Package 'ProbYX'

July 21, 2025

Type Package

Title Inference for the Stress-Strength Model R = P(Y < X)

Version 1.1-0.1
Date 2015-12-17
Author Giuliana Cortese
Maintainer Giuliana Cortese <gcortese@stat.unipd.it></gcortese@stat.unipd.it>
Depends R ($>= 3.0-0$), rootSolve
Description Confidence intervals and point estimation for R under various parametric model assumptions; likelihood inference based on classical first-order approximations and higher-order asymptotic procedures.
License GPL-2
LazyLoad yes
Imports stats, graphics
NeedsCompilation no
Repository CRAN
Date/Publication 2022-06-21 08:57:52 UTC
Contents
ProbYX-package 2 loglik 3 MLEs 4 Prob 5 ROC.plot 7 rp 8 rpstar 10 wald 11
Index 13

2 ProbYX-package

ProbYX-package

Inference on the stress-strength model R = P(Y < X)

Description

Compute confidence intervals and point estimates for R, under parametric model assumptions for Y and X. Y and X are two independent continuous random variables from two different populations.

Details

Package: ProbYX
Type: Package
Version: 1.1

Date: 2012-03-20 License: GPL-2 LazyLoad: yes

The package can be used for computing accurate confidence intervals and point estimates for the stress-strength (reliability) model R = P(Y < X); maximum likelihood estimates, Wald statistic, signed log-likelihood ratio statistic and its modified version ca be computed.

The main function is Prob, which evaluates confidence intervals and point estimates under different approaches and parametric assumptions.

Author(s)

Giuliana Cortese

Maintainer: Giuliana Cortese <gcortese@stat.unipd.it>

References

Cortese G., Ventura L. (2013). Accurate higher-order likelihood inference on P(Y<X). Computational Statistics, 28:1035-1059.

Kotz S, Lumelskii Y, Pensky M. (2003). The Stress-Strength Model and its Generalizations. Theory and Applications. World Scientific, Singapore.

loglik 3

loglik

Log-likelihood of the bivariate distribution of (Y,X)

Description

Computation of the log-likelihood function of the bivariate distribution (Y,X). The log-likelihood is reparametrized with the parameter of interest ψ , corresponding to the quantity R, and the nuisance parameter λ .

Usage

```
loglik(ydat, xdat, lambda, psi, distr = "exp")
```

Arguments

ydat	data vector of the sample measurements from Y.
xdat	data vector of the sample measurements from X.
lambda	nuisance parameter vector, λ . Values can be determined from the reparameterisation of the original parameters of the bivariate distribution chosen in distr.
psi	scalar parameter of interest, ψ , for the probability R. Value can be determined from the reparameterisation of the original parameters of the bivariate distribution chosen in distr.
distr	character string specifying the type of distribution assumed for X_1 and X_2 . Possible choices for distr are "exp" (default) for the one-parameter exponential, "norm_EV" and "norm_DV" for the Gaussian distribution with, respectively, equal or unequal variances assumed for the two random variables.

Details

For further information on the random variables Y and X, see help on Prob. Reparameterisation in order to determine ψ and λ depends on the assumed distribution. Here the following relashonships have been used:

Exponential models:
$$\psi=\frac{\alpha}{(\alpha+\beta)}$$
 and $\lambda=\alpha+\beta$, with $Y\sim e^{\alpha}$ and $X\sim e^{\beta}$;

Gaussian models with equal variances: $\psi=\Phi\left(\frac{\mu_2-\mu_1}{\sqrt{2\sigma^2}}\right)$ and $\lambda=(\lambda_1,\lambda_2)=(\frac{\mu_1}{\sqrt{2\sigma^2}},\sqrt{2\sigma^2})$, with $Y\sim N(\mu_1,\sigma^2)$ and $X\sim N(\mu_2,\sigma^2)$;

Gaussian models with unequal variances: $\psi=\Phi\left(\frac{\mu_2-\mu_1}{\sqrt{\sigma_1^2+\sigma_2^2}}\right)$ and $\lambda=(\lambda_1,\lambda_2,\lambda_3)=(\mu_1,\sigma_1^2,\sigma_2^2)$, with $Y\sim N(\mu_1,\sigma_1^2)$ and $X\sim N(\mu_2,\sigma_2^2)$.

The Standard Normal cumulative distribution function is indicated with Φ .

Value

Value of the log-likelihood function computed in $\psi = psi$ and $\lambda = lambda$.

4 MLEs

Author(s)

Giuliana Cortese

References

Cortese G., Ventura L. (2013). Accurate higher-order likelihood inference on P(Y < X). Computational Statistics, 28:1035-1059.

See Also

MLEs

Examples

```
# data from the first population
Y <- rnorm(15, mean=5, sd=1)
    # data from the second population
X <- rnorm(10, mean=7, sd=1)
    mu1 <- 5
    mu2 <- 7
    sigma <- 1
    # parameter of interest, the R probability
    interest <- pnorm((mu2-mu1)/(sigma*sqrt(2)))
    # nuisance parameters
    nuisance <- c(mu1/(sigma*sqrt(2)), sigma*sqrt(2))
    # log-likelihood value
    loglik(Y, X, nuisance, interest, "norm_EV")</pre>
```

MLEs

Maximum likelihood estimates of the stress-strength model R = P(Y < X).

Description

Compute maximum likelihood estimates of R, considered as the parameter of interest. Maximum likelihood estimates of the nuisance parameter are also supplied.

Usage

```
MLEs(ydat, xdat, distr)
```

Arguments

ydat data vector of the sample measurements from Y. xdat data vector of the sample measurements from X.

distr character string specifying the type of distribution assumed for Y and X. Possible choices for distribution assumed for Y and Y

sible choices for distr are "exp" (default) for the one-parameter exponential, "norm_EV" and "norm_DV" for the Gaussian distribution with, respectively,

equal or unequal variances assumed for the two random variables.

Prob 5

Details

The two independent random variables Y and X with given distribution distr are measurements of a certain characteristics on two different populations. For the relationship of the parameter of interest (R) and nuisance parameters with the original parameters of distr, look at the details in loglik.

Value

Vector of estimetes of the nuisance parameters and the R quantity (parameter of interest), respectively.

Author(s)

Giuliana Cortese

References

Kotz S, Lumelskii Y, Pensky M. (2003). The Stress-Strength Model and its Generalizations. Theory and Applications. World Scientific, Singapore.

See Also

```
loglik, Prob
```

Examples

```
# data from the first population
Y <- rnorm(15, mean=5, sd=1)
# data from the second population
    X <- rnorm(10, mean=7, sd=1.5)
    # vector of MLEs for the nuisance parameters and the quantity R
    MLEs(Y, X, "norm_DV")</pre>
```

Prob

Estimation of the stress-strength model R = P(Y < X)

Description

Compute confidence intervals and point estimates for the probability R, under parametric model assumptions for Y and X. Y and X are two independent continuous random variable from two different populations.

Usage

```
Prob(ydat, xdat, distr = "exp", method = "RPstar", level = 0.05)
```

6 Prob

Arguments

ydat data vector of the sample measurements from Y. xdat data vector of the sample measurements from X.

distr character string specifying the type of distribution assumed for Y and X. Pos-

sible choices for distr are "exp" (default) for the one-parameter exponential, "norm_EV" and "norm_DV" for the Gaussian distribution with, respectively,

equal or unequal variances assumed for the two random variables.

method character string specifying the methodological approach used for inference (con-

fidence intervals and point estimates) on the AUC. The argument method can be set equal to "Wald", "RP" or RPstar" (default), according as inference is based on the Wald statistic, the signed log-likelihood ratio statistic (directed likelihood, r_p) or the modified signed log-likelihood ratio statistic (modified directed

likelihood, r_p^*), respectively.

level it is the α that supplies the nominal level $(1 - \alpha)$ chosen for the confidence

interval.

Value

PROB Point estimate of R = P(Y < X). This value corresponds to the maxi-

mum likelihoos estimate if method "Wald" or "RP" is chosen; otherwise, when method "RPstar" is selected, estimate is obtained from the estimating equaltion

 $r_p^* = 0$

C. Interval Confidence interval of R at confidence level $(1 - \alpha)$.

Author(s)

Giuliana Cortese

References

Cortese G., Ventura L. (2013). Accurate higher-order likelihood inference on R = P(Y < X). Computational Statistics, 28:1035-1059.

See Also

```
wald, rp, rpstar
```

ROC.plot

ROC.plot Estim	mated ROC curves
----------------	------------------

Description

Plot of ROC curves estimated under parametric model assumptions on the continuous diagnostic marker.

Usage

```
ROC.plot(ydat, xdat, distr = "exp", method = "RPstar", mc = 1)
```

Arguments

ydat data vector of the diagnostic marker measurements or	41 1	.1
Vast agis vector of the disapportic marker measurements of	n the cample of non-diceace	Λ.

individuals (from Y).

xdat data vector of the diagnostic marker measurements on the sample of diseased

individuals (from X).

distr character string specifying the type of distribution assumed for Y and X. Pos-

sible choices for distr are "exp" (default) for the one-parameter exponential, "norm_EV" and "norm_DV" for the Gaussian distribution with, respectively,

equal or unequal variances assumed for the two random variables.

method character string specifying the methodological approach used for estimating the

probability R, which is here interpreted as the area under the ROC curve (AUC). The argument method can be set equal to "Wald", "RP" or RPstar" (default), according as inference is based on the Wald statistic, the signed log-likelihood ratio statistic (directed likelihood, r_p) or the modified signed log-likelihood ratio statistic (modified directed likelihood, r_p^*), respectively. For estimating the ROC curve parametrically, methods "Wald" and "RP" are equivalent and supply maximum likelihood estimation (MLE), whereas, by using method "RPstar", estimate of the ROC curve is based on the modified signed log-likelihood ratio

statistic (r_p^*) . See rpstar for details on this statistic.

a numeric value indicating single or multiple plots in the same figure. In case mc

is equal to 1 (default), only the method specified in method is applied and the corresponding estimated ROC curve is plotted. If mc is different from 1, both MLE and r_p^* -based methods are applied, and two differently estimated ROC

curves are plotted.

Details

If mc is different from 1, method does not need to be specified.

Value

Plot of ROC curves

mc

8 rp

Note

The two independent random variables Y and X with given distribution distr are measurements of the diagnostic marker on the diseased and non-diseased subjects, respectively.

In "Wald" method, or equivalently "RP" method, MLEs for parameters of the Y and X distributions are computed and then used to estimate specificity and sensitivity. These measures are evaluated as P(Y < t) and P(X > t), respectively.

In "RPstar" method, parameters of the Y and X distributions are estimated from the r_p^* -based estimate of the AUC.

Author(s)

Giuliana Cortese

References

Cortese G., Ventura L. (2013). Accurate higher-order likelihood inference on P(Y < X). Computational Statistics, 28:1035-1059.

See Also

Prob

Examples

```
# data from the non-diseased population
Y <- rnorm(15, mean=5, sd=1)
# data from the diseased population
X <- rnorm(10, mean=7, sd=1.5)
    ROC.plot(Y, X, "norm_DV", method = "RP", mc = 2)</pre>
```

rp

Signed log-likelihood ratio statistic

Description

Compute the signed log-likelihood ratio statistic (r_p) for a given value of the stress strength R = P(Y < X), that is the parameter of interest, under given parametric model assumptions.

Usage

```
rp(ydat, xdat, psi, distr = "exp")
```

rp 9

Arguments

ydat	data vector of the sample measurements from Y.
xdat	data vector of the sample measurements from X.
psi	scalar for the parameter of interest. It is the value of R, treated as a parameter under the parametric model construction.
distr	character string specifying the type of distribution assumed for Y and X. Possible choices for distr are "exp" (default) for the one-parameter exponential, "norm_EV" and "norm_DV" for the Gaussian distribution with, respectively, equal or unequal variances assumed for the two random variables.

Details

The two independent random variables Y and X with given distribution distr are measurements of the diagnostic marker on the diseased and non-diseased subjects, respectively. For the relationship of the parameter of interest (R) and nuisance parameters with the original parameters of distr, look at the details in loglik.

Value

Value of the signed log-likelihood ratio statistic r_p .

Note

The r_p values can be also used for testing statistical hypotheses on the probability R.

Author(s)

Giuliana Cortese

References

Cortese G., Ventura L. (2013). Accurate higher-order likelihood inference on P(Y<X). Computational Statistics, 28:1035-1059.

Severini TA. (2000). Likelihood Methods in Statistics. Oxford University Press, New York.

Brazzale AR., Davison AC., Reid N. (2007). Applied Asymptotics. Case-Studies in Small Sample Statistics. Cambridge University Press, Cambridge.

See Also

```
wald, rpstar, MLEs, Prob
```

```
# data from the first population
Y <- rnorm(15, mean=5, sd=1)
# data from the second population
X <- rnorm(10, mean=7, sd=1.5)</pre>
```

10 rpstar

```
# value of \eqn{r_p} for \code{psi=0.9}
rp(Y, X, 0.9,"norm_DV")
```

rpstar

Modified signed log-likelihood ratio statistic

Description

Compute the modified signed log-likelihood ratio statistic (r_p^*) for a given value of the stress strength R = P(Y < X), that is the parameter of interest, under given parametric model assumptions.

Usage

```
rpstar(ydat, xdat, psi, distr = "exp")
```

Arguments

ydat data vector of the sample measurements from Y.

xdat data vector of the sample measurements from X.

psi scalar for the parameter of interest. It is the value of R, treated as a parameter

under the parametric model construction.

distr character string specifying the type of distribution assumed for Y and X. Pos-

sible choices for distr are "exp" (default) for the one-parameter exponential, "norm_EV" and "norm_DV" for the Gaussian distribution with, respectively,

equal or unequal variances assumed for the two random variables.

Details

The two independent random variables Y and X with given distribution distr are measurements from two different populations. For the relationship of the parameter of interest (R) and nuisance parameters with the original parameters of distr, look at the details in loglik.

Value

rp Value of the signed log-likelihood ratio statistic r_p .

rp_star Value of the modified signed log-likelihood ratio statistic r_p^* .

Note

The statistic r_p^* is a modified version of r_p which provides more statistically accurate estimates. The r_p^* values can be also used for testing statistical hypotheses on the probability R.

Author(s)

Giuliana Cortese

wald 11

References

Cortese G., Ventura L. (2013). Accurate higher-order likelihood inference on P(Y<X). Computational Statistics, 28:1035-1059.

Severini TA. (2000). Likelihood Methods in Statistics. Oxford University Press, New York.

Brazzale AR., Davison AC., Reid N. (2007). Applied Asymptotics. Case-Studies in Small Sample Statistics. Cambridge University Press, Cambridge.

See Also

```
wald, rp, MLEs, Prob
```

Examples

```
# data from the first population
Y <- rnorm(15, mean=5, sd=1)
# data from the second population
X <- rnorm(10, mean=7, sd=1.5)
# value of \eqn{r_p^*} for \code{psi=0.9}
rpstar(Y, X, 0.9,"norm_DV")
# method has be set equal to "RPstar".</pre>
```

wald

Wald statistic

Description

Compute the Wald statistic for a given value of the stress-strength R = P(Y < X), that is the parameter of interest, under given parametric model assumptions.

Usage

```
wald(ydat, xdat, psi, distr = "exp")
```

Arguments

ydat	data vector of the sample measurements from Y.
xdat	data vector of the sample measurements from X.
psi	scalar for the parameter of interest. It is the value of the quantity R, treated as a parameter under the parametric model construction.
distr	character string specifying the type of distribution assumed for Y and X. Possible choices for distr are "exp" (default) for the one-parameter exponential, "norm_EV" and "norm_DV" for the Gaussian distribution with, respectively, equal or unequal variances assumed for the two random variables.

12 wald

Details

The two independent random variables Y and X with given distribution distr are measurements from two different populations. For the relationship of the parameter of interest (R) and nuisance parameters with the original parameters of distr, look at the details in loglik.

Value

Wald Value of the Wald statistic for a given psi

Jphat Observed profile Fisher information

Note

Values of the Wald statistic can be also used for testing statistical hypotheses on the probability R.

Author(s)

Giuliana Cortese

References

Cortese G., Ventura L. (2013). Accurate higher-order likelihood inference on P(Y<X). Computational Statistics, 28:1035-1059.

Brazzale AR., Davison AC., Reid N. (2007). Applied Asymptotics. Case-Studies in Small Sample Statistics. Cambridge University Press, Cambridge.

See Also

```
rp, rpstar, MLEs, Prob
```

```
# data from the first population
Y <- rnorm(15, mean=5, sd=1)
# data from the second population
X <- rnorm(10, mean=7, sd=1.5)
# value of Wald for \code{psi=0.9}
wald(Y, X, 0.9,"norm_DV")</pre>
```

Index

```
* MLE
                                                     ProbYX-package, 2
     loglik, 3
                                                     ROC.plot, 7
* ROC curve
                                                     rp, 6, 8, 11, 12
     ROC.plot, 7
                                                     rpstar, 6, 7, 9, 10, 12
* Stress-strength reliability
    MLEs, 4
                                                     wald, 6, 9, 11, 11
* Wald statistic
    wald, 11
* area under the ROC curve
     ROC.plot, 7
* confidence interval
    Prob, 5
* estimates
    MLEs, 4
* likelihood asymptotics
     rpstar, 10
* log-likelihood
     loglik, 3
* maximum likelihood estimate
    MLEs, 4
* modified signed log-likelihood ratio
     rpstar, 10
* point estimate
    Prob, 5
* signed log-likelihood ratio
     rp, 8
* stress-strength model
     ProbYX-package, 2
* stress-strength reliability
    Prob, 5
     rp, 8
     rpstar, 10
    wald, 11
loglik, 3, 5, 9, 10, 12
MLEs, 4, 4, 9, 11, 12
Prob, 3, 5, 5, 8, 9, 11, 12
ProbYX (ProbYX-package), 2
```