CU: Common theta and Unscaled variables. A common value of theta for all the variables is assumed. This strategy directly generalizes the conventional k-means to other moments of the distribution to better accommodate skewness in the data.

Value

A list containing the following elements:

method	The chosen parameterization, CU, Common theta and Unscaled variables
k	The number of clusters.
cl	A vector whose [i]th entry is classification of observation i in the test data.
qq	A matrix whose [h,j]th entry is the theta-quantile of variable j in cluster h.

alg.VS

theta	A vector whose [j]th entry is the percentile theta for variable j.
Vseq	The values of the objective function V at each step of the algorithm.
٧	The final value of the objective function V.

lambda A vector containing the scaling factor for each variable.

References

Hennig, C., Viroli, C., Anderlucci, L. (2019) "Quantile-based clustering" *Electronic Journal of Statistics*, 13 (2) 4849-4883 <doi:10.1214/19-EJS1640>

Examples

```
out <- alg.CU(iris[,-5],k=3)
out$theta
out$qq
table(out$c1)</pre>
```

alg.VS

VS quantile-based clustering algorithm

Description

This function allows to run the VS (Variable-wise theta_j and Scaled variables through lambda_j) version of the quantile-based clustering algorithm.

Usage

```
alg.VS(data, k = 2, eps = 1e-08, it.max = 100, B = 30, lambda = rep(1, p))
```

Arguments

data	A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
k	The number of clusters. The default is $k=2$.
eps	The relative convergence tolerances for objective function. The default is set to 1e-8.
it.max	A number that gives integer limits on the number of the VS algorithm iterations. By default, it is set to 100.
В	The number of times the initialization step is repeated; the default is 30.
lambda	The initial value for lambda_j, the variable scaling parameters. By default, lambdas are set to be equal to 1.

alg.VU 5

Details

Algorithm VS: Variable-wise theta_j and Scaled variables via lambda_j. A different theta for every single variable is estimated to better accommodate different degree of skeweness in the data and variables are scaled through lambda_j.

Value

A list containing the following elements:

method	The chosen parameterization, VS, Variable-wise theta_j and Scaled variables
k	The number of clusters.
cl	A vector whose [i]th entry is classification of observation i in the test data.
qq	A matrix whose [h,j]th entry is the theta-quantile of variable j in cluster h.
theta	A vector whose [j]th entry is the percentile theta for variable j.
Vseq	The values of the objective function V at each step of the algorithm.
V	The final value of the objective function V.
lambda	A vector containing the scaling factor for each variable.

References

Hennig, C., Viroli, C., Anderlucci, L. (2019) "Quantile-based clustering" *Electronic Journal of Statistics*, 13 (2) 4849-4883 <doi:10.1214/19-EJS1640>

Examples

```
out <- alg.VS(iris[,-5],k=3)
out$theta
out$qq
out$lambda
table(out$cl)</pre>
```

alg.VU

VU quantile-based clustering algorithm

Description

This function allows to run the VU (Variable-wise theta_j and Unscaled variables) version of the quantile-based clustering algorithm.

Usage

```
alg. VU(data, k = 2, eps = 1e-08, it.max = 100, B = 30)
```

6 alg.VU

Arguments

data	A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
k	The number of clusters. The default is $k=2$.
eps	The relative convergence tolerances for objective function. The default is set to 1e-8.
it.max	A number that gives integer limits on the number of the VU algorithm iterations. By default, it is set to 100.
В	The number of times the initialization step is repeated; the default is 30.

Details

Algorithm VU: Variable-wise theta_j and Unscaled variables. A different theta for every single variable is estimated to better accomodate different degree of skeweness in the data.

Value

A list containing the following elements:

method	The chosen parameterization, VU, Variable-wise theta_j and Unscaled variables
k	The number of clusters.
cl	A vector whose [i]th entry is classification of observation i in the test data.
qq	A matrix whose [h,j]th entry is the theta-quantile of variable j in cluster h.
theta	A vector whose [j]th entry is the percentile theta for variable j.
Vseq	The values of the objective function V at each step of the algorithm.
V	The final value of the objective function V.
lambda	A vector containing the scaling factor for each variable.

References

Hennig, C., Viroli, C., Anderlucci, L. (2019) "Quantile-based clustering" *Electronic Journal of Statistics*, 13 (2) 4849-4883 <doi:10.1214/19-EJS1640>

Examples

```
out <- alg.VU(iris[,-5],k=3)
out$theta
out$qq
table(out$cl)</pre>
```

kquantiles 7

kαι	ıar	١+	i	165

Quantile-based clustering algorithm

Description

This function allows to run the \$k\$-quantile clustering algorithm, allowing for different constraints: common theta and unscaled variables (CU), common theta and scaled variables (CS), variable-wise theta and unscaled variables (VU) and the variable-wise theta and scaled variables (VS).

Usage

```
kquantiles(
  data,
  k = 2,
  method = "VS",
  eps = 1e-08,
  it.max = 100,
  B = 30,
  lambda = NULL
)
```

Arguments

data	A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables.
k	The number of clusters. The default is k=2.
method	The chosen constrained method. The options are: CU (Common theta and Unscaled variables), CS (Common theta and Scaled variables), VU (Variablewise theta and Unscaled variables), VS (Variable-wise theta and Scaled variables). The default is the unconstrained method, VS.
eps	The relative convergence tolerances for objective function. The default is set to 1e-8.
it.max	A number that gives integer limits on the number of the algorithm iterations. By default, it is set to 100.
В	The number of times the initialization step is repeated; the default is 30.
lambda	The initial value for lambda_j, the variable scaling parameters, for models CS and VS. By default, lambdas are set to be equal to 1.

Details

Algorithm CU: Common theta and Unscaled variables. A common value of theta for all the variables is assumed. Algorithm CS: Common theta and Scaled variables via lambda_j. A common value of theta is taken but variables are scaled through lambda_j. Algorithm VU: Variable-wise theta_j and Unscaled variables. A different theta for every single variable is estimated to better

8 kquantiles

accomodate different degree of skeweness in the data. Algorithm VS: Variable-wise theta_j and Scaled variables via lambda_j. A different theta for every single variable is estimated to better accomodate different degree of skeweness in the data and variables are scaled through lambda_j.

Value

A list containing the following elements:

method	The chosen parameterization.
k	The number of clusters.
cl	A vector whose [i]th entry is classification of observation i in the test data.
qq	A matrix whose $[h,j]$ th entry is the theta-quantile of variable j in cluster h .
theta	A vector whose [j]th entry is the percentile theta for variable j.
Vseq	The values of the objective function V at each step of the algorithm.
V	The final value of the objective function V.
lambda	A vector containing the scaling factor for each variable.

References

Hennig, C., Viroli, C., Anderlucci, L. (2019) "Quantile-based clustering" *Electronic Journal of Statistics*, 13 (2) 4849-4883 <doi:10.1214/19-EJS1640>

Examples

```
out <- kquantiles(iris[,-5],k=3,method="VS")
out$theta
out$qq
table(out$cl)</pre>
```

Index

```
alg.CS, 2
alg.CU, 3
alg.VS, 4
alg.VU, 5
kquantiles, 7
```