Package 'LongDecompHE'

July 21, 2025

Type Package

Title Longitudinal Decomposition of Health Expectancy by Age and Cause

Version 0.1.0

Description Provides tools to decompose differences in cohort health expectancy (HE) by age and cause using longitudinal data. The package implements a novel longitudinal attribution method based on a semiparametric additive hazards model with time-dependent covariates, specifically designed to address interval censoring and semi-competing risks via a copula framework. The resulting age-cause-specific contributions to disability prevalence and death probability can be used to quantify and decompose differences in cohort HE between groups. The package supports stepwise replacement decomposition algorithms and is applicable to cohort-based health disparity research across diverse populations. Related methods include

Sun et al. (2023) <doi:10.1177/09622802221133552>.

License GPL (\geq = 3)

Imports copula, corpcor, stats, ggplot2, patchwork, grDevices, tidyr

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

NeedsCompilation no

Author Huiping Zheng [aut, cre], Tao Sun [aut], Xiaojun Wang [aut]

Maintainer Huiping Zheng <zhenghuiping@ruc.edu.cn>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2025-07-03 15:20:02 UTC

Contents

attributionA

attributionB	3
Attribution_sullivan	4
copula_additive	5
Decomp_sullivan	7
decom_results	8
Plot.sullivan	9
print.LongDecompHE	10
simulated_dataA 1	10
simulated_dataB 1	11
summary.LongDecompHE	12
1	13

Index

attributionA

Attribution Results for Population A

Description

Attribution results for Population A, generated by applying the Attribution_sullivan() function under a copula-based additive hazards model. This object contains age- and cause-specific contributions to disability prevalence and death probability, enabling decomposition of cohort health expectancy.

Usage

data(attributionA)

Format

A list with the following components:

- Relative_Contributions_1 A matrix of age-cause-specific disability prevalence relative contributions. Rows represent causes (with the first row as total), columns represent age.
- Relative_Contributions_2 A matrix of age-cause-specific death probability relative contributions. Format matches Relative_Contributions_1.
- Absolute_Contributions_1 A matrix of age-cause-specific disability prevalence contributions. Rows represent causes (with the first row as total), columns represent age.
- Absolute_Contributions_2 A matrix of age-cause-specific death probability contributions. Format matches Absolute_Contributions_1.
- var_list A character vector of cause names used in the attribution method.

age_seq A vector of age range.

Source

Generated for the manuscript: Tao Sun, Huiping Zheng, and Xiaojun Wang (2025+). *Decomposing Differences in Cohort Health Expectancy by Cause and Age with Longitudinal Data.*

attributionB

Examples

data(attributionA)
str(attributionA)

attributionB

Attribution Results for Population B

Description

Attribution results for Population B, generated by applying the Attribution_sullivan() function under a copula-based additive hazards model. This object contains age- and cause-specific contributions to disability prevalence and death probability, enabling decomposition of cohort health expectancy.

Usage

data(attributionB)

Format

A list with the following components:

- Relative_Contributions_1 A matrix of age-cause-specific disability prevalence relative contributions. Rows represent causes (with the first row as total), columns represent age.
- Relative_Contributions_2 A matrix of age-cause-specific death probability relative contributions. Format matches Relative_Contributions_1.
- Absolute_Contributions_1 A matrix of age-cause-specific disability prevalence contributions. Rows represent causes (with the first row as total), columns represent age.
- Absolute_Contributions_2 A matrix of age-cause-specific death probability contributions. Format matches Absolute_Contributions_1.
- var_list A character vector of cause names used in the attribution method.
- age_seq A vector of age range.

Source

Generated for the manuscript: Tao Sun, Huiping Zheng, and Xiaojun Wang (2025+).\ *Decomposing* Differences in Cohort Health Expectancy by Cause and Age with Longitudinal Data.

Examples

data(attributionB)
str(attributionB)

Attribution_sullivan Longitudinal Attribution of Disability and Death Based on Sullivan Method

Description

Computes the relative and/or absolute contributions of causes (i.e., covariates) to disability and death across a specified age range, based on a copula regression models with semiparametric additive hazards margins object. This attribution approach adopts a Sullivan method for cohort health expectancy.

Usage

```
Attribution_sullivan(object, type.attrib = "both")
```

Arguments

object	A fitted LongDecompHE object returned by copula_additive.
type.attrib	Type of attribution output to return; can be one of:
	• "rel": Relative contributions of causes over age (i.e., time);
	• "abs": Absolute contributions of causes over age (i.e., time);

• "both": Both relative and absolute contributions (default).

Details

This function loops over all attribution-eligible ages in the fitted model (from 0 to floor(u-1)), Use summary() on the returned object to print the attribution tables.

Value

A list containing the following components:

- **Relative_Contributions_1** Matrix of relative contributions to disability prevalence by cause and age
- Relative_Contributions_2 Matrix of relative contributions to death probability by cause and time
- Absolute_Contributions_1 Matrix of absolute contributions to disability prevalence by cause and age
- Absolute_Contributions_2 Matrix of absolute contributions to death probability by cause and time
- var_list Vector of covariate names used in the model
- time_list Vector of attribution ages

copula Character indicating attribution type ("Attribution_sullivan")

#' Additional components copula and summary are included for compatibility with generic

copula_additive

See Also

copula_additive for model fitting; summary.LongDecompHE for output methods.

Examples

```
# Fit a model (see copula_additive)
data(simulated_dataA)
u1 = u2 = max(simulated_dataA$visit_time)
var_list = c("Z1", "Z2", "Z3")
copula_additive_model <- copula_additive(data = simulated_dataA,</pre>
                                         var_list = var_list,
                                         11=0, u1 = u1, m1 = 3,
                                         12=0, u2 = u2, m2 = 3,
                                         method = "combined", iter=1000,
                                         stepsize=1e-6,
                                         hes = TRUE,
                                         control = list(maxit = 10000))
summary(copula_additive_model)
# Attribution analysis (both relative and absolute)
attributionA <- Attribution_sullivan(object = copula_additive_model, type.attrib = "both")</pre>
summary(attributionA)
# Relative only
attributionA_rel <- Attribution_sullivan(object = copula_additive_model, type.attrib = "rel")
# Absolute only
attributionA_abs <- Attribution_sullivan(object = copula_additive_model, type.attrib = "abs")
```

copula_additive	Copula regression models with semiparametric additive hazards mar-
	gins for bivariate interval censoring and semi-competing risks.

Description

Fits a copula model with semiparametric additive hazards marginsfor bivariate interval censoring and semi-competing risks.

Usage

```
copula_additive(
    data,
    var_list,
    l1 = 0,
    u1,
    m1 = 3,
    l2 = 0,
    u2,
    m2 = 3,
```

```
method = "Newton",
iter = 1000,
stepsize = 1e-05,
hes = TRUE,
control = list(),
eta_ini = NULL
)
```

Arguments

data	a data frame; must have id (subject id), visit (the visit number for the subject), visit_time (the time for each visit in years), status (the disability status at visit_time, 1 for disability, 0 for non-disability), statusD (the death status at visit_time, 1 for dead, 0 for alive), and weight sampling weight and each subject received the same weight across visits.
var_list	the list of covariates to be fitted into the copula model.
11	Left boundary of event 1 time interval.
u1	Right boundary of event 1 time interval.
m1	Degree of Bernstein polynomial for event 1.
12	Left boundary of event 2 time interval.
u2	Right boundary of event 2 time interval.
m2	Degree of Bernstein polynomial for event 2.
method	optimization method (see ?optim); default is "BFGS"; also can be "Newton" (see ?nlm).
iter	number of iterations when method = "Newton"; default is 300.
stepsize	size of optimization step when method is "Newton"; default is 1e-6.
hes	default is TRUE for hessian calculation; if LRT is desired, can set hes = FALSE to save time.
control	a list of control parameters for methods other than "Newton"; see ?optim.
eta_ini	Optional initial values for copula parameters.

Details

must have id (subject id), visit (the visit number for the subject), visit_time (the time for each visit in years), status (the disability status at visit_time, 1 for disability, 0 for non-disability), statusD (the death status at visit_time, 1 for dead, 0 for alive), and weight sampling weight and each subject received the same weight across visits.

Optimization methods can be all methods (except "Brent") from optim, such as "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN". Users can also use "Newton" (from nlm).

Value

a LongDecompHE object summarizing the model. Can be used as an input to general S3 methods including summary, print, plot, coef, logLik, AIC.

Decomp_sullivan

Source

Tao Sun, Huiping Zheng, and Xiaojun Wang (2025+). Decomposing Differences in Cohort Health Expectancy by Cause and Age with Longitudinal Data. Under review.

Examples

Decomp_sullivan Two-dimensional decomposition of the difference between the two cohort HE by age and cause

Description

This function implements the two-dimensional stepwise replacement decomposition algorithm (Andreev et al., 2002) to quantify age-cause-specific effect of mortality and disability to the difference in cohort health expectancy between two populations, based on longitudinal attribution results.

Usage

```
Decomp_sullivan(attribution1, attribution2)
```

Arguments

attribution1	A list returned by Attribution_sullivan(), representing Population 1.
attribution2	A list returned by Attribution_sullivan(), representing Population 2.

Value

A list including matrices of mortality effects, disability effects, and total effects, as well as cohort HE and LE for each population.

Examples

```
data(attributionA)
data(attributionB)
summary(attributionA)
summary(attributionB)
decom_results <- Decomp_sullivan(attribution1=attributionA,attribution2=attributionA)
summary(decom_results)</pre>
```

decom_results

Decomposition Results Comparing Two Populations

Description

Decomposition results obtained from the Decomp_sullivan() function. This object includes agecause-specific mortality, disability, and total effects to differences in cohort health expectancy (HE).

Usage

data(decom_results)

Format

A list with the following components:

- mortality_effect A matrix with rows representing total, background, and causes (e.g., Z1, Z2, Z3), and columns representing age groups. Each cell indicates the contribution of a given cause to the mortality effect on health expectancy differences.
- disability_effect A matrix structured as above, representing contributions to the disability effect.
- total_effect A matrix summing the mortality and disability effects for each cause at each age.
- population1_HE Numeric value of cohort health expectancy (HE) in population 1.
- population2_HE Numeric value of cohort health expectancy (HE) in population 2.
- population1_LE Numeric value of cohort life expectancy (LE) in population 1.

population2_LE Numeric value of cohort life expectancy (LE) in population 2.

- var_list A character vector of cause names (e.g., c("Z1", "Z2", "Z3")).
- time_list An integer vector indicating age groups.
- copula A string indicating the method used for decomposition, e.g., "Decomposition_sullivan".

Source

Generated for the manuscript:

Tao Sun, Huiping Zheng, and Xiaojun Wang (2025+).

Decomposing Differences in Cohort Health Expectancy by Cause and Age with Longitudinal Data.

Plot.sullivan

Examples

```
data(decom_results)
str(decom_results)
```

Plot.sullivan

Plot Attribution or Decomposition Results Using Sullivan Method

Description

This function generates visualization plots for results from either longitudinal attribution models (e.g., 'Attribution_sullivan') or decomposition models (e.g., 'Decomp_sullivan') applied to cohort health expectancy.

Usage

```
Plot.sullivan(result, var_list = NULL, colors = NULL)
```

Arguments

result	A list object returned by either an attribution function (must contain 'Absolute_Contributions_1' and 'Absolute_Contributions_2') or a decomposition function (must contain 'total_effect', 'mortality_effect', and 'disability_effect').
var_list	A character vector specifying the names of variables (e.g., diseases or risk fac- tors) to include in the plots.
colors	Optional. A named character vector of colors for each category (including "Background"). If 'NULL', a color palette will be generated automatically.

Details

This function supports two types of Sullivan-based outputs:

- 1. Attribution results: The input should contain components named 'Absolute_Contributions_1' (for disability) and 'Absolute_Contributions_2' (for mortality), as returned by the 'Attribution_sullivan()' function.
- 2. **Decomposition results:** The input should contain 'total_effect', 'mortality_effect', and 'disability_effect' matrices, typically produced by the 'Decomp_sullivan()' function.

For attribution results, the function internally computes relative contributions as a share of total years lost or gained.

Value

A 'patchwork' object combining multiple 'ggplot2' barplots. The layout depends on the result type:

- For attribution results, four plots are returned: absolute and relative contributions to disability and death.
- For decomposition results, three plots are returned: total, mortality, and disability effects.

Examples

```
# For attribution result
data(attributionA)
Plot.sullivan(result=attributionA, var_list = c("Z1", "Z2", "Z3"))
# For decomposition result
data(decom_results)
Plot.sullivan(result=decom_results, var_list = c("Z1", "Z2", "Z3"))
```

print.LongDecompHE Printing outputs of a LongDecompHE object

Description

Printing outputs of a LongDecompHE object

Usage

S3 method for class 'LongDecompHE'
print(x, ...)

Arguments

х	a LongDecompHE object
	further arguments

Value

No return value, called for prints model details to the console.

simulated_dataA Simulated Bivariate Semi-competing Risks Data (Set A)

Description

A simulated dataset for evaluating copula-based semi-competing risks models with semiparametric additive hazards. Each subject may experience disability followed by death, with interval-censored disability times and right-censored death times.

Usage

```
data(simulated_dataA)
```

Format

A data frame with 2000 subjects and the following variables:

id subject identifier

visit visit index per subject

visit_time observation time at each visit (in years)

status disability status at visit_time (1 = disabled, 0 = non-disabled)

statusD death status at visit_time (1 = dead, 0 = alive)

- Z1 first covariate (binary)
- Z2 second covariate (continuous)

Z3 third covariate (categorical: 0/1/2)

weight sampling weight; constant across visits within a subject

Source

Simulated for the manuscript: Tao Sun, Huiping Zheng, and Xiaojun Wang (2025+). *Decomposing Differences in Cohort Health Expectancy by Cause and Age with Longitudinal Data.*

Examples

data(simulated_dataA)
head(simulated_dataA)

simulated_dataB Simulated Bivariate Semi-competing Risks Data (Set B)

Description

A simulated dataset for evaluating copula-based semi-competing risks models with semiparametric additive hazards. Each subject may experience disability followed by death, with interval-censored disability times and right-censored death times.

Usage

```
data(simulated_dataB)
```

Format

A data frame with 2000 subjects and the following variables:

id subject identifier

visit visit index per subject

visit_time observation time at each visit (in years)

status disability status at visit_time (1 = disabled, 0 = non-disabled)

statusD death status at visit_time (1 = dead, 0 = alive)

Z1 first covariate (binary)

Z2 second covariate (continuous)

Z3 third covariate (categorical: 0/1/2)

weight sampling weight; constant across visits within a subject

Source

Simulated for the manuscript: Tao Sun, Huiping Zheng, and Xiaojun Wang (2025+). *Decomposing Differences in Cohort Health Expectancy by Cause and Age with Longitudinal Data*.

Examples

data(simulated_dataB)
head(simulated_dataB)

summary.LongDecompHE Summarizing outputs of a LongDecompHE object

Description

#' This function prints or returns a summary of results from an attribution or decomposition analysis using the LongDecompHE framework.

Usage

S3 method for class 'LongDecompHE'
summary(object, ...)

Arguments

object	a LongDecompHE object
	further arguments

Value

If the input is an attribution or decomposition object (e.g., from Attribution_sullivan or Decomp_sullivan), the function prints summary tables of contributions to disability and death and returns the object invisibly. Otherwise, it returns a list with model diagnostics including:

- copula: the copula family used.
- m.dist: marginal distribution type.
- summary: coefficient estimates and standard errors.
- 11k: log-likelihood.
- AIC: Akaike Information Criterion.
- code: convergence code.

The returned object has class "summary.LongDecompHE".

Index

* datasets
 attributionA, 2
 attributionB, 3
 decom_results, 8
 simulated_dataA, 10
 simulated_dataB, 11
Attribution_sullivan, 4
attributionA_2

attributionA, 2 attributionB, 3

copula_additive, 5, 5

decom_results, 8
Decomp_sullivan, 7

Plot.sullivan,9
print.LongDecompHE,10

simulated_dataA, 10
simulated_dataB, 11
summary.LongDecompHE, 5, 12