Title: | Likelihood Ratio Tests and Confidence Intervals |
Version: | 1.3.0 |
Maintainer: | Greg McMahan <gmcmacran@gmail.com> |
Description: | A collection of hypothesis tests and confidence intervals based on the likelihood ratio https://en.wikipedia.org/wiki/Likelihood-ratio_test. |
License: | GPL-3 |
Encoding: | UTF-8 |
Imports: | stats, rlang, statmod, stringr, EnvStats |
RoxygenNote: | 7.3.2 |
Suggests: | covr, testthat, lmtest, knitr, rmarkdown, emplik, emplik2, datasets |
VignetteBuilder: | knitr |
URL: | https://github.com/gmcmacran/LRTesteR |
BugReports: | https://github.com/gmcmacran/LRTesteR/issues |
NeedsCompilation: | no |
Packaged: | 2025-05-24 19:34:49 UTC; ixi_eulogy_ixi |
Author: | Greg McMahan [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2025-05-24 19:50:02 UTC |
Test the shape1 parameter of a beta distribution.
Description
Test the shape1 parameter of a beta distribution.
Usage
beta_shape1_one_sample(x, shape1, alternative = "two.sided", conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
shape1 |
a number indicating the tested value of the shape1 parameter. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rbeta(100, shape1 = 1, shape2 = 2)
beta_shape1_one_sample(x, 1, "two.sided")
# Null is false
set.seed(1)
x <- rbeta(100, shape1 = 3, shape2 = 2)
beta_shape1_one_sample(x, 1, "greater")
Test the equality of shape 1 parameters of beta distributions.
Description
Test the equality of shape 1 parameters of beta distributions.
Usage
beta_shape1_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All shape1s are equal. (shape1_1 = shape1_2 ... shape1_k).
Alternative: At least one shape1 is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rbeta(150, 1, 2)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
beta_shape1_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rbeta(50, 1, 2), rbeta(50, 2, 2), rbeta(50, 3, 2))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
beta_shape1_one_way(x, fctr, .95)
Test the shape2 parameter of a beta distribution.
Description
Test the shape2 parameter of a beta distribution.
Usage
beta_shape2_one_sample(x, shape2, alternative = "two.sided", conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
shape2 |
a number indicating the tested value of the shape2 parameter. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rbeta(100, shape1 = 1, shape2 = 1)
beta_shape2_one_sample(x, 1, "two.sided")
# Null is false
set.seed(1)
x <- rbeta(100, shape1 = 1, shape2 = 3)
beta_shape2_one_sample(x, 1, "greater")
Test the equality of shape 2 parameters of beta distributions.
Description
Test the equality of shape 2 parameters of beta distributions.
Usage
beta_shape2_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All shape2s are equal. (shape2_1 = shape2_2 ... shape2_k).
Alternative: At least one shape2 is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rbeta(150, 2, 2)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
beta_shape2_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rbeta(50, 2, 1), rbeta(50, 2, 2), rbeta(50, 2, 3))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
beta_shape2_one_way(x, fctr, .95)
Test the p parameter of a binomial distribution.
Description
Test the p parameter of a binomial distribution.
Usage
binomial_p_one_sample(x, n, p, alternative = "two.sided", conf.level = 0.95)
Arguments
x |
Number of successes. |
n |
Number of trials. |
p |
Hypothesized probability of success. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true. 52 successes. 100 trials
binomial_p_one_sample(52, 100, .50, "two.sided")
# Null is false. 75 successes. 100 trials
binomial_p_one_sample(75, 100, .50, "two.sided")
Test the equality of p parameters of binomial distributions.
Description
Test the equality of p parameters of binomial distributions.
Usage
binomial_p_one_way(x, n, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector indicating number of successes per group. |
n |
a numeric vector indicating number of attempts per group. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true.
set.seed(1)
x <- rbinom(3, 50, .5)
n <- rep(50, length(x))
fctr <- factor(1:length(x))
binomial_p_one_way(x, n, fctr, .95)
# Null is false
set.seed(1)
x <- rbinom(3, 50, c(.25, .50, .75))
n <- rep(50, length(x))
fctr <- factor(1:length(x))
binomial_p_one_way(x, n, fctr, .95)
Test the location parameter of a cauchy distribution.
Description
Test the location parameter of a cauchy distribution.
Usage
cauchy_location_one_sample(
x,
location,
alternative = "two.sided",
conf.level = 0.95
)
Arguments
x |
a numeric vector of data. |
location |
a number indicating the tested value of the location parameter. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rcauchy(n = 100, location = 1, scale = 2)
cauchy_location_one_sample(x, 1, "two.sided")
# Null is false
set.seed(1)
x <- rcauchy(n = 100, location = 3, scale = 2)
cauchy_location_one_sample(x, 1, "greater")
Test the equality of location parameters of cauchy distributions.
Description
Test the equality of location parameters of cauchy distributions.
Usage
cauchy_location_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
All locations are equal. (location_1 = location_2 ... location_k).
Alternative: At least one location is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rcauchy(n = 150, location = 1, scale = 2)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
cauchy_location_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rcauchy(50, 1, 2), rcauchy(50, 2, 2), rcauchy(50, 3, 2))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
cauchy_location_one_way(x, fctr, .95)
Test the scale parameter of a cauchy distribution.
Description
Test the scale parameter of a cauchy distribution.
Usage
cauchy_scale_one_sample(x, scale, alternative = "two.sided", conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
scale |
a number indicating the tested value of the scale parameter. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rcauchy(n = 100, location = 1, scale = 2)
cauchy_scale_one_sample(x, 2, "two.sided")
# Null is false
set.seed(1)
x <- rcauchy(n = 100, location = 3, scale = 2)
cauchy_scale_one_sample(x, 1, "greater")
Test the equality of scale parameters of cauchy distributions.
Description
Test the equality of scale parameters of cauchy distributions.
Usage
cauchy_scale_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All scales are equal. (scale_1 = scale_2 ... scale_k).
Alternative: At least one scale is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rcauchy(n = 150, 1, 2)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
cauchy_scale_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rcauchy(50, 2, 1), rcauchy(50, 2, 2), rcauchy(50, 2, 3))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
cauchy_scale_one_way(x, fctr, .95)
Test the mean parameter of an unknown distribution.
Description
Test the mean parameter of an unknown distribution.
Usage
empirical_mu_one_sample(x, mu, alternative = "two.sided", conf.level = 0.95)
Arguments
x |
a numeric vector. |
mu |
a number indicating the tested value of mu. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Owen. Empirical Likelihood. Chapman & Hall/CRC.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rnorm(25, 0, 1)
empirical_mu_one_sample(x, 0, "two.sided")
# Null is false
set.seed(1)
x <- rnorm(25, 2, 1)
empirical_mu_one_sample(x, 1, "greater")
Test the equality of means of an unknown distribution.
Description
Test the equality of means of an unknown distribution.
Usage
empirical_mu_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All mus are equal. (mu1 = mu2 ... muk).
Alternative: At least one mu is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Owen. Empirical Likelihood. Chapman & Hall/CRC.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rnorm(75, 1, 1)
fctr <- c(rep(1, 25), rep(2, 25), rep(3, 25))
fctr <- factor(fctr, levels = c("1", "2", "3"))
empirical_mu_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rnorm(25, 1, 1), rnorm(25, 2, 1), rnorm(25, 3, 1))
fctr <- c(rep(1, 25), rep(2, 25), rep(3, 25))
fctr <- factor(fctr, levels = c("1", "2", "3"))
empirical_mu_one_way(x, fctr, .95)
Test a quantile of an unknown distribution.
Description
Test a quantile of an unknown distribution.
Usage
empirical_quantile_one_sample(
x,
Q,
value,
alternative = "two.sided",
conf.level = 0.95
)
Arguments
x |
a numeric vector. |
Q |
The quantile. A single numeric number. (.50 is median.) |
value |
A single numeric value that is the hypothesized Q quantile. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Details
For confidence intervals, an endpoint may be outside the observed range of x. In this case, NA is returned. Reducing confidence or collecting more data will make the CI computable.
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Owen. Empirical Likelihood. Chapman & Hall/CRC.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rnorm(25, 0, 1)
empirical_quantile_one_sample(x, .5, 0, "two.sided")
# Null is false
set.seed(1)
x <- rnorm(25, 2, 1)
empirical_quantile_one_sample(x, .5, 1, "greater")
Test the equality of a quantile from an unknown distribution.
Description
Test the equality of a quantile from an unknown distribution.
Usage
empirical_quantile_one_way(x, Q, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector. |
Q |
The quantile. A single numeric number. (.50 is median.) |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: Quantiles are equal. (Q1 = Q2 ... Qk).
Alternative: At least one quantile is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Owen. Empirical Likelihood. Chapman & Hall/CRC.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rnorm(75, 1, 1)
fctr <- c(rep(1, 25), rep(2, 25), rep(3, 25))
fctr <- factor(fctr, levels = c("1", "2", "3"))
empirical_quantile_one_way(x, .50, fctr, .95)
# Null is false
set.seed(1)
x <- c(rnorm(25, 1, 1), rnorm(25, 2, 1), rnorm(25, 3, 1))
fctr <- c(rep(1, 25), rep(2, 25), rep(3, 25))
fctr <- factor(fctr, levels = c("1", "2", "3"))
empirical_quantile_one_way(x, .50, fctr, .95)
Test the rate parameter of a exponential distribution.
Description
Test the rate parameter of a exponential distribution.
Usage
exponential_rate_one_sample(
x,
rate,
alternative = "two.sided",
conf.level = 0.95
)
Arguments
x |
a numeric vector of data. |
rate |
a number indicating the tested value of rate. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rexp(100, 1)
exponential_rate_one_sample(x, 1, "two.sided")
# Null is false
set.seed(1)
x <- rexp(100, 3)
exponential_rate_one_sample(x, 1, "greater")
Test the equality of rate parameters of exponential distributions.
Description
Test the equality of rate parameters of exponential distributions.
Usage
exponential_rate_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All lambdas are equal. (lambda_1 = lambda_2 ... lambda_k).
Alternative: At least one lambda is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rexp(150, 1)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
exponential_rate_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rexp(50, 1), rexp(50, 2), rexp(50, 3))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
exponential_rate_one_way(x, fctr, .95)
Test the rate parameter of a gamma distribution.
Description
Test the rate parameter of a gamma distribution.
Usage
gamma_rate_one_sample(x, rate, alternative = "two.sided", conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
rate |
a number indicating the tested value of the rate parameter. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rgamma(100, shape = 1, rate = 1)
gamma_rate_one_sample(x, 1, "two.sided")
# Null is false
set.seed(1)
x <- rgamma(100, shape = 1, rate = 2)
gamma_rate_one_sample(x, 1, "greater")
Test the equality of rate parameters of gamma distributions.
Description
Test the equality of rate parameters of gamma distributions.
Usage
gamma_rate_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All rates are equal. (rate_1 = rate_2 ... rate_k).
Alternative: At least one rate is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rgamma(150, 1, 2)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gamma_rate_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rgamma(50, 2, 1), rgamma(50, 2, 2), rgamma(50, 2, 3))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gamma_rate_one_way(x, fctr, .95)
Test the scale parameter of a gamma distribution.
Description
Test the scale parameter of a gamma distribution.
Usage
gamma_scale_one_sample(x, scale, alternative = "two.sided", conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
scale |
a number indicating the tested value of the scale parameter. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rgamma(100, shape = 1, scale = 2)
gamma_scale_one_sample(x, 2, "two.sided")
# Null is false
set.seed(1)
x <- rgamma(100, shape = 1, scale = 2)
gamma_scale_one_sample(x, 1, "greater")
Test the equality of scale parameters of gamma distributions.
Description
Test the equality of scale parameters of gamma distributions.
Usage
gamma_scale_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: Null: All scales are equal. (scale_1 = scale_2 ... scale_k).
Alternative: At least one scale is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rgamma(150, 1, scale = 2)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gamma_scale_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rgamma(50, 2, scale = 1), rgamma(50, 2, scale = 2), rgamma(50, 2, scale = 3))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gamma_scale_one_way(x, fctr, .95)
Test the shape parameter of a gamma distribution.
Description
Test the shape parameter of a gamma distribution.
Usage
gamma_shape_one_sample(x, shape, alternative = "two.sided", conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
shape |
a number indicating the tested value of the shape parameter. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rgamma(100, shape = 1, scale = 2)
gamma_shape_one_sample(x, 1, "two.sided")
# Null is false
set.seed(1)
x <- rgamma(100, shape = 3, scale = 2)
gamma_shape_one_sample(x, 1, "greater")
Test the equality of shape parameters of gamma distributions.
Description
Test the equality of shape parameters of gamma distributions.
Usage
gamma_shape_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All shapes are equal. (shape_1 = shape_2 ... shape_k).
Alternative: At least one shape is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rgamma(150, 2, 2)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gamma_shape_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rgamma(50, 1, 2), rgamma(50, 2, 2), rgamma(50, 3, 2))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gamma_shape_one_way(x, fctr, .95)
Test the mean of a gaussian distribution.
Description
Test the mean of a gaussian distribution.
Usage
gaussian_mu_one_sample(x, mu, alternative = "two.sided", conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
mu |
a number indicating the tested value of mu. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rnorm(100, 0, 1)
gaussian_mu_one_sample(x, 0, "two.sided")
# Null is false
set.seed(1)
x <- rnorm(100, 3, 1)
gaussian_mu_one_sample(x, 0, "greater")
Test the equality of means of gaussian distributions.
Description
Test the equality of means of gaussian distributions.
Usage
gaussian_mu_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All mus are equal. (mu1 = mu2 ... muk).
Alternative: At least one mu is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rnorm(150, 1, 1)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gaussian_mu_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rnorm(50, 1, 1), rnorm(50, 2, 1), rnorm(50, 3, 1))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gaussian_mu_one_way(x, fctr, .95)
Test the variance of a gaussian distribution.
Description
Test the variance of a gaussian distribution.
Usage
gaussian_variance_one_sample(
x,
sigma.squared,
alternative = "two.sided",
conf.level = 0.95
)
Arguments
x |
a numeric vector of data. |
sigma.squared |
a number indicating the tested value of sigma squared. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rnorm(100, 0, 1)
gaussian_variance_one_sample(x, 1, "two.sided")
# Null is false
set.seed(1)
x <- rnorm(100, 0, 2)
gaussian_variance_one_sample(x, 1, "greater")
Test the equality of variance parameters of gaussian distributions.
Description
Test the equality of variance parameters of gaussian distributions.
Usage
gaussian_variance_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All variances are equal. (o^2_1 = o^2_2 ... o^2_k).
Alternative: At least one variance is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rnorm(150, 1, 1)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gaussian_variance_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rnorm(50, 1, 1), rnorm(50, 1, 2), rnorm(50, 1, 3))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
gaussian_variance_one_way(x, fctr, .95)
Test the dispersion parameter of an inverse gaussian distribution.
Description
Test the dispersion parameter of an inverse gaussian distribution.
Usage
inverse_gaussian_dispersion_one_sample(
x,
dispersion,
alternative = "two.sided",
conf.level = 0.95
)
Arguments
x |
a numeric vector of data. |
dispersion |
a number indicating the tested value of the dispersion parameter. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
library(statmod)
# Null is true
set.seed(1)
x <- rinvgauss(n = 100, mean = 1, dispersion = 2)
inverse_gaussian_dispersion_one_sample(x, 2, "two.sided")
# Null is false
set.seed(1)
x <- rinvgauss(n = 100, mean = 1, dispersion = 2)
inverse_gaussian_dispersion_one_sample(x, 1, "greater")
Test the equality of dispersion parameters of inverse gaussian distributions.
Description
Test the equality of dispersion parameters of inverse gaussian distributions.
Usage
inverse_gaussian_dispersion_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: Null: All dispersion parameters are equal. (dispersion_1 = dispersion_2 ... dispersion_k).
Alternative: At least one dispersion is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
library(statmod)
# Null is true
set.seed(1)
x <- rinvgauss(n = 150, mean = 1, dispersion = 2)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
inverse_gaussian_dispersion_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(
rinvgauss(n = 50, mean = 1, dispersion = 1),
rinvgauss(n = 50, mean = 1, dispersion = 3),
rinvgauss(n = 50, mean = 1, dispersion = 4)
)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
inverse_gaussian_dispersion_one_way(x, fctr, .95)
Test the mean of an inverse gaussian distribution.
Description
Test the mean of an inverse gaussian distribution.
Usage
inverse_gaussian_mu_one_sample(
x,
mu,
alternative = "two.sided",
conf.level = 0.95
)
Arguments
x |
a numeric vector of data. |
mu |
a number indicating the tested value of mu. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
library(statmod)
# Null is true
set.seed(1)
x <- rinvgauss(n = 100, mean = 1, shape = 2)
inverse_gaussian_mu_one_sample(x, 1, "two.sided")
# Null is false
set.seed(1)
x <- rinvgauss(n = 100, mean = 3, shape = 2)
inverse_gaussian_mu_one_sample(x, 1, "greater")
Test the equality of means of inverse gaussian distributions.
Description
Test the equality of means of inverse gaussian distributions.
Usage
inverse_gaussian_mu_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All mus are equal. (mu1 = mu2 ... muk).
Alternative: At least one mu is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
library(statmod)
# Null is true
set.seed(1)
x <- rinvgauss(n = 150, mean = 1, shape = 2)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
inverse_gaussian_mu_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(
rinvgauss(n = 50, mean = 1, shape = 2),
rinvgauss(n = 50, mean = 2, shape = 2),
rinvgauss(n = 50, mean = 3, shape = 2)
)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
inverse_gaussian_mu_one_way(x, fctr, .95)
Test the shape parameter of an inverse gaussian distribution.
Description
Test the shape parameter of an inverse gaussian distribution.
Usage
inverse_gaussian_shape_one_sample(
x,
shape,
alternative = "two.sided",
conf.level = 0.95
)
Arguments
x |
a numeric vector of data. |
shape |
a number indicating the tested value of the shape parameter. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
library(statmod)
# Null is true
set.seed(1)
x <- rinvgauss(n = 100, mean = 1, shape = 2)
inverse_gaussian_shape_one_sample(x, 2, "two.sided")
# Null is false
set.seed(1)
x <- rinvgauss(n = 100, mean = 1, shape = 2)
inverse_gaussian_shape_one_sample(x, 1, "greater")
Test the equality of shape parameters of inverse gaussian distributions.
Description
Test the equality of shape parameters of inverse gaussian distributions.
Usage
inverse_gaussian_shape_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: Null: All shapes are equal. (shape_1 = shape_2 ... shape_k).
Alternative: At least one shape is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
library(statmod)
# Null is true
set.seed(1)
x <- rinvgauss(n = 150, mean = 1, shape = 2)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
inverse_gaussian_shape_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(
rinvgauss(n = 50, mean = 1, shape = 1),
rinvgauss(n = 50, mean = 1, shape = 3),
rinvgauss(n = 50, mean = 1, shape = 4)
)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
inverse_gaussian_shape_one_way(x, fctr, .95)
Test the mean of a log normal distribution.
Description
Test the mean of a log normal distribution.
Usage
log_normal_mu_one_sample(x, mu, alternative = "two.sided", conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
mu |
a number indicating the tested value of mu. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rlnorm(100, 0, 1)
log_normal_mu_one_sample(x, 0, "two.sided")
# Null is false
set.seed(1)
x <- rlnorm(100, 3, 1)
log_normal_mu_one_sample(x, 0, "greater")
Test the equality of means of log normal distributions.
Description
Test the equality of means of log normal distributions.
Usage
log_normal_mu_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All mus are equal. (mu1 = mu2 ... muk).
Alternative: At least one mu is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rlnorm(150, 1, 1)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
log_normal_mu_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rlnorm(50, 1, 1), rlnorm(50, 2, 1), rlnorm(50, 3, 1))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
log_normal_mu_one_way(x, fctr, .95)
Test the variance of a log normal distribution.
Description
Test the variance of a log normal distribution.
Usage
log_normal_variance_one_sample(
x,
sigma.squared,
alternative = "two.sided",
conf.level = 0.95
)
Arguments
x |
a numeric vector of data. |
sigma.squared |
a number indicating the tested value of sigma squared. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rlnorm(100, 0, 1)
log_normal_variance_one_sample(x, 1, "two.sided")
# Null is false
set.seed(1)
x <- rlnorm(100, 0, 2)
log_normal_variance_one_sample(x, 1, "greater")
Test the equality of variance parameters of log normal distributions.
Description
Test the equality of variance parameters of log normal distributions.
Usage
log_normal_variance_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
Null: All variances are equal. (o^2_1 = o^2_2 ... o^2_k).
Alternative: At least one variance is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rlnorm(150, 1, 1)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
log_normal_variance_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rlnorm(50, 1, 1), rlnorm(50, 1, 2), rlnorm(50, 1, 3))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
log_normal_variance_one_way(x, fctr, .95)
Test the p parameter of a negative binomial distribution.
Description
Test the p parameter of a negative binomial distribution.
Usage
negative_binomial_p_one_sample(
num_failures,
num_successes,
p,
alternative = "two.sided",
conf.level = 0.95
)
Arguments
num_failures |
Number of failures. |
num_successes |
Number of successes. |
p |
Hypothesized probability of success. |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true. 48 failures before 52 successes.
negative_binomial_p_one_sample(48, 52, .50, "two.sided")
# Null is false. 25 failures before 75 successes.
negative_binomial_p_one_sample(25, 75, .50, "two.sided")
Test the equality of p parameters of negative binomial distributions.
Description
Test the equality of p parameters of negative binomial distributions.
Usage
negative_binomial_p_one_way(
num_failures,
num_successes,
fctr,
conf.level = 0.95
)
Arguments
num_failures |
a numeric vector indicating number of failures per group. |
num_successes |
a numeric vector indicating number of successes per group. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true.
set.seed(1)
num_failures <- rnbinom(3, 50, .5)
num_successes <- rep(50, length(num_failures))
fctr <- factor(1:length(num_failures))
negative_binomial_p_one_way(num_failures, num_successes, fctr, .95)
# Null is false
set.seed(1)
num_failures <- rnbinom(3, 50, c(.25, .50, .75))
num_successes <- rep(50, length(num_failures))
fctr <- factor(1:length(num_failures))
negative_binomial_p_one_way(num_failures, num_successes, fctr, .95)
Test the lambda parameter of a poisson distribution.
Description
Test the lambda parameter of a poisson distribution.
Usage
poisson_lambda_one_sample(
x,
lambda,
alternative = "two.sided",
conf.level = 0.95
)
Arguments
x |
a numeric vector of data. |
lambda |
a number indicating the tested value of lambda |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". |
conf.level |
confidence level of the likelihood interval. |
Value
An S3 class containing the test statistic, p value, likelihood based confidence interval, and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rpois(100, 1)
poisson_lambda_one_sample(x, 1, "two.sided")
# Null is false
set.seed(1)
x <- rpois(100, 2)
poisson_lambda_one_sample(x, 1, "greater")
Test the equality of lambda parameters of poisson distributions.
Description
Test the equality of lambda parameters of poisson distributions.
Usage
poisson_lambda_one_way(x, fctr, conf.level = 0.95)
Arguments
x |
a numeric vector of data. |
fctr |
a factor vector indicating groups. |
conf.level |
overall confidence level of the likelihood intervals. Uses Bonferroni correction. |
Details
All lambdas are equal. (lambda_1 = lambda_2 ... lambda_k).
Alternative: At least one lambda is not equal.
Value
An S3 class containing the test statistic, p value, list of likelihood based confidence intervals, overall confidence level, individual confidence level of each interval and alternative hypothesis.
Source
Yudi Pawitan. In All Likelihood. Oxford University Press.
Hodd, McKean, and Craig. Introduction to Mathematical Statistics. Pearson.
Examples
library(LRTesteR)
# Null is true
set.seed(1)
x <- rpois(150, 1)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
poisson_lambda_one_way(x, fctr, .95)
# Null is false
set.seed(1)
x <- c(rpois(50, 1), rpois(50, 2), rpois(50, 3))
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
poisson_lambda_one_way(x, fctr, .95)
Print results of tests.
Description
Print results of tests.
Usage
## S3 method for class 'lrtest'
print(x, ...)
Arguments
x |
a test from LRTesteR. |
... |
arguments passed to other methods. |
Examples
library(LRTesteR)
set.seed(1)
x <- rnorm(100, 0, 1)
test <- gaussian_mu_one_sample(x, 0, "two.sided")
print(test)
set.seed(1)
x <- rnorm(150, 1, 1)
fctr <- c(rep(1, 50), rep(2, 50), rep(3, 50))
fctr <- factor(fctr, levels = c("1", "2", "3"))
test <- gaussian_mu_one_way(x, fctr, .95)
print(test)