Package 'LoTTA'

July 21, 2025

Type Package						
Title Bayesian Inference in Regression Discontinuity Designs						
Version 0.1.0						
Description Implementation of the LoTTA (Local Trimmed Taylor Approximation) model described in `Bayesian Regression Discontinuity Design with Unknown Cutoff' by Kowalska, van de Wiel, van der Pas (2024) <doi:10.48550 arxiv.2406.11585="">.</doi:10.48550>						
License GPL (>= 2)						
Encoding UTF-8						
RoxygenNote 7.3.2						
Imports stats, bayestestR, utils						
Depends R (>= 4.4.0), runjags, ggplot2, ggpubr						
NeedsCompilation no						
Author Julia Kowalska [aut, cre, cph] (ORCID: https://orcid.org/0000-0001-6559-4354)						
Maintainer Julia Kowalska < j.m. kowalska@vu.nl>						
Repository CRAN						
Date/Publication 2025-07-11 12:20:02 UTC						
Contents						
Bin_data 2 BIN_outcome_function_sample 3 bounds 3 CONT_outcome_function_sample 4 Initial_CONT_BIN 4 Initial_CONT_CONT 5 Initial_DIS_BIN 6 Initial_DIS_CONT 7 Initial_FUZZy_BIN 8 Initial_FUZZy_CONT 8 Initial_SHARP_BIN 9						

2 Bin_data

E	Bin_data	Functi each b	at sp	olits	the	data	ini	to b	oins	ana	l con	npute	s the	aver	age i	n
Ind	lex															52
	u IIII_uis_y		 							• • •	• •		• • •			31
	trim_dis_y	-														
	read_prior treatment_funct															
	plot_outcome_0															
	plot_outcome_I															
	optimal_k_bin															
	optimal_k															
	normalize_dis_:															
	normalize_cont	-														
	normalize_cont															
	LoTTA_treatme															
	LoTTA_sharp_0															
	LoTTA_sharp_l															
	LoTTA_plot_tro															
	LoTTA_plot_ou															
	LoTTA_plot_ef															
	LoTTA_plot_ef															
	LoTTA_plot_ef															
	LoTTA_fuzzy_															
	LoTTA_fuzzy_															
	logit															
	invlogit															
	Initial_treatmen															
	Initial_treatmen															
	Initial_treatmen															
	Initial_SHARP_	_CONT	 													10

Description

Function that splits the data into bins and computes the average in each bin

Usage

```
Bin_data(y, x, c = NULL, binsize = 0.2)
```

Arguments

у	• is the outcome data
X	• is the score data
С	• specifies the cutoff point, set to NULL if the binning of the data should be independent from c
binsize	• length of the interval that is one bin

Value

list with elements y_bin: list of average values of y in each bin, x_bin: list of middle points for each bin

BIN_outcome_function_sample

Function that evaluates the binary outcome function in a domain x, given the coefficients

Description

Function that evaluates the binary outcome function in a domain x, given the coefficients

Usage

```
BIN_outcome_function_sample(coef_s, x, d_x, s_x)
```

Arguments

coef_s

• list with the function coefficients

Χ

• points at which the function is evaluated

d_x

• shifting parameter that was used to normalize x

 s_x

 $\bullet\,$ scaling parameter that was used to normalize x

Value

list with the values of the function

bounds

function that finds maximum widow size to search for a cutoff

Description

function that finds maximum widow size to search for a cutoff

Usage

```
bounds(x, ns = 25)
```

Arguments

Х

score data

ns

• minimum number of data points on each side of the cutoff to which cubic parts are fitted

4 Initial_CONT_BIN

Value

list with ubl - minimum value of the window's left boundary point, ubr - maximum value of the window's right boundary point

CONT_outcome_function_sample

Function that evaluates the continuous outcome function in a domain x, given the coefficients

Description

Function that evaluates the continuous outcome function in a domain x, given the coefficients

Usage

```
CONT_outcome_function_sample(coef_s, x, d_x, s_x, mu_y, sd_y)
```

Arguments

coef_s	 list with the function coefficients
x	• points at which the function is evaluated
d_x	• shifting parameter that was used to normalize x
S_X	• scaling parameter that was used to normalize x
mu_y	• shifting parameter that was used to normalize y
sd_v	• scaling parameter that was used to normalize y

Value

list with the values of the function

<pre>Initial_CONT_BIN</pre>	function that samples initial values for fuzzy LoTTA model with a con-
	tinuous prior and binary outcomes

Description

function that samples initial values for fuzzy LoTTA model with a continuous prior and binary outcomes

```
Initial_CONT_BIN(x, t, y, C_start, clb, cub, lb, ubr, ubl, s, jlb = 0.2)
```

Initial_CONT_CONT 5

Arguments

X	• score data
t	treatment data
У	outcome data
C_start	 posterior samples of cutoff location obtained through "cutoff_initial_CONT.txt"c
clb	 left end of an interval on which the prior is supported
cub	 right end of an interval on which the prior is supported
lb	minimum window size
ubr	 maximum value of the window's right boundary point
ubl	 minimum value of the window's left boundary point
S	• seed
jlb	minimum jump size

Value

list with initial parameters values for LoTTA model with continuous score and binary outcomes, and .RNG.seed value

<pre>Initial_CONT_CONT</pre>	function that samples initial values for fuzzy LoTTA model with a on-
	tinuous prior and continuous outcomes

Description

function that samples initial values for fuzzy LoTTA model with a ontinuous prior and continuous outcomes

Usage

```
Initial_CONT_CONT(x, t, y, C_start, clb, cub, lb, ubr, ubl, s, jlb = 0.2)
```

Arguments

X	• score data
t	• treatment data
У	outcome data
C_start	• posterior samples of cutoff location obtained through "cutoff_initial_CONT.txt"
clb	 left end of an interval on which the prior is supported
cub	 right end of an interval on which the prior is supported
lb	minimum window size
ubr	 maximum value of the window's right boundary point
ubl	 minimum value of the window's left boundary point
s	• seed
jlb	minimum jump size

6 Initial_DIS_BIN

Value

list with initial parameters values for LoTTA model with continuous score and continuous outcomes, and .RNG.seed value

Initial_DIS_BIN	function that samples initial values for LoTTA with a discerete prior and binary ourcomes
-----------------	---

Description

function that samples initial values for LoTTA with a discerete prior and binary ourcomes

Usage

```
Initial_DIS_BIN(x, t, y, Ct_start, cstart, grid, lb, ubr, ubl, s, jlb = 0.2)
```

Arguments

x	• score data
t	treatment data
у	outcome data
Ct_start	• posterior samples of cutoff location (categorized by natural numbers) obtained through "cutoff_initial_DIS.txt"
cstart	• the first point with a positive prior mass
grid	• distance between two consecutive points with nonzero prior mass
1b	• minimum window size (grid size in case of discrete score)
ubr	• maximum value of the window's right boundary point
ubl	• minimum value of the window's left boundary point
S	• seed
jlb	minimum jump size

Value

list with initial parameters values for LoTTA model with discrete score and binary outcomes, and .RNG.seed value

Initial_DIS_CONT 7

Initial_DIS_CONT	function that samples initial values for fuzzy LoTTA model with a discrete prior and binary outcomes

Description

function that samples initial values for fuzzy LoTTA model with a discrete prior and binary outcomes

Usage

```
Initial_DIS_CONT(x, t, y, Ct_start, cstart, grid, lb, ubr, ubl, s, jlb = 0.2)
```

Arguments

x	• score data
t	• treatment data
У	outcome data
Ct_start	• posterior samples of cutoff location (categorized by natural numbers) obtained through "cutoff_initial_dis.txt"c
cstart	 the first point with a positive prior mass
grid	• distance between two consecutive points with nonzero prior mass
1b	• minimum window size (grid size in case of discrete score)
ubr	 maximum value of the window's right boundary point
ubl	 minimum value of the window's left boundary point
S	• seed
jlb	minimum jump size

Value

list with initial parameters values for LoTTA model with discrete score and continuous outcomes, and .RNG.seed value

Initial_FUZZy_BIN function that samples initial values for fuzzy LoTTA model with known cutoff and binary outcomes	h a	
--	-----	--

Description

function that samples initial values for fuzzy LoTTA model with a known cutoff and binary outcomes

Usage

```
Initial_FUZZy_BIN(x, t, y, c, lb, ubr, ubl, s, jlb = 0.2)
```

Arguments

X	• score data
t	• treatment data
У	• outcome data
С	• cutoff location
lb	• minimum window size
ubr	• maximum value of the window's right boundary point
ubl	• minimum value of the window's left boundary point
S	• seed
jlb	• minimum jump size

Value

list with initial parameters values for fuzzy LoTTA model with a known cutoff and binary outcomes, and .RNG.seed value

-	nction that samples initial values for fuzzy LoTTA model with a own cutoff and continuous outcomes
---	--

Description

function that samples initial values for fuzzy LoTTA model with a known cutoff and continuous outcomes

```
Initial_FUZZy_CONT(x, t, y, c, lb, ubr, ubl, s, jlb = 0.2)
```

Initial_SHARP_BIN 9

Arguments

X	• score data
t	• treatment data
У	• outcome data
С	• cutoff value
lb	minimum window size
ubr	• maximum value of the window's right boundary point
ubl	• minimum value of the window's left boundary point
S	• seed
jlb	• minimum jump size

Value

list with initial parameters values for LoTTA model with continuous score and continuous outcomes, and .RNG.seed value

<pre>Initial_SHARP_BIN</pre>	function that samples initial values for sharp LoTTA model with binary
	outcomes

Description

function that samples initial values for sharp LoTTA model with binary outcomes

Usage

```
Initial_SHARP_BIN(x, y, c, lb, ubr, ubl, s)
```

Arguments

X	• score data
у	outcome data
С	 cutoff location
lb	 minimum window size
ubr	• maximum value of the window's right boundary point
ubl	• minimum value of the window's left boundary point
S	• seed

Value

list with initial parameters values for sharp LoTTA model with binary outcomes, and .RNG.seed value

10 Initial_treatment_c

Initial_SHARP_CONT	function that samples initial values for sharp LoTTA model with continuous outcomes
--------------------	---

Description

function that samples initial values for sharp LoTTA model with continuous outcomes

Usage

```
Initial_SHARP_CONT(x, y, c, lb, ubr, ubl, s)
```

Arguments

X	• score data
У	• outcome data
С	 cutoff location
1b	 minimum window size
ubr	• maximum value of the window's right boundary point
ubl	• minimum value of the window's left boundary point
S	• seed

Value

 $list\ with\ initial\ parameters\ values\ for\ sharp\ LoTTA\ model\ with\ continuous\ outcomes,\ and\ .RNG. seed\ value$

Description

function that samples initial values for the treatment model with a known cutoff

```
Initial_treatment_c(x, t, c, lb, ubr, ubl, s, jlb = 0.2)
```

Arguments

X	• score data
t	• treatment data
С	• cutoff location
lb	• minimum window size
ubr	• maximum value of the window's right boundary point
ubl	• minimum value of the window's left boundary point
S	• seed
jlb	• minimum jump size

Value

list with initial parameters values for LoTTA model with continuous score and .RNG.seed value

 $Initial_treatment_CONT$

function that samples initial values for the treatment model with a continuous prior

Description

function that samples initial values for the treatment model with a continuous prior

Usage

```
Initial_treatment_CONT(x, t, C_start, clb, cub, lb, ubr, ubl, s, jlb = 0.2)
```

Arguments

• score data
treatment data
• posterior samples of cutoff location obtained through "cutoff_initial_CONT.txt"
 left end of an interval on which the prior is supported
 right end of an interval on which the prior is supported
minimum window size
 maximum value of the window's right boundary point
 minimum value of the window's left boundary point
• seed
minimum jump size

Value

list with initial parameters values for LoTTA model with continuous score and .RNG.seed value

12 invlogit

Initial_treatment_DIS function that samples initial values for the treatment model with a discrete prior

Description

function that samples initial values for the treatment model with a discrete prior

Usage

```
Initial_treatment_DIS(x, t, Ct_start, cstart, grid, lb, ubr, ubl, s, jlb = 0.2)
```

Arguments

x	score data
t	treatment data
Ct_start	 posterior samples of cutoff location (categorized by natural numbers) obtained through "cutoff_initial_dis.txt"c
cstart	 the first point with a positive prior mass
grid	 distance between two consecutive points with nonzero prior mass
1b	• minimum window size (grid size in case of discrete score)
ubr	 maximum value of the window's right boundary point
ubl	 minimum value of the window's left boundary point
S	• seed
jlb	minimum jump size

Value

list with initial parameters values for treatment model with discrete score and .RNG.seed value

invlogit	inverse logit function	

Description

inverse logit function

Usage

```
invlogit(x)
```

Arguments

x • score data

logit 13

Value

value of inverse logit function at x

logit

logit function

Description

logit function

Usage

logit(x)

Arguments

Х

· score data

Value

value of logit function at x

LoTTA_fuzzy_BIN

LoTTA_fuzzy_BIN

Description

Function that fits LoTTA model to the fuzzy RD data with binary outcomes with an either known or unknown/suspected cutoff. It supports two types of priors on the cutoff location: a scaled beta distribution of the form beta(alpha,beta)(cub-clb)+clb and a discrete distribution with the support of the form cstart+grid i for i=0,...,(cend-cstart)/grid. The score does NOT have to be normalized beforehand. We recommend NOT to transform the data before imputing it into the function, except for initial trimming of the score which should be done beforehand. The further trimming for the sensitivity analysis can be done through the function, which ensures that the data is normalized before the trimming.

```
LoTTA_fuzzy_BIN(
    x,
    t,
    y,
    c_prior,
    jlb = 0.2,
    ci = 0.95,
```

LoTTA_fuzzy_BIN

```
trimmed = NULL,
outcome_prior = list(pr = 1e-04),
n_min = 25,
param = c("c", "j", "kl", "kr", "eff", "a01", "a11", "a21", "a31", "a0r", "a1r", "a2r",
    "a3r", "b1lt", "a1lt", "a2lt", "b2lt", "b1rt", "a1rt", "a2rt", "b2rt", "k1t", "k2t"),
normalize = TRUE,
n.chains = 4,
burnin = 10000,
sample = 1000,
adapt = 500,
inits = NULL,
method = "parallel",
seed = NULL,
...
)
```

Arguments

14

Х

· is the score data

t

• is the treatment allocation data

У

• is the binary outcome data

c_prior

• specifies the cutoff prior in case of the unknown cutoff or the cutoff point if the cutoff is known. Takes as value a number if the cutoff is known or a list of values otherwise. For a continuous prior the list requires the following elements: clb - left end of the interval cub - right end of the interval in which the scaled and translated beta distribution is defined, alpha (optional) - shape parameter, default value = 1, beta (optional) - shape parameter, default value = 1. For a discrete prior the list requires the following elements: cstart - first point with positive prior mass, cend - last point with positive prior mass, grid - distance between the consecutive points in the support weights (optional) - vector of weights assigned to each point in the support, default is vector of 1's (uniform distribution)

jlb

• minimum jump size

ci

specifies the probability level 1-alpha for the highest posterior density intervals; default is ci = 0.95

trimmed

• takes as a value NULL or a vector of two values. It specifies potential trimming of the data. If set to NULL no trimming is applied to the data. If a list of two values is provided the data is trimmed to include data points with the score x in between those values; default is trimmed=NULL

outcome_prior

• takes as a value a list with elements 'pr'. 'pr' specifies precision in the normal priors on the coefficients in the outcome function; default is list('pr'=0.0001)

n_min

 specifies the minimum number of data points to which a cubic part of the outcome function is fit to ensure stability of the sampling procedure; default is n min=25

param

 takes as a value a vector with names of the parameters that are to be sampled; default is the list of all parameters LoTTA_fuzzy_BIN 15

normalize	• specifies if the data is to be normalized. The data is normalized as follows. If the prior is continuous: x_normalized=(x-d)/s, where d=(min(x)+max(x))*0.5 and s=max(x)-min(x). If the prior is discrete: x_normalized=x/s, where s=10^m, where m is chosen so that max(abs(x))-1 is minimal. The priors inside the model are specified for the normalized data, in extreme cases not normalizing the data may lead to unreliable results; default is normalize=TRUE
n.chains	• specifies the number of chains in the MCMC sampler; default is n.chains=4
burnin	 specifies the number of burnin iterations without the adaptive iterations; default is burnin=5000
sample	 specifies the number of samples per chain; default is samples=5000
adapt	 specifies the number of adaptive iterations in the MCMC sampler; default is adapt=1000
inits	 initial values for the sampler. By default the initial values are sampled inside the function. To run LoTTA with a method other than "parallel" inits must be set to NA or to a user defined value. If the user wants to provide its own values please refer to run.jags manual; default inits=NULL
method	 set to default as 'parallel', which allows to sample the chains in parallel reducing computation time. To read more about possible method values type ?run.jags; default method='parallel'
seed	 specifies the seed for replicability purposes; default is seed=NULL
	• other arguments of run.jags function. For more details type ?run.jags

Value

The function returns the list with the elements:

- Effect_estimate: contains a list with MAP estimate and HDI of the treatment effect, the cutoff location (if unknown) and the discontinuity size in the treatment probability function (compliance rate at c) on the original, unnormalized scale;
- JAGS_output: contains output of the run.jags function for the normalized data if normalize=TRUE, based on this output mixing of the chains can be assessed;
- Samples: contains posterior samples of the treatment effect (eff), cutoff location (c) if unknown, and compliance rate (j);
- Normalized_data: contains a list of the normalized data (if normalized=TRUE) and the parameters used to normalize the data (see arg normalize);
- Priors: contains a list of the priors' parameters;
- Inits contains the list of initial values and .RNG.seed value

Examples

```
# functions to generate the data
ilogit <- function(x) {
  return(1 / (1 + exp(-x)))
}</pre>
```

16 LoTTA_fuzzy_BIN

```
fun_prob55 <- function(x) {</pre>
  P = rep(0, length(x))
  P[x \ge 0.] = ilogit((8.5 * x[x \ge 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
  P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
  return(P)
}
sample_prob55 <- function(x) {</pre>
  P = rep(0, length(x))
  P[x \ge 0.] = ilogit((8.5 * x[x \ge 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
  P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
  t = rep(0, length(x))
  for (j in 1:length(x)) {
    t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))
  return(t)
}
funB <- function(x) {</pre>
 y = x
  x2 = x[x \ge 0]
  x1 = x[x < 0]
  y[x < 0] = 1 / (1 + exp(-2 * x1)) - 0.5 + 0.4
  y[x \ge 0] = (\log(x2 * 2 + 1) - 0.15 * x2^2) * 0.6 - 0.20 + 0.4
  return(y)
}
funB_sample_binary <- function(x) {</pre>
  y = x
  P = funB(x)
  for (j in 1:length(x)) {
    y[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))
  return(y)
}
## Toy example - for the function check only! ##
N=100
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
y = funB_sample_binary(x)
c_prior=0 # known cutoff c=0
# running LoTTA model on fuzzy RDD with binary outcomes;
out = LoTTA_fuzzy_BIN(x,t,y,c_prior,burnin = 50,sample = 50,adapt=10,n.chains=1
,method = 'simple',inits = NA)
## Use case example ##
  N=500
  x = sort(runif(N, -1, 1))
  t = sample_prob55(x)
```

LoTTA_fuzzy_CONT

```
y = funB_sample_binary(x)
# comment out to try different priors:
 c_prior=list(clb=-0.25,cub=0.25) # uniform prior on the interval [-0.25,0.25]
# c_prior=list(cstart=-0.25,cend=0.25,grid=0.05) # uniform discrete prior
# on -0.25, -0.2, ..., 0.25
# c_prior=0 # known cutoff c=0
# running LoTTA model on fuzzy RDD with binary outcomes and unknown cutoff;
# cutoff = 0, compliance rate = 0.55, treatment effect = -0.3636364
# remember to check convergence and adjust burnin, sample and adapt if needed
out = LoTTA_fuzzy_BIN(x,t,y,c_prior,burnin = 10000,sample = 5000,adapt=1000)
# print effect estimate:
out$Effect_estimate
# print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
# plot posterior fit of the outcome function
LoTTA_plot_outcome(out,nbins = 60)
# plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)
# plot dependence of the treatment effect on the cutoff location
LoTTA_plot_effect(out)
```

LoTTA_fuzzy_CONT

LoTTA_fuzzy_CONT

Description

Function that fits LoTTA model to the fuzzy RD data with continuous outcomes with an either known or unknown/suspected cutoff. It supports two types of priors on the cutoff location: a scaled beta distribution of the form beta(alpha,beta)(cub-clb)+clb and a discrete distribution with the support of the form cstart+grid i for i=0,...,(cend-cstart)/grid. The score does NOT have to be normalized beforehand. We recommend NOT to transform the data before imputing it into the function, except for initial trimming of the score which should be done beforehand. The further trimming for the sensitivity analysis can be done through the function, which ensures that the data is normalized before the trimming.

```
LoTTA_fuzzy_CONT(
    x,
    t,
    y,
    c_prior,
    jlb = 0.2,
    ci = 0.95,
    trimmed = NULL,
```

```
outcome_prior = list(pr = 1e-04, shape = 0.01, scale = 0.01),
  n_{min} = 25
 param = c("c", "j", "kl", "kr", "eff", "a01", "a11", "a21", "a31", "a0r", "a1r", "a2r",
   "a3r", "b1lt", "a1lt", "a2lt", "b2lt", "b1rt", "a1rt", "a2rt", "b2rt", "k1t", "k2t",
    "tau1r", "tau2r", "tau11", "tau21"),
  normalize = TRUE,
  n.chains = 4,
  burnin = 10000,
  sample = 1000,
  adapt = 500,
  inits = NULL,
 method = "parallel",
  seed = NULL,
)
```

Arguments

Х

• is the score data

t

• is the treatment allocation data

y

• is the binary outcome data

c_prior

• specifies the cutoff prior in case of the unknown cutoff or the cutoff point if the cutoff is known. Takes as value a number if the cutoff is known or a list of values otherwise. For a continuous prior the list requires the following elements: clb - left end of the interval cub - right end of the interval in which the scaled and translated beta distribution is defined, alpha (optional) - shape parameter, default value = 1, beta (optional) - shape parameter, default value = 1. For a discrete prior the list requires the following elements: cstart - first point with positive prior mass, cend - last point with positive prior mass, grid - distance between the consecutive points in the support weights (optional) - vector of weights assigned to each point in the support, default is vector of 1's (uniform distribution)

jlb

• minimum jump size

ci

• specifies the probability level 1-alpha for the highest posterior density intervals; default is ci = 0.95

trimmed

• takes as a value NULL or a vector of two values. It specifies potential trimming of the data. If set to NULL no trimming is applied to the data. If a list of two values is provided the data is trimmed to include data points with the score x in between those values; default is trimmed=NULL

outcome_prior

• takes as a value a list with elements 'pr' and 'shape', 'scale'. 'pr' specifies precision in the normal priors on the coefficients in the outcome function. 'shape' and 'scale' specify the shape and scale parameters in the gamma prior on the precision of the error terms; default is list('pr'= 0.0001,'shape'= 0.01, 'scale' = 0.01)

n_min

• specifies the minimum number of data points to which a cubic part of the outcome function is fit to ensure stability of the sampling procedure; default is n_min=25

LoTTA_fuzzy_CONT 19

param	 takes as a value a vector with names of the parameters that are to be sam- pled; default is the list of all parameters
normalize	• specifies if the data is to be normalized. The data is normalized as follows. If the prior is continuous: x_normalized=(x-d)/s, where d=(min(x)+max(x))*0.5 and s=max(x)-min(x), If the prior is discrete: x_normalized=x/s, where s=10^m, where m is chosen so that lmax(abs(x))-11 is minimal. The outcome data is normalized as follows: y_normalized=(y-mu)/sd, where mu=mean(y) and sd=sd(y). The priors inside the model are specified for the normalized data, in extreme cases not normalizing the data may lead to unreliable results; default is normalize=TRUE
n.chains	• specifies the number of chains in the MCMC sampler; default is n.chains=4
burnin	 specifies the number of burnin iterations without the adaptive iterations; default is burnin=5000
sample	• specifies the number of samples per chain; default is samples=5000
adapt	 specifies the number of adaptive iterations in the MCMC sampler; default is adapt=1000
inits	 initial values for the sampler. By default the initial values are sampled inside the function. To run LoTTA with a method other than "parallel" inits must be set to NA or to a user defined value. If the user wants to provide its own values please refer to run.jags manual; default inits=NULL
method	 set to default as 'parallel', which allows to sample the chains in parallel reducing computation time. To read more about possible method values type ?run.jags; default method='parallel'
seed	 specifies the seed for replicability purposes; default is seed=NULL
• • •	• other arguments of run.jags function. For more details type ?run.jags

Value

The function returns the list with the elements:

- Effect_estimate: contains a list with MAP estimate and HDI of the treatment effect, the cutoff location (if unknown) and the discontinuity size in the treatment probability function (compliance rate at c) on the original, unnormalized scale;
- JAGS_output: contains output of the run.jags function for the normalized data if normalize=TRUE, based on this output mixing of the chains can be assessed;
- Samples: contains posterior samples of the treatment effect (eff), cutoff location (c) if unknown, and compliance rate (j);
- Normalized_data: contains a list of the normalized data (if normalized=TRUE) and the parameters used to normalize the data (see arg normalize);
- Priors: contains a list of the priors' parameters;
- Inits contains the list of initial values and .RNG.seed value

Examples

```
# functions to generate the data
ilogit <- function(x) {</pre>
  return(1 / (1 + exp(-x)))
fun_prob55 <- function(x) {</pre>
  P = rep(0, length(x))
 P[x \ge 0.] = ilogit((8.5 * x[x \ge 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
 P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
  return(P)
}
sample_prob55 <- function(x) {</pre>
  P = rep(0, length(x))
 P[x \ge 0.] = ilogit((8.5 * x[x \ge 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
 P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
  t = rep(0, length(x))
  for (j in 1:length(x)) {
    t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))
  return(t)
}
funB <- function(x) {</pre>
  y = x
  x2 = x[x >= 0]
 x1 = x[x < 0]
  y[x < 0] = 1 / (1 + exp(-2 * x1)) - 0.5 + 0.4
  y[x \ge 0] = (\log(x2 * 2 + 1) - 0.15 * x2^2) * 0.6 - 0.20 + 0.4
  return(y)
}
funB_sample <- function(x) {</pre>
  y = funB(x) + rnorm(length(x), 0, 0.1)
  return(y)
}
## Toy example - for the function check only! ##
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
y = funB_sample(x)
c_prior=0 # known cutoff c=0
# running LoTTA model on fuzzy RDD with continuous outcomes;
out = LoTTA_fuzzy_CONT(x,t,y,c_prior,burnin = 50,sample = 50,adapt=10,n.chains=1
,method = 'simple',inits = NA)
## Use case example ##
```

LoTTA_plot_effect 21

```
N=500
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
y = funB_sample(x)
# comment out to try different priors:
c_prior=list(clb=-0.25,cub=0.25) # uniform prior on the interval [-0.25,0.25]
# c_prior=list(cstart=-0.25,cend=0.25,grid=0.05) # uniform discrete prior
# on -0.25, -0.2, ..., 0.25
# c_prior=0 # known cutoff c=0
# running LoTTA model on fuzzy RDD with continuous outcomes and unknown cutoff;
# cutoff = 0, compliance rate = 0.55, treatment effect = -0.3636364
# remember to check convergence and adjust burnin, sample and adapt if needed
out = LoTTA_fuzzy_CONT(x,t,y,c_prior,burnin = 10000,sample = 5000,adapt=1000)
# print effect estimate:
out$Effect_estimate
# print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
# plot posterior fit of the outcome function
LoTTA_plot_outcome(out)
# plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)
# plot dependence of the treatment effect on the cutoff location
LoTTA_plot_effect(out,nbins = 5)
```

LoTTA_plot_effect

LoTTA_plot_effect

Description

Function that visualizes the impact of the cutoff location on the treatment effect estimate. It plots too figures. The bottom figure depicts the posterior density of the cutoff location. The top figure depicts the box plot of the treatment effect given the cutoff point. If the prior on the cutoff location was discrete each box corresponds to a distinct cutoff point. If the prior was continuous each box correspond to an interval of cutoff values (the number of intervals can be changed through nbins).

```
LoTTA_plot_effect(
  LoTTA_posterior,
  nbins = 10,
  probs = c(0.025, 0.975),
  x_lab = "Cutoff location",
  y_lab1 = "Treatment effect",
  y_lab2 = "Density of cutoff location",
  title = "Cutoff location vs. Treatment effect",
```

22 LoTTA_plot_effect

```
axis.text = element_text(family = "sans", size = 10),
  text = element_text(family = "serif"),
  plot.theme = theme_classic(base_size = 14),
  plot.title = element_text(hjust = 0.5),
)
```

Arguments

LoTTA_posterior

• output of one of the LoTTA functions (LoTTA_fuzzy_CONT, LoTTA_fuzzy_BIN)

with all parameters sampled (the default option in those functions)

• number of bins to aggregate the values of the posterior cutoff location nbins

• list of two quantiles that limit the range of cutoff values displayed on the probs

plots

• label of the x-axis x_lab

y_lab1 • label of the y-axis of the bottom plot

y_lab2 • label of the y-axis of the top plot

title • title of the plot

axis.text • can be any value that is accepted in the argument axis.text in the theme function of ggplot2 package, refer to ggplot2 manual for the possible values;

by default is changes font to a serif one axis.text=element_text(family =

"sans", size = 10)

• can be any value that is accepted in the argument text in the theme functext tion of ggplot2 package, refer to ggplot2 manual for the possible values; by

default is changes font to a serif one text=element_text(family='serif')

• ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html) possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size

plot.title • can be any value that is accepted in the argument plot.title in the theme function of ggplot2 package, refer to ggplot2 manual for the possible values;

by default it centers the plot title plot.title = element_text(hjust = 0.5)

• other arguments of the *theme* function, refer to ggplot2 manual

Value

ggplot2 object

plot.theme

Examples

```
# functions to generate the data
ilogit <- function(x) {</pre>
  return(1 / (1 + exp(-x)))
}
```

LoTTA_plot_effect 23

```
fun_prob55 <- function(x) {</pre>
 P = rep(0, length(x))
 P[x \ge 0.] = ilogit((8.5 * x[x \ge 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
 P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
 return(P)
}
sample_prob55 <- function(x) {</pre>
 P = rep(0, length(x))
 P[x \ge 0.] = ilogit((8.5 * x[x \ge 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
 P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
 t = rep(0, length(x))
 for (j in 1:length(x)) {
   t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))
 return(t)
}
funB <- function(x) {</pre>
 y = x
 x2 = x[x >= 0]
 x1 = x[x < 0]
 y[x < 0] = 1 / (1 + exp(-2 * x1)) - 0.5 + 0.4
 y[x >= 0] = (log(x2 * 2 + 1) - 0.15 * x2^2) * 0.6 - 0.20 + 0.4
 return(y)
}
funB_sample <- function(x) {</pre>
 y = funB(x) + rnorm(length(x), 0, 0.1)
 return(y)
}
## Use case example ##
 N=500
 x = sort(runif(N, -1, 1))
 t = sample_prob55(x)
 y = funB_sample(x)
 # comment out to try different priors:
  c_prior=list(clb=-0.25,cub=0.25) # uniform prior on the interval [-0.25,0.25]
 # c_prior=list(cstart=-0.25,cend=0.25,grid=0.05) # uniform discrete prior
 # on -0.25, -0.2, ..., 0.25
 # c_prior=0 # known cutoff c=0
 # running LoTTA model on fuzzy RDD with continuous outcomes and unknown cutoff;
 # cutoff = 0, compliance rate = 0.55, treatment effect = -0.3636364
 # remember to check convergence and adjust burnin, sample and adapt if needed
 out = LoTTA_fuzzy_CONT(x,t,y,c_prior,burnin = 10000,sample = 5000,adapt=1000)
 # print effect estimate:
 out$Effect_estimate
 # print JAGS output to asses convergence (the output is for normalized data)
 out$JAGS_output
```

```
# plot posterior fit of the outcome function
LoTTA_plot_outcome(out,nbins = 60)
# plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)
# plot dependence of the treatment effect on the cutoff location
LoTTA_plot_effect(out)
```

LoTTA_plot_effect_CONT

Function that visualizes the impact of the cutoff location on the treatment effect estimate. It plots too figures. The bottom figure depicts the posterior density of the cutoff location. The top figure depicts the box plot of the treatment effect given the cutoff point. If the prior on the cutoff location was discrete each box corresponds to a distinct cutoff point. If the prior was continuous each box correspond to an interval of cutoff values (the number of intervals can be changed through nbins).

Description

Function that visualizes the impact of the cutoff location on the treatment effect estimate. It plots too figures. The bottom figure depicts the posterior density of the cutoff location. The top figure depicts the box plot of the treatment effect given the cutoff point. If the prior on the cutoff location was discrete each box corresponds to a distinct cutoff point. If the prior was continuous each box correspond to an interval of cutoff values (the number of intervals can be changed through nbins).

```
LoTTA_plot_effect_CONT(
   LoTTA_posterior,
   nbins = 10,
   probs = c(0.025, 0.975),
   x_lab = "Cutoff location",
   y_lab1 = "Treatment effect",
   y_lab2 = "Density of cutoff location",
   title = "Cutoff location vs. Treatment effect",
   axis.text = element_text(family = "sans", size = 10),
   text = element_text(family = "serif"),
   plot.theme = theme_classic(base_size = 14),
   plot.title = element_text(hjust = 0.5),
   ...
)
```

Arguments

Lotta	posterior
	-poster roi

- output of one of the LoTTA functions (LoTTA_fuzzy_CONT, LoTTA_fuzzy_BIN)
- with all parameters sampled (the default option in those functions)
- nbins • number of bins to aggregate the input data
- probs • list of two quantiles that limit the range of cutoff values displayed on the
 - plots
- x_lab • label of the x-axis
- y_lab1 • label of the y-axis of the bottom plot
- y_lab2 • label of the y-axis of the top plot
- title of the plot title
- axis.text • can be any value that is accepted in the argument axis.text in the theme

function of ggplot2 package, refer to ggplot2 manual for the possible values; by default is changes font to a serif one axis.text=element_text(family =

"sans", size = 10)

- can be any value that is accepted in the argument text in the theme functext tion of ggplot2 package, refer to ggplot2 manual for the possible values; by
 - default is changes font to a serif one text=element_text(family='serif')
- plot.theme • ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html)

possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size

= 14),

plot.title • can be any value that is accepted in the argument plot.title in the theme

function of ggplot2 package, refer to ggplot2 manual for the possible values; by default it centers the plot title plot.title = element_text(hjust = 0.5)

• other arguments of the theme function, refer to ggplot2 manual

Value

ggplot2 object

LoTTA_plot_effect_DIS Function that visualizes the impact of the cutoff location on the treatment effect estimate. It plots too figures. The bottom figure depicts the posterior density of the cutoff location. The top figure depicts the box plot of the treatment effect given the cutoff point. If the prior on the cutoff location was discrete each box corresponds to a distinct cutoff point. If the prior was continuous each box correspond to an interval of cutoff values (the number of intervals can be changed through nbins).

Description

Function that visualizes the impact of the cutoff location on the treatment effect estimate. It plots too figures. The bottom figure depicts the posterior density of the cutoff location. The top figure depicts the box plot of the treatment effect given the cutoff point. If the prior on the cutoff location was discrete each box corresponds to a distinct cutoff point. If the prior was continuous each box correspond to an interval of cutoff values (the number of intervals can be changed through nbins).

Usage

```
LoTTA_plot_effect_DIS(
  LoTTA_posterior,
  probs = c(0.025, 0.975),
  x_lab = "Cutoff location",
  y_lab1 = "Treatment effect",
  y_lab2 = "Density of cutoff location",
  title = "Cutoff location vs. Treatment effect",
  axis.text = element_text(family = "sans", size = 10),
  text = element_text(family = "serif"),
  plot.theme = theme_classic(base_size = 14),
  plot.title = element_text(hjust = 0.5),
  ...
)
```

Arguments

text

plot.theme

plot.title

LoTTA_posterior

• output of one of the LoTTA functions (LoTTA_fuzzy_CONT, LoTTA_fuzzy_BIN) with all parameters sampled (the default option in those functions)

probs

• list of two quantiles that limit the range of cutoff values displayed on the

plots

x_lab • label of the x-axis

y_lab1
label of the y-axis of the bottom plot
y_lab2
label of the y-axis of the top plot

title • title of the plot

• can be any value that is accepted in the argument *axis.text* in the *theme* function of ggplot2 package,refer to ggplot2 manual for the possible values; by default is changes font to a serif one axis.text=element_text(family =

"sans", size = 10)

• can be any value that is accepted in the argument *text* in the *theme* function of ggplot2 package,refer to ggplot2 manual for the possible values; by

default is changes font to a serif one text=element_text(family='serif')

• ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html) possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size

= 14),

• can be any value that is accepted in the argument *plot.title* in the *theme* function of ggplot2 package,refer to ggplot2 manual for the possible values; by default it centers the plot title plot.title = element_text(hjust = 0.5)

LoTTA_plot_outcome 27

. . • other arguments of the *theme* function, refer to ggplot2 manual

Value

ggplot2 object

LoTTA_plot_outcome

LoTTA_plot_outcome

Description

Function that plots the median (or another quantile) of the LoTTA posterior outcome function along with the quantile-based credible interval. The function is plotted on top of the binned input data. To bin the data, the score data is divided into bins of fixed length, then the average outcome in each bin is calculated. The average outcomes are plotted against the average values of the score in the corresponding bins. The data is binned separately on each side of the cutoff, the cutoff is marked on the plot with a dotted line. In case of an unknown cutoff, the MAP estimate is used.

```
LoTTA_plot_outcome(
  LoTTA_posterior,
  nbins = 100,
  probs = c(0.025, 0.5, 0.975),
  n_{eval} = 200,
  col_line = "#E69F00",
  size_line = 0.1,
  alpha_interval = 0.35,
  col_dots = "gray",
  size\_dots = 3,
  alpha_dots = 0.6,
  col_cutoff = "black",
  title = "Outcome function",
  subtitle = NULL,
  y_lab = "",
  x_lab = expression(paste(italic("x"), " - score")),
  plot.theme = theme_classic(base_size = 14),
  legend.position = "none",
  name_legend = "Legend",
  labels_legend = "median outcome fun.",
  text = element_text(family = "serif"),
  legend.text = element_text(size = 14),
  plot.title = element_text(hjust = 0.5),
  plot.subtitle = element_text(hjust = 0.5),
)
```

Arguments

arguments	
LoTTA_posterior	
	 output of one of the LoTTA functions (LoTTA_sharp_CONT, LoTTA_fuzzy_CONT, LoTTA_sharp_BIN, LoTTA_fuzzy_BIN) with all the parameters sampled (the default option in those functions)
nbins	 number of bins to aggregate the input data
probs	• list of three quantiles, the first and the last one define the quantile-based credible interval, the middle value defines the quantile of the posterior function to plot; by default the quantiles correspond to the median posterior function and 95% credible interval probs=c(0.025,0.5,0.975)
n_eval	• n_eval*range(x) is the number of points at which each posterior function is evaluated, the higher number means slower computing time and a smoother plot; default n_eval=200
col_line	• the color of the line and the band
size_line	• thickness of the line
alpha_interval	• alpha value of the band, lower values correspond to a more transparent color
col_dots	 color of the dots that correspond to the binned data
size_dots	• size of the dots that correspond to the binned data
alpha_dots	 transparency of the dots that correspond to the binned data, lower values correspond to a more transparent color
col_cutoff	• color of the dotted line at the cutoff
title	• title of the plot
subtitle	• subtitle of the plot
y_lab	• label of the y-axis
x_lab	• label of the x-axis
plot.theme	• ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html) possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size = 14),
legend.position	
	 position of the legend, refer to ggplot2 manual for the possible values; by default legend is not printed legend.position='none'
name_legend	• title of the legend
labels_legend	• the label of the plotted function in the legend
text	• can be any value that is accepted in the argument <i>text</i> in the <i>theme</i> function of ggplot2 package,refer to ggplot2 manual for the possible values; by default is changes font to a serif one text=element_text(family='serif')
legend.text	• can be any value that is accepted in the argument <i>legend.text</i> in the <i>theme</i> function of ggplot2 package,refer to ggplot2 manual for the possible values; by default is changes font size to the legend to 14 legend.text=element_text(size = 14)
plot.title	• can be any value that is accepted in the argument <i>plot.title</i> in the <i>theme</i> function of ggplot2 package,refer to ggplot2 manual for the possible values; by default it centers the plot title plot.title = element_text(hjust = 0.5)

plot.subtitle

- can be any value that is accepted in the argument *plot.subtitle* in the *theme* function of ggplot2 package,refer to ggplot2 manual for the possible values; by default it centers the plot subtitle plot.title = element_text(hjust = 0.5)
- other arguments of the *theme* function, refer to ggplot2 manual

Value

ggplot2 object

Examples

```
# functions to generate the data
ilogit <- function(x) {</pre>
  return(1 / (1 + exp(-x)))
funB <- function(x) {</pre>
  y = x
  x2 = x[x >= 0]
  x1 = x[x < 0]
  y[x < 0] = 1 / (1 + exp(-2 * x1)) - 0.5 + 0.4
  y[x >= 0] = (log(x2 * 2 + 1) - 0.15 * x2^2) * 0.6 - 0.20 + 0.4
  return(y)
}
funB_sample <- function(x) {</pre>
  y = funB(x) + rnorm(length(x), 0, 0.1)
  return(y)
## Toy example - for the function check only! ##
# data generation
N=100
set.seed(1234)
x = sort(runif(N, -1, 1))
y = funB_sample(x)
c = 0
# running LoTTA function on sharp RDD with continuous outcomes;
out = LoTTA_sharp_CONT(x, y, c,normalize=FALSE, burnin = 100, sample = 100, adapt = 100,
n.chains=1, seed = NULL,method = 'simple',inits = NA)
# plot the outcome
LoTTA_plot_outcome(out,n_eval = 100)
## Use case example ##
# data generation
  N=500 # try different dataset size
  x = sort(runif(N, -1, 1))
  y = funB_sample(x)
 c = 0
  # plot the data
  plot(x,y)
```

```
# running LoTTA function on sharp RDD with continuous outcomes;
# cutoff = 0, treatment effect = -0.2
# remember to check convergence and adjust burnin, sample and adapt if needed
out = LoTTA_sharp_CONT(x, y, c, burnin = 10000, sample = 5000, adapt = 1000,n.chains=4)
# print effect estimate:
out$Effect_estimate
# print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
# plot posterior fit
LoTTA_plot_outcome(out)
```

LoTTA_plot_treatment

Function that plots the median (or another quantile) of the LoTTA posterior treatment probability function along with the quanatile-based credible interval. The function is plotted on top of the binned input data. To bin the data, the score data is divided into bins of fixed length, then the proportion of treated is calculated in each bin. The proportions are plotted against the average values of the score in the corresponding bins. The data is binned separately on each side of the cutoff, the cutoff is marked on the plot with a dotted line. In case of an unknown cutoff, the MAP estimate is used.

Description

Function that plots the median (or another quantile) of the LoTTA posterior treatment probability function along with the quanatile-based credible interval. The function is plotted on top of the binned input data. To bin the data, the score data is divided into bins of fixed length, then the proportion of treated is calculated in each bin. The proportions are plotted against the average values of the score in the corresponding bins. The data is binned separately on each side of the cutoff, the cutoff is marked on the plot with a dotted line. In case of an unknown cutoff, the MAP estimate is used.

```
LoTTA_plot_treatment(
  LoTTA_posterior,
  nbins = 100,
  probs = c(0.025, 0.5, 0.975),
  n_eval = 200,
  col_line = "#E69F00",
  size_line = 0.1,
  alpha_interval = 0.35,
  col_dots = "gray",
  size_dots = 3,
  alpha_dots = 0.6,
  col_cutoff = "black",
  title = "Treatment probability function",
  subtitle = NULL,
```

```
y_{lab} = "",
  x_lab = expression(paste(italic("x"), " - score")),
  plot.theme = theme_classic(base_size = 14),
  legend.position = "none",
  name_legend = "Legend",
  labels_legend = "median treatment prob. fun.",
  text = element_text(family = "serif"),
  legend.text = element_text(size = 14),
 plot.title = element_text(hjust = 0.5),
 plot.subtitle = element_text(hjust = 0.5),
)
```

Arguments

LoTTA_posterior

• output of one of the LoTTA functions (LoTTA_fuzzy_CONT, LoTTA_fuzzy_BIN, LoTTA_treatment) with all the parameters sampled (the default option in those functions)

nbins

• number of bins to aggregate the input data

probs

• list of three quantiles, the first and the last one define the quanatile-based credible interval, the middle value defines the quantile of the posterior function to plot; by default the quantiles correspond to the median posterior function and 95% credible interval probs=c(0.025,0.5,0.975)

n_eval

• n eval*range(x) is the number of points at which each posterior function is evaluated, the higher number means slower computing time and a smoother plot; default n_eval=200

col_line

• the color of the line and the band

size_line

• thickness of the line

alpha_interval

• alpha value of the band, lower values correspond to a more transparent color

col_dots

• color of the dots that correspond to the binned data

size_dots

• size of the dots that correspond to the binned data

alpha_dots

col_cutoff

• transparency of the dots that correspond to the binned data, lower values correspond to a more transparent color

· color of the dotted line at the cutoff

title

• title of the plot

subtitle

• subtitle of the plot

y_lab

• label of the y-axis

 x_lab

• label of the x-axis

plot.theme

• ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html) possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size = 14),

legend.position

• position of the legend, refer to ggplot2 manual for the possible values; by default legend is not printed legend.position='none'

• title of the legend name_legend labels_legend • the label of the plotted function in the legend text • can be any value that is accepted in the argument text in the theme function of ggplot2 package, refer to ggplot2 manual for the possible values; by default is changes font to a serif one text=element_text(family='serif') legend.text • can be any value that is accepted in the argument *legend.text* in the *theme* function of ggplot2 package, refer to ggplot2 manual for the possible values; by default is changes font size to the legend to 14 legend.text=element_text(size = 14)plot.title • can be any value that is accepted in the argument plot.title in the theme function of ggplot2 package, refer to ggplot2 manual for the possible values; by default it centers the plot title plot.title = element_text(hjust = 0.5) plot.subtitle • can be any value that is accepted in the argument *plot.subtitle* in the *theme* function of ggplot2 package, refer to ggplot2 manual for the possible values; by default it centers the plot subtitle plot.title = element_text(hjust = 0.5)

• other arguments of the *theme* function, refer to ggplot2 manual

Value

. . .

ggplot2 object

Examples

```
# functions to generate the data
ilogit <- function(x) {</pre>
 return(1 / (1 + exp(-x)))
}
fun_prob55 <- function(x) {</pre>
 P = rep(0, length(x))
 P[x \ge 0.] = ilogit((8.5 * x[x \ge 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
 P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
 return(P)
}
sample_prob55 <- function(x) {</pre>
 P = rep(0, length(x))
 P[x \ge 0.] = ilogit((8.5 * x[x \ge 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
 P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
 t = rep(0, length(x))
 for (j in 1:length(x)) {
    t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))
 return(t)
}
```

LoTTA_sharp_BIN 33

```
## Toy example - for the function check only! ##
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
c_prior=0 # known cutoff
# running LoTTA treatment-only model;
out = LoTTA_treatment(x,t,c_prior,burnin = 50, sample = 50, adapt = 10,n.chains=1
                      ,method = 'simple',inits = NA)
# plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)
## Use case example ##
 N=500
 x = sort(runif(N, -1, 1))
 t = sample_prob55(x)
 # comment out to try different priors:
  c_prior=list(clb=-0.25,cub=0.25) # uniform prior on the interval [-0.25,0.25]
 # c_prior=list(cstart=-0.25,cend=0.25,grid=0.05) # uniform discrete prior
 # on -0.25, -0.2, ..., 0.25
 # c_prior=0 # known cutoff c=0
 # running LoTTA treatment-only model;
 \# cutoff = 0, compliance rate = 0.55
 # remember to check convergence and adjust burnin, sample and adapt if needed
 out = LoTTA_treatment(x,t,c_prior,burnin = 10000,sample = 5000,adapt=1000)
 # print effect estimate:
 out$Effect_estimate
 # print JAGS output to asses convergence (the output is for normalized data)
 out$JAGS_output
 # plot posterior fit of the treatment probablity function
 LoTTA_plot_treatment(out,nbins = 60)
```

LoTTA_sharp_BIN

LoTTA_sharp_BIN

Description

Function that fits LoTTA model to the sharp RD data with binary outcomes. The score does NOT have to be normalized beforehand. We recommend NOT to transform the data before imputing it into the function, except for initial trimming of the score which should be done beforehand. The further trimming for the sensitivity analysis can be done through the function, which ensures that the data is normalized before the trimming.

Usage

```
LoTTA_sharp_BIN(
  х,
  у,
  С,
  ci = 0.95.
  trimmed = NULL,
  outcome_prior = list(pr = 1e-04),
  n_{\min} = 25,
 param = c("eff", "a01", "a11", "a21", "a31", "a0r", "a1r", "a2r", "a3r", "k1", "kr"),
  normalize = TRUE,
  n.chains = 4,
  burnin = 5000,
  sample = 5000,
  adapt = 1000,
  inits = NULL,
  method = "parallel",
  seed = NULL,
)
```

Arguments

ci

x • is the score data

• is the binary outcome data

c • specifies the cutoff point

• specifies the probability level 1-alpha for the highest posterior density intervals; default is si = 0.05

tervals; default is ci = 0.95

• takes as a value NULL or a vector of two values. It specifies potential trimming of the data. If set to NULL no trimming is applied to the data. If a list of two values is provided the data is trimmed to include data points with the score x in between those values; deafult is trimmed=NULL

• takes as a value a list with elements 'pr'. 'pr' specifies precision in the normal priors on the coefficients in the outcome function; default is list('pr'=0.0001)

 specifies the minimum number of data points to which a cubic part of the outcome function is fit to ensure stability of the sampling procedure; default is n_min=25

• takes as a value a vector with names of the parameters that are to be sampled; default is the list of all parameters

• specifies if the data is to be normalized. The data is normalized as follows. x_normalized=(x-d)/s, where d=(min(x)+max(x))*0.5 and s=max(x)-min(x). The priors inside the model are specified for the normalized data, in extreme cases not normalizing the data may lead to unreliable results; default is normalize=TRUE

• specifies the number of chains in the MCMC sampler; default is n.chains=4

outcome_prior

n_min

trimmed

param

normalize

n.chains

LoTTA_sharp_BIN 35

burnin	 specifies the number of burnin iterations without the adaptive iterations; default is burnin=5000
sample	• specifies the number of samples per chain; default is samples=5000
adapt	• specifies the number of adaptive iterations in the MCMC sampler; default is adapt=1000
inits	• initial values for the sampler. By default the initial values are sampled inside the function. To run LoTTA with a method other than "parallel" inits must be set to NA or to a user defined value. If the user wants to provide its own values please refer to run.jags manual; default inits=NULL
method	• set to default as 'parallel', which allows to sample the chains in parallel reducing computation time. To read more about possible method values type ?run.jags; default method='parallel'
seed	 specifies the seed for replicability purposes; default is seed=NULL
• • •	• other arguments of run.jags function. For more details type ?run.jags

Value

The function returns the list with the elements:

- Effect_estimate: contains a list with MAP estimate and HDI of the treatment effect on the original, unnormalized scale;
- JAGS_output: contains output of the run.jags function for the normalized data if normalize=TRUE, based on this output mixing of the chains can be assessed;
- Samples: contains posterior samples of the treatment effect (eff);
- Normalized_data: contains a list of the normalized data (if normalized=TRUE) and the parameters used to normalize the data (see arg normalize);
- Priors: contains a list of the outcome prior parameters;
- Inits contains the list of initial values and .RNG.seed value

Examples

```
# functions to generate the data

ilogit <- function(x) {
    return(1 / (1 + exp(-x)))
}

fun_prob55 <- function(x) {
    P = rep(0, length(x))
    P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
    P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
    return(P)
}

sample_prob55 <- function(x) {
    P = rep(0, length(x))
    P[x >= 0.] = ilogit((8.5 * x[x >= 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
```

```
P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
  t = rep(0, length(x))
  for (j in 1:length(x)) {
   t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))
  }
  return(t)
}
## Toy example - for the function check only! ##
# data generation
N=100
x = sort(runif(N, -1, 1))
y = sample_prob55(x)
# running LoTTA model on a sharp RDD with a binary outcome
out = LoTTA_sharp_BIN(x, y, c, burnin = 50, sample = 50, adapt = 10,n.chains=1
                      ,method = 'simple',inits = NA)
## Use case example ##
  # data generation
  N=1000 # try different dataset size
  x = sort(runif(N, -1, 1))
  y = sample_prob55(x)
  c = 0
  # running LoTTA function on sharp RDD with binary outcomes;
  \# cutoff = 0, treatment effect = 0.55
  # remember to check convergence and adjust burnin, sample and adapt if needed
  out = LoTTA\_sharp\_BIN(x, y, c, burnin = 10000, sample = 5000, adapt = 1000, n.chains=4)
  # print effect estimate:
  out$Effect_estimate
  # print JAGS output to asses convergence (the output is for normalized data)
  out$JAGS_output
  # plot posterior fit
  LoTTA_plot_outcome(out,nbins = 60)
```

LoTTA_sharp_CONT

LoTTA_sharp_CONT

Description

Function that fits LoTTA model to the sharp RD data with continuous outcomes. The data does NOT have to be normalized beforehand. We recommend NOT to transform the data before imputing it into the function, except for initial trimming which should be done beforehand. The further trimming for the sensitivity analysis can be done through the function, which ensures that the data is normalized before the trimming.

Usage

```
LoTTA_sharp_CONT(
  Х,
 у,
  С,
  ci = 0.95,
  trimmed = NULL,
 outcome_prior = list(pr = 1e-04, shape = 0.01, scale = 0.01),
 n_{min} = 25,
 param = c("eff", "a01", "a11", "a21", "a31", "a0r", "a1r", "a2r", "a3r", "tau1r",
    "tau2r", "tau11", "tau21", "kl", "kr"),
  normalize = TRUE,
  n.chains = 4,
  burnin = 10000,
  sample = 5000,
  adapt = 1000,
  inits = NULL,
 method = "parallel",
  seed = NULL.
)
```

Arguments

· is the score data Х

• is the continuous outcome data У

• specifies the cutoff point С

• specifies the probability level 1-alpha for the highest posterior density inci

tervals; default is ci = 0.95

trimmed • takes as a value NULL or a vector of two values. It specifies potential trimming of the data. If set to NULL no trimming is applied to the data. If a list of two values is provided the data is trimmed to include data points

with the score x in between those values; deafult is trimmed=NULL

• takes as a value a list with elements 'pr' and 'shape', 'scale'. 'pr' specifies precision in the normal priors on the coefficients in the outcome function. 'shape' and 'scale' specify the shape and scale parameters in the gamma prior on the precision of the error terms; default is list('pr'= 0.0001, 'shape'= 0.01, 'scale' = 0.01)

• specifies the minimum number of data points to which a cubic part of the outcome function is fit to ensure stability of the sampling procedure; default is n_min=25

• takes as a value a vector with names of the parameters that are to be sampled; default is the list of all parameters

• specifies if the data is to be normalized. The data is normalized as follows. $x_normalized=(x-d)/s$, where d=(min(x)+max(x))*0.5 and s=max(x)-max(x)min(x). y_normalized=(y-mu)/sd, where mu=mean(y) and sd=sd(y). The

outcome_prior

n_min

param

normalize

	priors inside the model are specified for the normalized data, in extreme cases not normalizing the data may lead to unreliable results; default is normalize=TRUE
n.chains	• specifies the number of chains in the MCMC sampler; default is n.chains=4
burnin	• specifies the number of burnin iterations without the adaptive iterations; default is burnin=5000
sample	• specifies the number of samples per chain; default is samples=5000
adapt	• specifies the number of adaptive iterations in the MCMC sampler; default is adapt=1000
inits	• initial values for the sampler. By default the initial values are sampled inside the function. To run LoTTA with a method other than "parallel" inits must be set to NA or to a user defined value. If the user wants to provide its own values please refer to run.jags manual; default inits=NULL
method	• set to default as 'parallel', which allows to sample the chains in parallel reducing computation time. To read more about possible method values type ?run.jags; default method='parallel'
seed	• specifies the seed for replicability purposes; default is seed=NULL
• • •	• other arguments of run.jags function. For more details type ?run.jags

Value

The function returns the list with the elements:

- Effect_estimate: contains a list with MAP estimate and HDI of the treatment effect on the original, unnormalized scale;
- JAGS_output: contains output of the run.jags function for the normalized data if normalize=TRUE, based on this output mixing of the chains can be assessed;
- Samples: contains posterior samples of the treatment effect (eff);
- Normalized_data: contains a list of the normalized data (if normalized=TRUE) and the parameters used to normalize the data (see arg normalize);
- Priors: contains a list of the outcome prior parameters;
- Inits contains the list of initial values and .RNG.seed value

Examples

```
# functions to generate the data
ilogit <- function(x) {
   return(1 / (1 + exp(-x)))
}
funB <- function(x) {
   y = x
   x2 = x[x >= 0]
   x1 = x[x < 0]
   y[x < 0] = 1 / (1 + exp(-2 * x1)) - 0.5 + 0.4</pre>
```

```
y[x \ge 0] = (\log(x2 * 2 + 1) - 0.15 * x2^2) * 0.6 - 0.20 + 0.4
 return(y)
}
funB_sample <- function(x) {</pre>
 y = funB(x) + rnorm(length(x), 0, 0.1)
 return(y)
}
## Toy example - for the function check only! ##
# data generation
N=100
set.seed(1234)
x = sort(runif(N, -1, 1))
y = funB_sample(x)
c = 0
# running LoTTA function on sharp RDD with continuous outcomes;
out = LoTTA_sharp_CONT(x, y, c,normalize=FALSE, burnin = 50, sample = 50, adapt = 10,
n.chains=1, seed = NULL,method = 'simple',inits = NA)
## Use case example ##
# data generation
 N=500 # try different dataset size
 x = sort(runif(N, -1, 1))
 y = funB\_sample(x)
 c = 0
 # plot the data
 plot(x,y)
 # running LoTTA function on sharp RDD with continuous outcomes;
 # cutoff = 0, treatment effect = -0.2
 # remember to check convergence and adjust burnin, sample and adapt if needed
 out = LoTTA_sharp_CONT(x, y, c, burnin = 10000, sample = 5000, adapt = 1000,n.chains=4)
 # print effect estimate:
 out$Effect_estimate
 # print JAGS output to asses convergence (the output is for normalized data)
 out$JAGS_output
 # plot posterior fit
 LoTTA_plot_outcome(out)
```

LoTTA_treatment

LoTTA_treatment

Description

Function that fits LoTTA treatment model to the fuzzy RD treatment data with an either known or unknown/suspected cutoff. It supports two types of priors on the cutoff location: a scaled beta distribution of the form beta(alpha,beta)(cub-clb)+clb and a discrete distribution with the support of the form cstart+grid i for i=0,...,(cend-cstart)/grid. The score does NOT have to be normalized beforehand. We recommend NOT to transform the data before imputing it into the function, except

for initial trimming of the score which should be done beforehand. The further trimming for the sensitivity analysis can be done through the function, which ensures that the data is normalized before the trimming.

Usage

```
LoTTA_treatment(
  Х,
  t,
  c_prior,
  jlb = 0.2,
  ci = 0.95,
  trimmed = NULL,
  n_min = 25,
 param = c("c", "j", "b1lt", "a1lt", "a2lt", "b2lt", "b1rt", "a1rt", "a2rt", "b2rt",
    "k1t", "k2t"),
  normalize = TRUE,
  n.chains = 4,
  burnin = 5000,
  sample = 1000,
  adapt = 500,
  inits = NULL,
  method = "parallel",
  seed = NULL,
)
```

Arguments

,.....

• is the score data

x t

• is the treatment allocation data

c_prior

• specifies the cutoff prior in case of the unknown cutoff or the cutoff point if the cutoff is known. Takes as value a number if the cutoff is known or a list of values otherwise. For a continuous prior the list requires the following elements: clb - left end of the interval cub - right end of the interval in which the scaled and translated beta distribution is defined, alpha (optional) - shape parameter, default value = 1, beta (optional) - shape parameter, default value = 1. For a discrete prior the list requires the following elements: cstart - first point with positive prior mass, cend - last point with positive prior mass, grid - distance between the consecutive points in the support weights (optional) - vector of weights assigned to each point in the support, default is vector of 1's (uniform distribution)

jlb

• minimum jump size

ci

• specifies the probability level 1-alpha for the highest posterior density intervals; default is ci = 0.95

trimmed

• takes as a value NULL or a vector of two values. It specifies potential trimming of the data. If set to NULL no trimming is applied to the data. If

	a list of two values is provided the data is trimmed to include data points with the score x in between those values; default is trimmed=NULL
n_min	 specifies the minimum number of data points to which a cubic part of the outcome function is fit to ensure stability of the sampling procedure; default is n_min=25
param	 takes as a value a vector with names of the parameters that are to be sam- pled; default is the list of all parameters
normalize	• specifies if the data is to be normalized. The data is normalized as follows. If the prior is continuous: x_normalized=(x-d)/s, where d=(min(x)+max(x))*0.5 and s=max(x)-min(x), If the prior is discrete: x_normalized=x/s, where s=10^m, where m is chosen so that lmax(abs(x))-11 is minimal. The outcome data is normalized as follows: y_normalized=(y-mu)/sd, where mu=mean(y) and sd=sd(y). The priors inside the model are specified for the normalized data, in extreme cases not normalizing the data may lead to unreliable results; default is normalize=TRUE
n.chains	• specifies the number of chains in the MCMC sampler; default is n.chains=4
burnin	 specifies the number of burnin iterations without the adaptive iterations; default is burnin=5000
sample	 specifies the number of samples per chain; default is samples=5000
adapt	 specifies the number of adaptive iterations in the MCMC sampler; default is adapt=1000
inits	 initial values for the sampler. By default the initial values are sampled inside the function. To run LoTTA with a method other than "parallel" inits must be set to NA or to a user defined value. If the user wants to provide its own values please refer to run.jags manual; default inits=NULL
method	 set to default as 'parallel', which allows to sample the chains in parallel reducing computation time. To read more about possible method values type ?run.jags; default method='parallel'
seed	 specifies the seed for replicability purposes; default is seed=NULL
	 other arguments of run.jags function. For more details type ?run.jags

Value

The function returns the list with the elements:

- Effect_estimate: contains a list with MAP estimate and HDI of the cutoff location (if unknown) and the discontinuity size in the treatment probability function (compliance rate at c) on the original, unnormalized scale;
- JAGS_output: contains output of the run.jags function for the normalized data if normalize=TRUE, based on this output mixing of the chains can be assessed;
- Samples: contains posterior samples of the cutoff location (c) if unknown, and compliance rate (j);
- Normalized_data: contains a list of the normalized data (if normalized=TRUE) and the parameters used to normalize the data (see arg normalize);
- Priors: contains a list of the priors' parameters;
- Inits contains the list of initial values and .RNG.seed value

Examples

```
# functions to generate the data
ilogit <- function(x) {</pre>
  return(1 / (1 + exp(-x)))
fun_prob55 <- function(x) {</pre>
  P = rep(0, length(x))
 P[x \ge 0.] = ilogit((8.5 * x[x \ge 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
 P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
  return(P)
}
sample_prob55 <- function(x) {</pre>
  P = rep(0, length(x))
  P[x \ge 0.] = ilogit((8.5 * x[x \ge 0.] - 1.5)) / 10.5 + 0.65 - 0.0007072
  P[x < 0.] = (x[x < 0.] + 1)^4 / 15 + 0.05
  t = rep(0, length(x))
  for (j in 1:length(x)) {
   t[j] = sample(c(1, 0), 1, prob = c(P[j], 1 - P[j]))
  return(t)
}
## Toy example - for the function check only! ##
N=100
x = sort(runif(N, -1, 1))
t = sample_prob55(x)
c_prior=0 # known cutoff
# running LoTTA treatment-only model;
out = LoTTA_treatment(x,t,c_prior,burnin = 50, sample = 50, adapt = 10,n.chains=1
                      ,method = 'simple',inits = NA)
## Use case example ##
  N=500
  x = sort(runif(N, -1, 1))
  t = sample_prob55(x)
  # comment out to try different priors:
  c_prior=list(clb=-0.25,cub=0.25) # uniform prior on the interval [-0.25,0.25]
  # c_prior=list(cstart=-0.25,cend=0.25,grid=0.05) # uniform discrete prior
  # on -0.25, -0.2, ..., 0.25
  # c_prior=0 # known cutoff c=0
  # running LoTTA treatment-only model;
  \# cutoff = 0, compliance rate = 0.55
  # remember to check convergence and adjust burnin, sample and adapt if needed
```

normalize_cont_x 43

```
out = LoTTA_treatment(x,t,c_prior,burnin = 10000,sample = 5000,adapt=1000)
# print effect estimate:
out$Effect_estimate
# print JAGS output to asses convergence (the output is for normalized data)
out$JAGS_output
# plot posterior fit of the treatment probablity function
LoTTA_plot_treatment(out,nbins = 60)
```

normalize_cont_x

normalize continuous score function

Description

normalize continuous score function

Usage

```
normalize_cont_x(x, trimmed = NULL, normalize = TRUE)
```

Arguments

Х

• score data

trimmed

• NULL by default, provide vector of score values to trim the data

normalize

• whether data is to be normalized

Value

list with x - normalized score, d - parameter used to shift the score

normalize_cont_y

normalize continuous outcome function

Description

normalize continuous outcome function

```
normalize_cont_y(y, x, trimmed = NULL, normalize = TRUE)
```

44 optimal_k

Arguments

· outcome data У · score data Х

trimmed • NULL by default, provide vector of values to trim the data

• whether data is to be normalized normalize

Value

list with y - normalized outcome, mu - shift parameter, sd - scaling parameter

normalize_dis_x

normalize discrete score function

Description

normalize discrete score function

Usage

```
normalize_dis_x(x, trimmed = NULL, normalize = TRUE)
```

Arguments

score data Х

• NULL by default, provide vector of values to trim the data trimmed normalize

• TRUE by default, whether data is to be normalized

Value

list with x - normalized score, s - parameter used to scale the score

optimal_k function that searches for initial parameters of outcome function to initiate the sampler

Description

function that searches for initial parameters of outcome function to initiate the sampler

```
optimal_k(x, y, c, lb, ubr, ubl)
```

optimal_k_bin 45

Arguments

X	• score data
У	outcome data
С	• cutoff
1b	• minimum window size
ubr	• maximum value of the window's right boundary point
ubl	• minimum value of the window's left boundary point

Value

• a list with kl and kr and cubic functions parameters

optimal_k_bin	function that searches for initial parameters of binary outcome function to initiate the sampler

Description

function that searches for initial parameters of binary outcome function to initiate the sampler

Usage

```
optimal_k_bin(x, y, c, lb, ubr, ubl)
```

Arguments

Х	• score data
У	• outcome data
С	• cutoff
lb	 minimum window size
ubr	• maximum value of the window's right boundary point
ubl	• minimum value of the window's left boundary point

Value

• a list with kl and kr and cubic functions parameters

46 plot_outcome_BIN

plot_outcome_BIN

Function that plots the median (or another quantile) of the posterior function with binary outcome along with the quanatile-based credible interval. The function is plotted on top of the binned input data. To bin the data, the score data is divided into bins of fixed length, then the average outcome in each bin is calculated. The average outcomes are plotted against the average values of the score in the corresponding bins.

Description

Function that plots the median (or another quantile) of the posterior function with binary outcome along with the quantile-based credible interval. The function is plotted on top of the binned input data. To bin the data, the score data is divided into bins of fixed length, then the average outcome in each bin is calculated. The average outcomes are plotted against the average values of the score in the corresponding bins.

```
plot_outcome_BIN(
  LoTTA_posterior,
  nbins = 100,
  probs = c(0.025, 0.5, 0.975),
  n_{eval} = 200,
  col_line = "#E69F00",
  size_line = 0.1,
  alpha_interval = 0.35,
  col_dots = "gray",
  size\_dots = 3,
  alpha_dots = 0.6,
  col_cutoff = "black",
  title = "Outcome function",
  subtitle = NULL,
 y_lab = "",
  x_lab = expression(paste(italic("x"), " - score")),
  plot.theme = theme_classic(base_size = 14),
  legend.position = "none",
  name_legend = "Legend",
  labels_legend = "median outcome fun.",
  text = element_text(family = "serif"),
  legend.text = element_text(size = 14),
  plot.title = element_text(hjust = 0.5),
 plot.subtitle = element_text(hjust = 0.5),
)
```

plot_outcome_BIN 47

Arguments

rguments	
LoTTA_posterior	
	• output of one of the LoTTA functions (LoTTA_sharp, LoTTA_fuzzy)
nbins	number of bins to aggregate the input data
probs	• list of three quantiles, the first and the last one define the quantile-based credible interval, the middle value defines the quantile of the posterior function to plot; by default the quantiles correspond to the median posterior function and 95% credible interval probs=c(0.025,0.5,0.975)
n_eval	• n_eval*range(x) is the number of points at which each posterior function is evaluated, the higher number means slower computing time and a smoother plot; default n_eval=200
col_line	• the color of the line and the band
size_line	• thickness of the line
alpha_interval	• alpha value of the band, lower values correspond to a more transparent color
col_dots	 color of the dots that correspond to the binned data
size_dots	• size of the dots that correspond to the binned data
alpha_dots	 transparency of the dots that correspond to the binned data, lower values correspond to a more transparent color
col_cutoff	• color of the dotted line at the cutoff
title	• title of the plot
subtitle	• subtitle of the plot
y_lab	• label of the y-axis
x_lab	• label of the x-axis
plot.theme	• ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html) possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size = 14),
legend.position	
	 position of the legend, refer to ggplot2 manual for the possible values; by default legend is not printed legend.position='none'
name_legend	• title of the legend
labels_legend	• the label of the plotted function in the legend
text	• can be any value that is accepted in the argument <i>text</i> in the <i>theme</i> function of ggplot2 package,refer to ggplot2 manual for the possible values; by default is changes font to a serif one text=element_text(family='serif')
legend.text	• can be any value that is accepted in the argument <i>legend.text</i> in the <i>theme</i> function of ggplot2 package,refer to ggplot2 manual for the possible values; by default is changes font size to the legend to 14 legend.text=element_text(size = 14)
plot.title	• can be any value that is accepted in the argument <i>plot.title</i> in the <i>theme</i> function of ggplot2 package,refer to ggplot2 manual for the possible values; by default it centers the plot title plot.title = element_text(hjust = 0.5)

plot_outcome_CONT

plot.subtitle

- can be any value that is accepted in the argument *plot.subtitle* in the *theme* function of ggplot2 package,refer to ggplot2 manual for the possible values; by default it centers the plot subtitle plot.title = element_text(hjust = 0.5)
- other arguments of the theme function, refer to ggplot2 manual

Value

ggplot2 object

plot_outcome_CONT

Function that plots the median (or another quantile) of the posterior function of a continous outcome along with the quanatile-based credible interval. The function is plotted on top of the binned input data. To bin the data, the score data is divided into bins of fixed length, then the average outcome in each bin is calculated. The average outcomes are plotted against the average values of the score in the corresponding bins.

Description

Function that plots the median (or another quantile) of the posterior function of a continuous outcome along with the quanatile-based credible interval. The function is plotted on top of the binned input data. To bin the data, the score data is divided into bins of fixed length, then the average outcome in each bin is calculated. The average outcomes are plotted against the average values of the score in the corresponding bins.

```
plot_outcome_CONT(
  LoTTA_posterior,
  nbins = 100,
  probs = c(0.025, 0.5, 0.975),
  n_{eval} = 200,
  col_line = "#E69F00",
  size_line = 0.1,
  alpha_interval = 0.35,
  col_dots = "gray",
  size\_dots = 3,
  alpha_dots = 0.6,
  col_cutoff = "black",
  title = "Outcome function",
  subtitle = NULL,
  y_lab = "",
  x_lab = expression(paste(italic("x"), " - score")),
  plot.theme = theme_classic(base_size = 14),
  legend.position = "none",
  name_legend = "Legend",
```

plot_outcome_CONT 49

```
labels_legend = "median outcome fun.",
text = element_text(family = "serif"),
legend.text = element_text(size = 14),
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
...
)
```

Arguments

LoTTA_posterior • output of one of the LoTTA functions (LoTTA_sharp, LoTTA_fuzzy) • number of bins to aggregate the input data nbins probs · list of three quantiles, the first and the last one define the quanatile-based credible interval, the middle value defines the quantile of the posterior function to plot; by default the quantiles correspond to the median posterior function and 95% credible interval probs=c(0.025,0.5,0.975) • n eval*range(x) is the number of points at which each posterior function is n_eval evaluated, the higher number means slower computing time and a smoother plot; default n eval=200 col_line • the color of the line and the band size_line thickness of the line alpha_interval • alpha value of the band, lower values correspond to a more transparent color col dots • color of the dots that correspond to the binned data size dots • size of the dots that correspond to the binned data alpha_dots • transparency of the dots that correspond to the binned data, lower values correspond to a more transparent color col_cutoff color of the dotted line at the cutoff title • title of the plot · subtitle of the plot subtitle y_lab · label of the y-axis x_lab • label of the x-axis

legend.position

plot.theme

• position of the legend, refer to ggplot2 manual for the possible values; by default legend is not printed legend.position='none'

• ggplot2 plot theme (see https://ggplot2.tidyverse.org/reference/ggtheme.html)

possibly with additional arguments, it takes the default value plot.theme=theme_classic(base_size

name_legend

• title of the legend

= 14),

labels_legend

• the label of the plotted function in the legend

text

• can be any value that is accepted in the argument *text* in the *theme* function of ggplot2 package,refer to ggplot2 manual for the possible values; by default is changes font to a serif one text=element_text(family='serif')

50 read_prior

can be any value that is accepted in the argument legend.text in the theme function of ggplot2 package,refer to ggplot2 manual for the possible values; by default is changes font size to the legend to 14 legend.text=element_text(size = 14)
 can be any value that is accepted in the argument plot.title in the theme function of ggplot2 package,refer to ggplot2 manual for the possible values; by default it centers the plot title plot.title = element_text(hjust = 0.5)
 can be any value that is accepted in the argument plot.subtitle in the theme function of ggplot2 package,refer to ggplot2 manual for the possible values; by default it centers the plot subtitle plot.title = element_text(hjust = 0.5)
 other arguments of the theme function, refer to ggplot2 manual

Value

ggplot2 object

read_prior function that checks the type of a prior and whether it is correct

Description

function that checks the type of a prior and whether it is correct

Usage

```
read_prior(prior, minx, maxx, ubl, ubr, lb)
```

Arguments

list with prior parameters or a cutoff value
 minx
 minimum value of the score
 maxx
 maximum value of the score
 minimum value of the window's left boundary point
 maximum value of the window's right boundary point
 minimum window size

Value

list with type of prior and prior parameters

treatment_function_sample

Function that evaluates the treatment probability function in a domain x, given the coefficients

Description

Function that evaluates the treatment probability function in a domain x, given the coefficients

Usage

```
treatment_function_sample(coef_s, x, d_x, s_x)
```

Arguments

Х

• list with the function coefficients coef_s

• points at which the function is evaluated

• shifting parameter that was used to normalize x d_x s_x

• scaling parameter that was used to normalize x

Value

list with the values of the function

trim_dis_y

Binary outcomes for trimmed score

Description

Binary outcomes for trimmed score

Usage

```
trim_dis_y(y, x, trimmed = NULL)
```

Arguments

У · outcome data · score data Х

• NULL by default, provide vector of values to trim the data trimmed

Value

list with y - outcomes for trimmed score

Index

```
Bin_data, 2
                                                 read_prior, 50
BIN_outcome_function_sample, 3
                                                 {\tt treatment\_function\_sample, 51}
bounds, 3
                                                 trim_dis_y, 51
CONT_outcome_function_sample, 4
Initial_CONT_BIN, 4
Initial_CONT_CONT, 5
Initial_DIS_BIN, 6
Initial_DIS_CONT, 7
Initial_FUZZy_BIN, 8
Initial_FUZZy_CONT, 8
Initial_SHARP_BIN, 9
{\tt Initial\_SHARP\_CONT}, {\color{red}10}
Initial_treatment_c, 10
Initial_treatment_CONT, 11
Initial_treatment_DIS, 12
invlogit, 12
logit, 13
LoTTA_fuzzy_BIN, 13
LoTTA_fuzzy_CONT, 17
LoTTA_plot_effect, 21
LoTTA_plot_effect_CONT, 24
LoTTA_plot_effect_DIS, 25
LoTTA_plot_outcome, 27
LoTTA_plot_treatment, 30
LoTTA_sharp_BIN, 33
LoTTA_sharp_CONT, 36
LoTTA_treatment, 39
normalize_cont_x, 43
normalize_cont_y, 43
normalize_dis_x, 44
optimal_k, 44
optimal_k_bin, 45
plot_outcome_BIN, 46
plot_outcome_CONT, 48
```