Package 'LDATS'

July 21, 2025

Title Latent Dirichlet Allocation Coupled with Time Series Analyses **Version** 0.3.0

Author Juniper L. Simonis [aut, cre] (ORCID:

Erica M. Christensen [aut] (ORCID:

<https://orcid.org/0000-0001-9798-0460>),

<https://orcid.org/0000-0002-5635-2502>),

```
Description Combines Latent Dirichlet Allocation (LDA) and Bayesian multinomial time series meth-
     ods in a two-stage analysis to quantify dynamics in high-dimensional temporal data. LDA de-
     composes multivariate data into lower-dimension latent groupings, whose relative propor-
     tions are modeled using generalized Bayesian time series models that include abrupt change-
     points and smooth dynamics. The methods are de-
     scribed in Blei et al. (2003) <doi:10.1162/jmlr.2003.3.4-5.993>, West-
     ern and Kleykamp (2004) <doi:10.1093/pan/mph023>, Venables and Ripley (2002, ISBN-
     13:978-0387954578), and Christensen et al. (2018) <doi:10.1002/ecy.2373>.
URL https://weecology.github.io/LDATS/,
     https://github.com/weecology/LDATS
BugReports https://github.com/weecology/LDATS/issues
Depends R (>= 3.5.0)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports coda, digest, extraDistr, graphics, grDevices, lubridate,
     magrittr, memoise, methods, mytnorm, nnet, progress, stats,
     topicmodels, viridis
Suggests knitr, pkgdown, rmarkdown, testthat, vdiffr
SystemRequirements gsl
VignetteBuilder knitr
RoxygenNote 7.2.3
NeedsCompilation no
```

David J. Harris [aut] (ORCID: https://orcid.org/0000-0003-3332-9307),

2 Contents

Renata M. Diaz [aut] (ORCID: https://orcid.org/0000-0003-0803-4734), Hao Ye [aut] (ORCID: https://orcid.org/0000-0001-6728-7745), Ethan P. White [aut] (ORCID: https://orcid.org/0000-0002-6026-8530), Weecology [cph]

Maintainer Juniper L. Simonis < juniper.simonis@weecology.org>

Repository CRAN

Date/Publication 2023-09-19 09:10:06 UTC

Contents

AICC
autocorr_plot
check_changepoints
check_control
check_document_covariate_table
check_document_term_table
$check_formula $
$check_formulas \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$check_LDA_models $
$check_nchange points \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
$check_seeds \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
check_timename
check_topics
check_weights
count_trips
$diagnose_ptMCMC \ \dots \ \dots \ 14$
document_weights
$ecdf_plot $
est_changepoints
est_regressors
$expand_TS \dots \dots \dots \dots \dots \dots \dots \dots \dots $
$iftrue \dots \dots$
jornada
LDATS
LDA_msg
LDA_set
LDA_set_control
LDA_TS
LDA_TS_control
logLik.LDA_VEM
$logLik.multinom_TS_fit $
$logLik.TS_fit \ldots \ldots 31$
logsumexp
memoise_fun
messageq

Contents 3

mirror_vcov
modalvalue
multinom_TS
multinom_TS_chunk
normalize
package_chunk_fits
package_LDA_set
package_LDA_TS
package_TS
package_TS_on_LDA
plot.LDA_set
plot.LDA_TS
plot.LDA_VEM
plot.TS_fit
posterior_plot
prep_chunks
prep_cpts
prep_ids
prep_LDA_control
prep_pbar
prep_proposal_dist
prep_ptMCMC_inputs
prep_saves
prep_temp_sequence
prep_TS_data
print.LDA_TS
print.TS_fit
print.TS_on_LDA
print_model_run_message
proposed_step_mods
rho_lines
rodents
select_LDA
select_TS
set_gamma_colors
set_LDA_plot_colors
set_LDA_TS_plot_cols
set_rho_hist_colors
set_TS_summary_plot_cols
sim_LDA_data
sim LDA TS data
softmax
step_chains
summarize_etas
summarize_rhos
swap_chains
trace_nlot 83

4 autocorr_plot

TS_on	_LDA mmary_plo														
			 		 										89
15_016															
TS die	agnostics_p	olot .	 		 										88
TS_co	ntrol		 		 										86

AICc

Calculate AICc

Description

Calculate the small sample size correction of AIC for the input object.

Usage

```
AICc(object)
```

Arguments

object

An object for which AIC and logLik have defined methods.

Value

numeric value of AICc.

Examples

```
dat <- data.frame(y = rnorm(50), x = rnorm(50))
mod <- lm(dat)
AICc(mod)</pre>
```

autocorr_plot

Produce the autocorrelation panel for the TS diagnostic plot of a parameter

Description

Produce a vanilla ACF plot using acf for the parameter of interest (rho or eta) as part of TS_diagnostics_plot.

```
autocorr_plot(x)
```

check_changepoints 5

Arguments

Χ

Vector of parameter values drawn from the posterior distribution, indexed to the iteration by the order of the vector.

Value

NULL.

Examples

```
autocorr_plot(rnorm(100, 0, 1))
```

check_changepoints

Check that a set of change point locations is proper

Description

Check that the change point locations are numeric and conformable to interger values.

Usage

```
check_changepoints(changepoints = NULL)
```

Arguments

changepoints Change point locations to evaluate.

Value

An error message is thrown if changepoints are not proper, else NULL.

```
check_changepoints(100)
```

check_control

Check that a control list is proper

Description

Check that a list of controls is of the right class.

Usage

```
check_control(control, eclass = "list")
```

Arguments

control

Control list to evaluate.

eclass

Expected class of the list to be evaluated.

Value

an error message is thrown if the input is improper, otherwise NULL.

Examples

```
check_control(list())
```

check_document_covariate_table

Check that the document covariate table is proper

Description

Check that the table of document-level covariates is conformable to a data frame and of the right size (correct number of documents) for the document-topic output from the LDA models.

```
check_document_covariate_table(
  document_covariate_table,
  LDA_models = NULL,
  document_term_table = NULL
)
```

Arguments

```
document_covariate_table
```

Document covariate table to evaluate.

LDA_models

Reference LDA model list (class LDA_set) that includes as its first element a properly fitted LDA model with a gamma slot with the document-topic distribu-

tion.

document_term_table

Optional input for checking when LDA_models is NULL

Value

An error message is thrown if document_covariate_table is not proper, else NULL.

Examples

```
data(rodents)
check_document_covariate_table(rodents$document_covariate_table)
```

```
check_document_term_table
```

Check that document term table is proper

Description

Check that the table of observations is conformable to a matrix of integers.

Usage

```
check_document_term_table(document_term_table)
```

Arguments

```
document_term_table
```

Table of observation count data (rows: documents, columns: terms. May be a class matrix or data.frame but must be conformable to a matrix of integers, as verified by check_document_term_table.

Value

an error message is thrown if the input is improper, otherwise NULL.

```
data(rodents)
check_document_term_table(rodents$document_term_table)
```

8 check_formulas

_ .	formu]	۱ ـ
cneck	TORMIL	ıa

Check that a formula is proper

Description

Check that formula is actually a formula and that the response and predictor variables are all included in data.

Usage

```
check_formula(data, formula)
```

Arguments

data data. frame including [1] the time variable (indicated in timename), [2] the pre-

dictor variables (required by formula) and [3], the multinomial response variable (indicated in formula) as verified by check_timename and check_formula. Note that the response variables should be formatted as a data.frame object named as indicated by the response entry in the control list, such as gamma

for a standard TS analysis on LDA output.

formula formula to evaluate.

Value

An error message is thrown if formula is not proper, else NULL.

Examples

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
check_formula(data, gamma ~ 1)</pre>
```

check_formulas

Check that formulas vector is proper and append the response variable

Description

Check that the vector of formulas is actually formatted as a vector of formula objects and that the predictor variables are all included in the document covariate table.

check_LDA_models 9

Usage

```
check_formulas(formulas, document_covariate_table, control = list())
```

Arguments

formulas Vector of the formulas to evaluate.

document_covariate_table

Document covariate table used to evaluate the availability of the data required

by the formula inputs.

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values

not input assume defaults set by TS_control.

Value

An error message is thrown if formulas is not proper, else NULL.

Examples

```
data(rodents)
check_formulas(~ 1, rodents$document_covariate_table)
```

check_LDA_models

Check that LDA model input is proper

Description

Check that the LDA_models input is either a set of LDA models (class LDA_set, produced by LDA_set) or a singular LDA model (class LDA, produced by LDA).

Usage

```
check_LDA_models(LDA_models)
```

Arguments

LDA_models List of LDA models or singular LDA model to evaluate.

Value

An error message is thrown if LDA_models is not proper, else NULL.

10 check_seeds

Examples

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDAs <- LDA_set(document_term_table, topics = 2, nseeds = 1)
LDA_models <- select_LDA(LDAs)
check_LDA_models(LDA_models)</pre>
```

check_nchangepoints

Check that nchangepoints vector is proper

Description

Check that the vector of numbers of changepoints is conformable to integers greater than 1.

Usage

```
check_nchangepoints(nchangepoints)
```

Arguments

nchangepoints Vector of the number of changepoints to evaluate.

Value

An error message is thrown if nchangepoints is not proper, else NULL.

Examples

```
check_nchangepoints(0)
check_nchangepoints(2)
```

check_seeds

Check that nseeds value or seeds vector is proper

Description

Check that the vector of numbers of seeds is conformable to integers greater than 0.

```
check_seeds(nseeds)
```

check_timename 11

Arguments

nseeds

integer number of seeds (replicate starts) to use for each value of topics in the LDAs. Must be conformable to a positive integer value.

Value

an error message is thrown if the input is improper, otherwise NULL.

Examples

```
check_seeds(1)
check_seeds(2)
```

check_timename

Check that the time vector is proper

Description

Check that the vector of time values is included in the document covariate table and that it is either a integer-conformable or a date. If it is a date, the input is converted to an integer, resulting in the timestep being 1 day, which is often not desired behavior.

Usage

```
check_timename(document_covariate_table, timename)
```

Arguments

document_covariate_table

Document covariate table used to query for the time column.

timename

Column name for the time variable to evaluate.

Value

An error message is thrown if timename is not proper, else NULL.

```
data(rodents)
check_timename(rodents$document_covariate_table, "newmoon")
```

check_weights

check_topics

Check that topics vector is proper

Description

Check that the vector of numbers of topics is conformable to integers greater than 1.

Usage

```
check_topics(topics)
```

Arguments

topics

Vector of the number of topics to evaluate for each model. Must be conformable to integer values.

Value

an error message is thrown if the input is improper, otherwise NULL.

Examples

```
check_topics(2)
```

check_weights

Check that weights vector is proper

Description

Check that the vector of document weights is numeric and positive and inform the user if the average weight isn't 1.

Usage

```
check_weights(weights)
```

Arguments

weights

Vector of the document weights to evaluate, or TRUE for triggering internal weighting by document sizes.

Value

An error message is thrown if weights is not proper, else NULL.

count_trips 13

Examples

```
check_weights(1)
wts <- runif(100, 0.1, 100)
check_weights(wts)
wts2 <- wts / mean(wts)
check_weights(wts2)
check_weights(TRUE)</pre>
```

count_trips

Count trips of the ptMCMC particles

Description

Count the full trips (from one extreme temperature chain to the other and back again; Katzgraber *et al.* 2006) for each of the ptMCMC particles, as identified by their id on initialization.

This function was designed to work within TS and process the output of est_changepoints as a component of diagnose_ptMCMC, but has been generalized and would work with any output from a ptMCMC as long as ids is formatted properly.

Usage

```
count_trips(ids)
```

Arguments

ids

matrix of identifiers of the particles in each chain for each iteration of the ptM-CMC algorithm (rows: chains, columns: iterations).

Value

list of [1] vector of within particle trip counts (\$trip_counts), and [2] vector of within-particle average trip rates (\$trip_rates).

References

Katzgraber, H. G., S. Trebst, D. A. Huse. And M. Troyer. 2006. Feedback-optimized parallel tempering Monte Carlo. *Journal of Statistical Mechanics: Theory and Experiment* **3**:P03018 link.

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma</pre>
```

14 diagnose_ptMCMC

diagnose_ptMCMC

Calculate ptMCMC summary diagnostics

Description

Summarize the step and swap acceptance rates as well as trip metrics from the saved output of a ptMCMC estimation.

Usage

```
diagnose_ptMCMC(ptMCMCout)
```

Arguments

ptMCMCout

Named list of saved data objects from a ptMCMC estimation including elements named step_accepts (matrix of logical outcomes of each step; rows: chains, columns: iterations), swap_accepts (matrix of logical outcomes of each swap; rows: chain pairs, columns: iterations), and ids (matrix of particle identifiers; rows: chains, columns: iterations). ptMCMCout = NULL indicates no use of ptMCMC and so the function returns NULL.

Details

Within-chain step acceptance rates are averaged for each of the chains from the raw step acceptance histories (ptMCMCout\$step_accepts) and between-chain swap acceptance rates are similarly averaged for each of the neighboring pairs of chains from the raw swap acceptance histories (ptMCMCout\$swap_accepts). Trips are defined as movement from one extreme chain to the other and back again (Katzgraber *et al.* 2006). Trips are counted and turned to per-iteration rates using count_trips.

This function was first designed to work within TS and process the output of est_changepoints, but has been generalized and would work with any output from a ptMCMC as long as ptMCMCout is formatted properly.

Value

list of [1] within-chain average step acceptance rates (\$step_acceptance_rate), [2] average between-chain swap acceptance rates (\$swap_acceptance_rate), [3] within particle trip counts (\$trip_counts), and [4] within-particle average trip rates (\$trip_rates).

document_weights 15

References

Katzgraber, H. G., S. Trebst, D. A. Huse. And M. Troyer. 2006. Feedback-optimized parallel tempering Monte Carlo. *Journal of Statistical Mechanics: Theory and Experiment* **3**:P03018 link.

Examples

document_weights

Calculate document weights for a corpus

Description

Simple calculation of document weights based on the average number of words in a document within the corpus (mean value = 1).

Usage

```
document_weights(document_term_table)
```

Arguments

```
document_term_table
```

Table of observation count data (rows: documents, columns: terms. May be a class matrix or data.frame but must be conformable to a matrix of integers, as verified by check_document_term_table.

Value

Vector of weights, one for each document, with the average sample receiving a weight of 1.0.

```
data(rodents)
document_weights(rodents$document_term_table)
```

16 est_changepoints

ecdf_plot	Produce the posterior distribution ECDF panel for the TS diagnostic plot of a parameter

Description

Produce a vanilla ECDF (empirical cumulative distribution function) plot using ecdf for the parameter of interest (rho or eta) as part of TS_diagnostics_plot. A horizontal line is added to show the median of the posterior.

Usage

```
ecdf_plot(x, xlab = "parameter value")
```

Arguments

x Vector of parameter values drawn from the posterior distribution, indexed to the

iteration by the order of the vector.

xlab character value used to label the x axis.

Value

NULL.

Examples

```
ecdf_plot(rnorm(100, 0, 1))
```

est_changepoints

Use ptMCMC to estimate the distribution of change point locations

Description

This function executes ptMCMC-based estimation of the change point location distributions for multinomial Time Series analyses.

```
est_changepoints(
  data,
  formula,
  nchangepoints,
  timename,
  weights,
  control = list()
)
```

est_changepoints 17

Arguments

data data.frame including [1] the time variable (indicated in timename), [2] the pre-

dictor variables (required by formula) and [3], the multinomial response variable (indicated in formula) as verified by check_timename and check_formula. Note that the response variables should be formatted as a data.frame object named as indicated by the response entry in the control list, such as gamma

for a standard TS analysis on LDA output.

formula formula defining the regression between relationship the change points. Any

predictor variable included must also be a column in data and any (multinomial) response variable must be a set of columns in data, as verified by

check_formula.

nchangepoints integer corresponding to the number of change points to include in the model.

0 is a valid input (corresponding to no change points, so a singular time series model), and the current implementation can reasonably include up to 6 change points. The number of change points is used to dictate the segmentation of the

time series into chunks fit with separate models dictated by formula.

timename character element indicating the time variable used in the time series.

weights Optional class numeric vector of weights for each document. Defaults to NULL,

translating to an equal weight for each document. When using multinom_TS in a standard LDATS analysis, it is advisable to weight the documents by their total size, as the result of LDA is a matrix of proportions, which does not account for size differences among documents. For most models, a scaling of the weights (so that the average is 1) is most appropriate, and this is accomplished using

document_weights.

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values

not input assume defaults set by TS_control.

Value

List of saved data objects from the ptMCMC estimation of change point locations (unless nchangepoints is 0, then NULL is returned).

18 est_regressors

point locations Estimate the distribution of regressors, unconditional on the change	est_regressors	Estimate the distribution of regressors, unconditional on the change point locations
---	----------------	--

Description

This function uses the marginal posterior distributions of the change point locations (estimated by est_changepoints) in combination with the conditional (on the change point locations) posterior distributions of the regressors (estimated by multinom_TS) to estimate the marginal posterior distribution of the regressors, unconditional on the change point locations.

Usage

```
est_regressors(rho_dist, data, formula, timename, weights, control = list())
```

Arguments

rho_dist	List of saved data objects from the ptMCMC estimation of change point locations (unless nchangepoints is 0, then NULL) returned from est_changepoints.
data	data.frame including [1] the time variable (indicated in timename), [2] the predictor variables (required by formula) and [3], the multinomial response variable (indicated in formula) as verified by check_timename and check_formula. Note that the response variables should be formatted as a data.frame object named as indicated by the response entry in the control list, such as gamma for a standard TS analysis on LDA output.
formula	formula defining the regression between relationship the change points. Any predictor variable included must also be a column in data and any (multinomial) response variable must be a set of columns in data, as verified by check_formula.
timename	character element indicating the time variable used in the time series.
weights	Optional class numeric vector of weights for each document. Defaults to NULL, translating to an equal weight for each document. When using multinom_TS in a standard LDATS analysis, it is advisable to weight the documents by their total size, as the result of LDA is a matrix of proportions, which does not account for size differences among documents. For most models, a scaling of the weights (so that the average is 1) is most appropriate, and this is accomplished using document_weights.
control	A list of parameters to control the fitting of the Time Series model including the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values not input assume defaults set by TS_control.

est_regressors 19

Details

The general approach follows that of Western and Kleykamp (2004), although we note some important differences. Our regression models are fit independently for each chunk (segment of time), and therefore the variance-covariance matrix for the full model has 0 entries for covariances between regressors in different chunks of the time series. Further, because the regression model here is a standard (non-hierarchical) softmax (Ripley 1996, Venables and Ripley 2002, Bishop 2006), there is no error term in the regression (as there is in the normal model used by Western and Kleykamp 2004), and so the posterior distribution used here is a multivariate normal, as opposed to a multivariate t, as used by Western and Kleykamp (2004).

Value

matrix of draws (rows) from the marginal posteriors of the coefficients across the segments (columns).

References

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer, New York, NY, USA.

Ripley, B. D. 1996. *Pattern Recognition and Neural Networks*. Cambridge University Press, Cambridge, UK.

Venables, W. N. and B. D. Ripley. 2002. *Modern and Applied Statistics with S.* Fourth Edition. Springer, New York, NY, USA.

Western, B. and M. Kleykamp. 2004. A Bayesian change point model for historical time series analysis. *Political Analysis* **12**:354-374. link.

20 expand_TS

els, formulas, and number of change points	expand_TS	Expand the TS models across the factorial combination of LDA models, formulas, and number of change points
--	-----------	--

Description

Expand the completely crossed combination of model inputs: LDA model results, formulas, and number of change points.

Usage

```
expand_TS(LDA_models, formulas, nchangepoints)
```

Arguments

LDA_models List of LDA models (class LDA_set, produced by LDA_set) or a singular LDA

model (class LDA, produced by LDA).

formulas Vector of formula(s) for the continuous (non-change point) component of the

time series models. Any predictor variable included in a formula must also be a column in the document_covariate_table. Each element (formula) in the vector is evaluated for each number of change points and each LDA model.

nchangepoints Vector of integers corresponding to the number of change points to include in

the time series models. 0 is a valid input corresponding to no change points (*i.e.*, a singular time series model), and the current implementation can reasonably include up to 6 change points. Each element in the vector is the number of change points used to segment the data for each formula (entry in formulas)

component of the TS model, for each selected LDA model.

Value

Expanded data. frame table of the three values (columns) for each unique model run (rows): [1] the LDA model (indicated as a numeric element reference to the LDA_models object), [2] the regressor formula, and [3] the number of changepoints.

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDAs <- LDA_set(document_term_table, topics = 2:3, nseeds = 2)
LDA_models <- select_LDA(LDAs)
weights <- document_weights(document_term_table)
formulas <- c(~ 1, ~ newmoon)
nchangepoints <- 0:1
expand_TS(LDA_models, formulas, nchangepoints)</pre>
```

iftrue 21

iftrue

Replace if TRUE

Description

If the focal input is TRUE, replace it with alternative.

Usage

```
iftrue(x = TRUE, alt = NULL)
```

Arguments

x Focal input.alt Alternative value.

Value

x if not TRUE, alt otherwise.

Examples

```
iftrue()
iftrue(TRUE, 1)
iftrue(2, 1)
iftrue(FALSE, 1)
```

jornada

Jornada rodent data

Description

Counts of 17 rodent species across 24 sampling events, with the count being the total number observed across three trapping webs (146 traps in total) (Lightfoot *et al.* 2012).

Usage

jornada

Format

A list of two data. frame-class objects with rows corresponding to documents (sampling events). One element is the document term table (called document_term_table), which contains counts of the species (terms) in each sample (document), and the other is the document covariate table (called document_covariate_table) with columns of covariates (time step, year, season).

LDATS LDATS

Source

https://lter.jornada.nmsu.edu/data-catalog/

References

Lightfoot, D. C., A. D. Davidson, D. G. Parker, L. Hernandez, and J. W. Laundre. 2012. Bottom-up regulation of desert grassland and shrubland rodent communities: implications of species-specific reproductive potentials. *Journal of Mammalogy* **93**:1017-1028. link.

LDATS

Package to conduct two-stage analyses combining Latent Dirichlet Allocation with Bayesian Time Series models

Description

Performs two-stage analysis of multivariate temporal data using a combination of Latent Dirichlet Allocation (Blei *et al.* 2003) and Bayesian Time Series models (Western and Kleykamp 2004) that we extend for multinomial data using softmax regression (Venables and Ripley 2002) following Christensen *et al.* (2018).

Documentation

Technical mathematical manuscript

End-user-focused vignette worked example

Computational pipeline vignette

Comparison to Christensen et al.

References

Blei, D. M., A. Y. Ng, and M. I. Jordan. 2003. Latent Dirichlet Allocation. *Journal of Machine Learning Research* **3**:993-1022. link.

Christensen, E., D. J. Harris, and S. K. M. Ernest. 2018. Long-term community change through multiple rapid transitions in a desert rodent community. *Ecology* **99**:1523-1529. link.

Venables, W. N. and B. D. Ripley. 2002. *Modern and Applied Statistics with S.* Fourth Edition. Springer, New York, NY, USA.

Western, B. and M. Kleykamp. 2004. A Bayesian change point model for historical time series analysis. *Political Analysis* 12:354-374. link.

LDA_msg 23

LDA_msg

Create the model-running-message for an LDA

Description

Produce and print the message for a given LDA model.

Usage

```
LDA_msg(mod_topics, mod_seeds, control = list())
```

Arguments

mod_topics integer value corresponding to the number of topics in the model.

mod_seeds integer value corresponding to the seed used for the model.

control Class LDA_controls list of control parameters to be used in LDA (note that

"seed" will be overwritten).

Examples

```
LDA_msg(mod_topics = 4, mod_seeds = 2)
```

LDA_set

Run a set of Latent Dirichlet Allocation models

Description

For a given dataset consisting of counts of words across multiple documents in a corpus, conduct multiple Latent Dirichlet Allocation (LDA) models (using the Variational Expectation Maximization (VEM) algorithm; Blei *et al.* 2003) to account for [1] uncertainty in the number of latent topics and [2] the impact of initial values in the estimation procedure.

LDA_set is a list wrapper of LDA in the topicmodels package (Grun and Hornik 2011).

check_LDA_set_inputs checks that all of the inputs are proper for LDA_set (that the table of observations is conformable to a matrix of integers, the number of topics is an integer, the number of seeds is an integer and the controls list is proper).

```
LDA_set(document_term_table, topics = 2, nseeds = 1, control = list())
check_LDA_set_inputs(document_term_table, topics, nseeds, control)
```

24 LDA_set_control

Arguments

document_term_table

Table of observation count data (rows: documents, columns: terms. May be a class matrix or data.frame but must be conformable to a matrix of integers, as verified by check_document_term_table.

topics Vector of the number of topics to evaluate for each model. Must be conformable

to integer values.

nseeds Number of seeds (replicate starts) to use for each value of topics. Must be

conformable to integer value.

control A list of parameters to control the running and selecting of LDA models. Val-

ues not input assume default values set by $LDA_set_control$. Values for running the LDAs replace defaults in (LDAcontol, see LDA (but if seed is given, it

will be overwritten; use iseed instead).

Value

LDA_set: list (class: LDA_set) of LDA models (class: LDA_VEM). check_LDA_set_inputs: an error message is thrown if any input is improper, otherwise NULL.

References

Blei, D. M., A. Y. Ng, and M. I. Jordan. 2003. Latent Dirichlet Allocation. *Journal of Machine Learning Research* **3**:993-1022. link.

Grun B. and K. Hornik. 2011. topicmodels: An R Package for Fitting Topic Models. *Journal of Statistical Software* **40**:13. link.

Examples

```
data(rodents)
lda_data <- rodents$document_term_table
r_LDA <- LDA_set(lda_data, topics = 2, nseeds = 2)</pre>
```

LDA_set_control

Create control list for set of LDA models

Description

This function provides a simple creation and definition of the list used to control the set of LDA models. It is set up to be easy to work with the existing control capacity of LDA.

```
LDA_set_control(quiet = FALSE, measurer = AIC, selector = min, iseed = 2, ...)
```

LDA_TS 25

Arguments

```
quiet logical indicator of whether the model should run quietly.

measurer, selector

Function names for use in evaluation of the LDA models. measurer is used to create a value for each model and selector operates on the values to choose the model(s) to pass on.

iseed integer initial seed for the model set.

Additional arguments to be passed to LDA as a control input.
```

Value

list for controlling the LDA model fit.

Examples

```
LDA_set_control()
```

LDA_TS

Run a full set of Latent Dirichlet Allocations and Time Series models

Description

Conduct a complete LDATS analysis (Christensen *et al.* 2018), including running a suite of Latent Dirichlet Allocation (LDA) models (Blei *et al.* 2003, Grun and Hornik 2011) via LDA_set, selecting LDA model(s) via select_LDA, running a complete set of Bayesian Time Series (TS) models (Western and Kleykamp 2004) via TS_on_LDA on the chosen LDA model(s), and selecting the best TS model via select_TS.

conform_LDA_TS_data converts the data input to match internal and sub-function specifications.

check_LDA_TS_inputs checks that the inputs to LDA_TS are of proper classes for a full analysis.

```
LDA_TS(
  data,
  topics = 2,
  nseeds = 1,
  formulas = ~1,
  nchangepoints = 0,
  timename = "time",
  weights = TRUE,
  control = list()
)
```

26 LDA_TS

```
conform_LDA_TS_data(data, quiet = FALSE)
check_LDA_TS_inputs(
  data = NULL,
  topics = 2,
 nseeds = 1,
  formulas = \sim 1,
  nchangepoints = 0,
  timename = "time",
 weights = TRUE,
  control = list()
)
```

Arguments

data

Either a document term table or a list including at least a document term table (with the word "term" in the name of the element) and optionally also a document covariate table (with the word "covariate" in the name of the element).

The document term table is a table of observation count data (rows: documents, columns: terms) that may be a matrix or data. frame, but must be conformable to a matrix of integers, as verified by check_document_term_table.

The document covariate table is a table of associated data (rows: documents, columns: time index and covariate options) that may be a matrix or data. frame, but must be a conformable to a data table, as verified by check_document_covariate_table. Every model needs a covariate to describe the time value for each document (in whatever units and whose name in the table is input in timename) that dictates the application of the change points. If a covariate table is not provided, the model assumes the observations were equi-spaced in time. All covariates named within specific models in formulas must be included.

topics

Vector of the number of topics to evaluate for each model. Must be conformable to integer values.

nseeds

integer number of seeds (replicate starts) to use for each value of topics in the LDAs. Must be conformable to integer value.

formulas

Vector of formula(s) for the continuous (non-change point) component of the time series models. Any predictor variable included in a formula must also be a column in the document_covariate_table. Each element (formula) in the vector is evaluated for each number of change points and each LDA model.

nchangepoints

Vector of integers corresponding to the number of change points to include in the time series models. 0 is a valid input corresponding to no change points (i.e., a singular time series model), and the current implementation can reasonably include up to 6 change points. Each element in the vector is the number of change points used to segment the data for each formula (entry in formulas) component of the TS model, for each selected LDA model.

timename

character element indicating the time variable used in the time series. Defaults to "time". The variable must be integer-conformable or a Date. If the variable

LDA_TS 27

named is a Date, the input is converted to an integer, resulting in the timestep being 1 day, which is often not desired behavior.

weights Optional input for overriding standard weighting for documents in the time se-

ries. Defaults to TRUE, translating to an appropriate weighting of the documents based on the size (number of words) each document (the result of LDA is a matrix of proportions, which does not account for size differences among documents. Alternatively can be NULL for an equal weighting among documents or a

numeric vector.

control A list of parameters to control the running and selecting of LDA and TS mod-

els. Values not input assume default values set by LDA_TS_control.

quiet logical indicator for conform_LDA_TS_data to indicate if messages should be

printed.

Value

LDA_TS: a class LDA_TS list object including all fitted LDA and TS models and selected models specifically as elements "LDA models" (from LDA_set), "Selected LDA model" (from select_LDA), "TS models" (from TS_on_LDA), and "Selected TS model" (from select_TS).

conform_LDA_TS_data: a data list that is ready for analyses using the stage-specific functions.

check_LDA_TS_inputs: an error message is thrown if any input is improper, otherwise NULL.

References

Blei, D. M., A. Y. Ng, and M. I. Jordan. 2003. Latent Dirichlet Allocation. *Journal of Machine Learning Research* **3**:993-1022. link.

Christensen, E., D. J. Harris, and S. K. M. Ernest. 2018. Long-term community change through multiple rapid transitions in a desert rodent community. *Ecology* **99**:1523-1529. link.

Grun B. and K. Hornik. 2011. topicmodels: An R Package for Fitting Topic Models. *Journal of Statistical Software* **40**:13. link.

Western, B. and M. Kleykamp. 2004. A Bayesian change point model for historical time series analysis. *Political Analysis* **12**:354-374. link.

28 LDA_TS_control

LDA_TS_control

Create the controls list for the LDATS model

Description

Create and define a list of control options used to run the LDATS model, as implemented by LDA_TS.

Usage

```
LDA_TS_control(
  quiet = FALSE,
  measurer_LDA = AIC,
  selector_LDA = min,
  iseed = 2,
  memoise = TRUE,
  response = "gamma",
  lambda = 0,
  measurer_TS = AIC,
  selector_TS = min,
  ntemps = 6,
  penultimate_temp = 2^6,
  ultimate_temp = 1e+10,
  q = 0,
  nit = 10000,
  magnitude = 12,
  burnin = 0,
  thin_frac = 1,
  summary_prob = 0.95,
  seed = NULL,
)
```

Arguments

quiet logical indicator of whether the model should run quietly.

measurer_LDA, selector_LDA

Function names for use in evaluation of the LDA models. $measurer_LDA$ is used to create a value for each model and $selector_LDA$ operates on the values

to choose the model.

iseed integer initial seed for the LDA model set.

memoise logical indicator of whether the multinomial functions should be memoised

(via memoise). Memoisation happens to both multinom_TS and multinom_TS_chunk.

response character element indicating the response variable used in the time series.

Should be set to "gamma" for LDATS.

lambda numeric "weight" decay term used to set the prior on the regressors within each

chunk-level model. Defaults to 0, corresponding to a fully vague prior.

logLik.LDA_VEM 29

measurer_TS, selector_TS

Function names for use in evaluation of the TS models. $measurer_TS$ is used to create a value for each model and $selector_TS$ operates on the values to choose

the model.

ntemps integer number of temperatures (chains) to use in the ptMCMC algorithm.

penultimate_temp

Penultimate temperature in the ptMCMC sequence.

q Exponent controlling the ptMCMC temperature sequence from the focal chain

(reference with temperature = 1) to the penultimate chain. 0 (default) implies a

geometric sequence. 1 implies squaring before exponentiating.

nit integer number of iterations (steps) used in the ptMCMC algorithm.

magnitude Average magnitude (defining a geometric distribution) for the proposed step size

in the ptMCMC algorithm.

burnin integer number of iterations to remove from the beginning of the ptMCMC

algorithm.

thin_frac Fraction of iterations to retain, from the ptMCMC. Must be (0, 1], and the default

value of 1 represents no thinning.

summary_prob Probability used for summarizing the posterior distributions (via the highest pos-

terior density interval, see HPDinterval) of the TS model.

seed Input to set . seed in the time series model for replication purposes.

... Additional arguments to be passed to LDA as a control input.

Value

list of control lists, with named elements LDAcontrol, TScontrol, and quiet.

Examples

LDA_TS_control()

logLik.LDA_VEM Calculate the log likelihood of a VEM LDA model fit

Description

Imported but updated calculations from topic models package, as applied to Latent Dirichlet Allocation fit with Variational Expectation Maximization via LDA.

```
## S3 method for class 'LDA_VEM'
logLik(object, ...)
```

Arguments

object A LDA_VEM-class object.

... Not used, simply included to maintain method compatibility.

Details

The number of degrees of freedom is 1 (for alpha) plus the number of entries in the document-topic matrix. The number of observations is the number of entries in the document-term matrix.

Value

Log likelihood of the model logLik, also with df (degrees of freedom) and nobs (number of observations) values.

References

Buntine, W. 2002. Variational extensions to EM and multinomial PCA. *European Conference on Machine Learning, Lecture Notes in Computer Science* **2430**:23-34. link.

Grun B. and K. Hornik. 2011. topicmodels: An R Package for Fitting Topic Models. *Journal of Statistical Software* **40**:13. link.

Hoffman, M. D., D. M. Blei, and F. Bach. 2010. Online learning for latent Dirichlet allocation. *Advances in Neural Information Processing Systems* **23**:856-864. link.

Examples

```
data(rodents)
lda_data <- rodents$document_term_table
r_LDA <- LDA_set(lda_data, topics = 2)
logLik(r_LDA[[1]])</pre>
```

```
logLik.multinom_TS_fit
```

Log likelihood of a multinomial TS model

Description

Convenience function to simply extract the logLik element (and df and nobs) from a multinom_TS_fit object fit by multinom_TS. Extends logLik from multinom to multinom_TS_fit objects.

```
## S3 method for class 'multinom_TS_fit'
logLik(object, ...)
```

logLik.TS_fit

Arguments

```
object A multinom_TS_fit-class object.
... Not used, simply included to maintain method compatibility.
```

Value

Log likelihood of the model, as class logLik, with attributes df (degrees of freedom) and nobs (the number of weighted observations, accounting for size differences among documents).

Examples

logLik.TS_fit

Determine the log likelihood of a Time Series model

Description

Convenience function to extract and format the log likelihood of a TS_fit-class object fit by multinom_TS.

Usage

```
## S3 method for class 'TS_fit'
logLik(object, ...)
```

Arguments

object Class TS_fit object to be evaluated.
... Not used, simply included to maintain method compatibility.

Value

Log likelihood of the model logLik, also with df (degrees of freedom) and nobs (number of observations) values.

32 logsumexp

Examples

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)
TSmod <- TS(data, gamma ~ 1, nchangepoints = 1, "newmoon", weights)
logLik(TSmod)</pre>
```

logsumexp

Calculate the log-sum-exponential (LSE) of a vector

Description

Calculate the exponent of a vector (offset by the max), sum the elements, calculate the log, remove the offset.

Usage

```
logsumexp(x)
```

Arguments

Х

numeric vector

Value

The LSE.

```
logsumexp(1:10)
```

memoise_fun 33

	_
memoise	tun

Logical control on whether or not to memoise

Description

This function provides a simple, logical toggle control on whether the function fun should be memoised via memoise or not.

Usage

```
memoise_fun(fun, memoise_tf = TRUE)
```

Arguments

fun Function name to (potentially) be memoised.

memoise_tf logical value indicating if fun should be memoised.

Value

fun, memoised if desired.

Examples

```
sum_memo <- memoise_fun(sum)</pre>
```

messageq

Optionally generate a message based on a logical input

Description

Given the input to quiet, generate the message(s) in msg or not.

Usage

```
messageq(msg = NULL, quiet = FALSE)
```

Arguments

 $\label{eq:msg} \text{msg} \qquad \qquad \text{character vector of the message}(s) \text{ to generate or NULL. If more than one ele-}$

ment is contained in msg, they are concatenated with a newline between.

quiet logical indicator controlling if the message is generated.

```
messageq("hello")
messageq("hello", TRUE)
```

34 modalvalue

mirror_vcov

Create a properly symmetric variance covariance matrix

Description

A wrapper on vcov to produce a symmetric matrix. If the default matrix returned by vcov is symmetric it is returned simply. If it is not, in fact, symmetric (as occurs occasionally with multinom applied to proportions), the matrix is made symmetric by averaging the lower and upper triangles. If the relative difference between the upper and lower triangles for any entry is more than 0.1

Usage

```
mirror_vcov(x)
```

Arguments

Х

Model object that has a defined method for vcov.

Value

Properly symmetric variance covariance matrix.

Examples

```
dat <- data.frame(y = rnorm(50), x = rnorm(50))
mod <- lm(dat)
mirror_vcov(mod)</pre>
```

modalvalue

Determine the mode of a distribution

Description

Find the most common entry in a vector. Ties are not allowed, the first value encountered within the modal set if there are ties is deemed the mode.

Usage

```
modalvalue(x)
```

Arguments

Χ

numeric vector.

multinom_TS 35

Value

Numeric value of the mode.

Examples

```
d1 <- c(1, 1, 1, 2, 2, 3) modalvalue(d1)
```

multinom_TS

Fit a multinomial change point Time Series model

Description

Fit a set of multinomial regression models (via multinom, Venables and Ripley 2002) to a time series of data divided into multiple segments (a.k.a. chunks) based on given locations for a set of change points.

check_multinom_TS_inputs checks that the inputs to multinom_TS are of proper classes for an analysis.

Usage

```
multinom_TS(
  data,
  formula,
  changepoints = NULL,
  timename = "time",
 weights = NULL,
  control = list()
)
check_multinom_TS_inputs(
  data,
  formula = gamma ~ 1,
  changepoints = NULL,
  timename = "time",
 weights = NULL,
  control = list()
)
```

Arguments

data

data.frame including [1] the time variable (indicated in timename), [2] the predictor variables (required by formula) and [3], the multinomial response variable (indicated in formula) as verified by check_timename and check_formula. Note that the response variables should be formatted as a data.frame object

36 multinom TS

named as indicated by the response entry in the control list, such as gamma for a standard TS analysis on LDA output. See Examples.

Tot a standard 15 analysis on 2211 output 500 2.tamp2001

formula defining the regression between relationship the change points. Any predictor variable included must also be a column in data and any (multinomial) response variable must be a set of columns in data, as verified by

check_formula.

changepoints Numeric vector indicating locations of the change points. Must be conformable

to integer values. Validity checked by check_changepoints and $verify_changepoint_locations$.

timename character element indicating the time variable used in the time series. Defaults

to "time". The variable must be integer-conformable or a Date. If the variable named is a Date, the input is converted to an integer, resulting in the timestep

being 1 day, which is often not desired behavior.

weights Optional class numeric vector of weights for each document. Defaults to NULL,

translating to an equal weight for each document. When using multinom_TS in a standard LDATS analysis, it is advisable to weight the documents by their total size, as the result of LDA is a matrix of proportions, which does not account for size differences among documents. For most models, a scaling of the weights (so that the average is 1) is most appropriate, and this is accomplished using

document_weights.

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values

not input assume defaults set by TS_control.

Value

formula

multinom_TS: Object of class multinom_TS_fit, which is a list of [1] chunk-level model fits ("chunk models"), [2] the total log likelihood combined across all chunks ("logLik"), and [3] a data.frame of chunk beginning and ending times ("logLik" with columns "start" and "end").

check_multinom_TS_inputs: an error message is thrown if any input is improper, otherwise NULL.

References

Venables, W. N. and B. D. Ripley. 2002. *Modern and Applied Statistics with S.* Fourth Edition. Springer, New York, NY, USA.

multinom_TS_chunk

Fit a multinomial Time Series model chunk

Description

Fit a multinomial regression model (via multinom, Ripley 1996, Venables and Ripley 2002) to a defined chunk of time (a.k.a. segment) [chunk\$start, chunk\$end] within a time series.

Usage

```
multinom_TS_chunk(
  data,
  formula,
  chunk,
  timename = "time",
  weights = NULL,
  control = list()
)
```

Arguments

data	Class data.frame object including the predictor and response variables.
formula	Formula as a formula or character object describing the chunk.
chunk	Length-2 vector of times: [1] start, the start time for the chunk and [2] end, the end time for the chunk.
timename	character element indicating the time variable used in the time series. Defaults to "time". The variable must be integer-conformable or a Date. If the variable named is a Date, the input is converted to an integer, resulting in the timestep being 1 day, which is often not desired behavior.
weights	Optional class numeric vector of weights for each document. Defaults to NULL, translating to an equal weight for each document. When using multinom_TS in a standard LDATS analysis, it is advisable to weight the documents by their total size, as the result of LDA is a matrix of proportions, which does not account for size differences among documents. For most models, a scaling of the weights (so that the average is 1) is most appropriate, and this is accomplished using document_weights.
control	A list of parameters to control the fitting of the Time Series model including the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values not input assume defaults set by TS_control.

Value

Fitted model object for the chunk, of classes multinom and nnet.

38 normalize

References

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge.

Venables, W. N. and B. D. Ripley. 2002. Modern Applied Statistics with S. Fourth edition. Springer.

Examples

normalize

Normalize a vector

Description

Normalize a numeric vector to be on the scale of [0,1].

Usage

```
normalize(x)
```

Arguments

Х

numeric vector.

Value

Normalized x.

```
normalize(1:10)
```

package_chunk_fits 39

Description

Takes the list of fitted chunk-level models returned from TS_chunk_memo (the memoised version of multinom_TS_chunk and packages it as a multinom_TS_fit object. This involves naming the model fits based on the chunk time windows, combining the log likelihood values across the chunks, and setting the class of the output object.

Usage

```
package_chunk_fits(chunks, fits)
```

Arguments

chunks Data frame of start and end times for each chunk (row).

fits List of chunk-level fits returned by TS_chunk_memo, the memoised version of

multinom_TS_chunk.

Value

Object of class multinom_TS_fit, which is a list of [1] chunk-level model fits, [2] the total log likelihood combined across all chunks, and [3] the chunk time data table.

```
data(rodents)
dtt <- rodents$document_term_table</pre>
lda <- LDA_set(dtt, 2, 1, list(quiet = TRUE))</pre>
dct <- rodents$document_covariate_table</pre>
dct$gamma <- lda[[1]]@gamma</pre>
weights <- document_weights(dtt)</pre>
formula <- gamma ~ 1
changepoints <- c(20,50)
timename <- "newmoon"</pre>
TS_chunk_memo <- memoise_fun(multinom_TS_chunk, TRUE)
chunks <- prep_chunks(dct, changepoints, timename)</pre>
nchunks <- nrow(chunks)</pre>
fits <- vector("list", length = nchunks)</pre>
for (i in 1:nchunks){
  fits[[i]] <- TS_chunk_memo(dct, formula, chunks[i, ], timename,</pre>
                                weights, TS_control())
package_chunk_fits(chunks, fits)
```

40 package_LDA_set

package_LDA_set

Package the output from LDA_set

Description

Name the elements (LDA models) and set the class (LDA_set) of the models returned by LDA_set.

Usage

```
package_LDA_set(mods, mod_topics, mod_seeds)
```

Arguments

mods Fitted models returned from LDA.

mod_topics Vector of integer values corresponding to the number of topics in each model.

mod_seeds Vector of integer values corresponding to the seed used for each model.

Value

```
lis (class: LDA_set) of LDA models (class: LDA_VEM).
```

```
data(rodents)
document_term_table <- rodents$document_term_table</pre>
topics <- 2
nseeds <- 2
control <- LDA_set_control()</pre>
mod_topics <- rep(topics, each = length(seq(2, nseeds * 2, 2)))</pre>
iseed <- control$iseed</pre>
mod_seeds <- rep(seq(iseed, iseed + (nseeds - 1)* 2, 2), length(topics))</pre>
nmods <- length(mod_topics)</pre>
mods <- vector("list", length = nmods)</pre>
for (i in 1:nmods){
  LDA_msg(mod_topics[i], mod_seeds[i], control)
  control_i <- prep_LDA_control(seed = mod_seeds[i], control = control)</pre>
  mods[[i]] <- topicmodels::LDA(document_term_table, k = mod_topics[i],</pre>
                    control = control_i)
package_LDA_set(mods, mod_topics, mod_seeds)
```

package_LDA_TS 41

Description

Combine the objects returned by LDA_set, select_LDA, TS_on_LDA, and select_TS, name them as elements of the list, and set the class of the list as LDA_TS, for the return from LDA_TS.

Usage

```
package_LDA_TS(LDAs, sel_LDA, TSs, sel_TSs)
```

Arguments

LDAs	List (class: LDA_set) of LDA models (class: LDA), as returned by LDA_set.
sel_LDA	A reduced version of LDAs that only includes the LDA model(s) selected by $select_LDA$. Still should be of class LDA_set.
TSs	Class TS_on_LDA list of results from TS applied for each model on each LDA model input, as returned by TS_on_LDA.
sel_TSs	A reduced version of TSs (of class TS_fit) that only includes the TS model chosen via select_TS.

Value

Class LDA_TS-class object including all fitted models and selected models specifically, ready to be returned from LDA_TS.

42 package_TS

|--|

Description

Calculate relevant summaries for the run of a Time Series model within TS and package the output as a TS_fit -class object.

Usage

```
package_TS(data, formula, timename, weights, control, rho_dist, eta_dist)
```

Arguments

data	data.frame including [1] the time variable (indicated in timename), [2] the predictor variables (required by formula) and [3], the multinomial response variable (indicated in formula) as verified by check_timename and check_formula. Note that the response variables should be formatted as a data.frame object named as indicated by the response entry in the control list, such as gamma for a standard TS analysis on LDA output.
formula	formula defining the regression between relationship the change points. Any predictor variable included must also be a column in data and any (multinomial) response variable must be a set of columns in data, as verified by check_formula.
timename	character element indicating the time variable used in the time series.
weights	Optional class numeric vector of weights for each document. Defaults to NULL, translating to an equal weight for each document. When using multinom_TS in a standard LDATS analysis, it is advisable to weight the documents by their total size, as the result of LDA is a matrix of proportions, which does not account for size differences among documents. For most models, a scaling of the weights (so that the average is 1) is most appropriate, and this is accomplished using document_weights.
control	A list of parameters to control the fitting of the Time Series model including the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values not input assume defaults set by TS_control.
rho_dist	List of saved data objects from the ptMCMC estimation of change point locations returned by est_changepoints (unless nchangepoints is 0, then NULL).
eta_dist	Matrix of draws (rows) from the marginal posteriors of the coefficients across the segments (columns), as estimated by est_regressors.

Value

TS_fit-class list containing the following elements, many of which are hidden for printing, but are accessible:

data data input to the function.

package_TS 43

formula formula input to the function.

nchangepoints input to the function.

weights weights input to the function.

timename timename input to the function.

control control input to the function.

lls Iteration-by-iteration logLik values for the full time series fit by multinom_TS.

rhos Iteration-by-iteration change point estimates from est_changepoints.

etas Iteration-by-iteration marginal regressor estimates from est_regressors, which have been unconditioned with respect to the change point locations.

ptMCMC_diagnostics ptMCMC diagnostics, see diagnose_ptMCMC

rho_summary Summary table describing rhos (the change point locations), see summarize_rhos.

rho_vcov Variance-covariance matrix for the estimates of rhos (the change point locations), see measure_rho_vcov.

eta_summary Summary table describing ets (the regressors), see summarize_etas.

eta_vcov Variance-covariance matrix for the estimates of etas (the regressors), see measure_eta_vcov.

logLik Across-iteration average of log-likelihoods (11s).

nparams Total number of parameters in the full model, including the change point locations and regressors.

AIC Penalized negative log-likelihood, based on logLik and nparams.

```
data(rodents)
document_term_table <- rodents$document_term_table</pre>
document_covariate_table <- rodents$document_covariate_table</pre>
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table</pre>
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)</pre>
formula <- gamma ~ 1
nchangepoints <- 1
control <- TS_control()</pre>
data <- data[order(data[,"newmoon"]), ]</pre>
rho_dist <- est_changepoints(data, formula, nchangepoints, "newmoon",</pre>
                               weights, control)
eta_dist <- est_regressors(rho_dist, data, formula, "newmoon", weights,</pre>
                             control)
package_TS(data, formula, "newmoon", weights, control, rho_dist,
            eta_dist)
```

Description

Set the class and name the elements of the results list returned from applying TS to the combination of TS models requested for the LDA model(s) input.

Usage

```
package_TS_on_LDA(TSmods, LDA_models, models)
```

Arguments

TSmods list of results from TS applied for each model on each LDA model input.

LDA_models List of LDA models (class LDA_set, produced by LDA_set) or a singular LDA

model (class LDA, produced by LDA).

models data.frame object returned from expand_TS that contains the combinations of

LDA models, and formulas and nchangepoints used in the TS models.

Value

Class TS_on_LDA list of results from TS applied for each model on each LDA model input.

```
data(rodents)
document_term_table <- rodents$document_term_table</pre>
document_covariate_table <- rodents$document_covariate_table</pre>
LDAs <- LDA_set(document_term_table, topics = 2:3, nseeds = 2)
LDA_models <- select_LDA(LDAs)
weights <- document_weights(document_term_table)</pre>
mods <- expand_TS(LDA_models, c(~ 1, ~ newmoon), 0:1)</pre>
nmods <- nrow(mods)</pre>
TSmods <- vector("list", nmods)
for(i in 1:nmods){
  formula_i <- mods$formula[[i]]</pre>
  nchangepoints_i <- mods$nchangepoints[i]</pre>
  data_i <- prep_TS_data(document_covariate_table, LDA_models, mods, i)</pre>
  TSmods[[i]] <- TS(data_i, formula_i, nchangepoints_i, "newmoon",</pre>
                     weights, TS_control())
package_TS_on_LDA(TSmods, LDA_models, mods)
```

plot.LDA_set 45

plot.LDA_set

Plot a set of LDATS LDA models

Description

Generalization of the plot function to work on a list of LDA topic models (class LDA_set).

Usage

```
## S3 method for class 'LDA_set' plot(x, ...)
```

Arguments

x An LDA_set object of LDA topic models.

... Additional arguments to be passed to subfunctions.

Value

NULL.

Examples

```
data(rodents)
lda_data <- rodents$document_term_table
r_LDA <- LDA_set(lda_data, topics = 2, nseeds = 2)
plot(r_LDA)</pre>
```

plot.LDA_TS

Plot the key results from a full LDATS analysis

Description

Generalization of the plot function to work on fitted LDA_TS model objects (class LDA_TS) returned by LDA_TS).

Usage

```
## S3 method for class 'LDA_TS'
plot(
    x,
    ...,
    cols = set_LDA_TS_plot_cols(),
    bin_width = 1,
```

46 plot.LDA_VEM

```
xname = NULL,
border = NA,
selection = "median"
)
```

Arguments

X A LDA_TS object of a full LDATS model fit by LDA_TS.

... Additional arguments to be passed to subfunctions. Not currently used, just

retained for alignment with plot.

cols list of elements used to define the colors for the two panels of the summary

plot, as generated simply using set_LDA_TS_plot_cols. cols has two elements: LDA and TS, each corresponding the set of plots for its stage in the full model. LDA contains entries cols and option (see set_LDA_plot_colors). TS contains two entries, rho and gamma, each corresponding to the related panel, and each containing default values for entries named cols, option, and alpha (see set_TS_summary_plot_cols, set_gamma_colors, and set_rho_hist_colors).

bin_width Width of the bins used in the histograms of the summary time series plot, in

units of the time variable used to fit the model (the x-axis).

xname Label for the x-axis in the summary time series plot. Defaults to NULL, which re-

sults in usage of the timename element of the control list (held incontrol\$TS_control\$timename).

To have no label printed, set xname = "".

border Border for the histogram, default is NA.

selection Indicator of the change points to use in the time series summary plot. Currently

only defined for "median" and "mode".

Value

NULL.

plot.LDA_VEM 47

Description

Create an LDATS LDA summary plot, with a top panel showing the topic proportions for each word and a bottom panel showing the topic proportions of each document/over time. The plot function is defined for class LDA_VEM specifically (see LDA).

LDA_plot_top_panel creates an LDATS LDA summary plot top panel showing the topic proportions word-by-word.

LDA_plot_bottom_panel creates an LDATS LDA summary plot bottom panel showing the topic proportions over time/documents.

Usage

```
## S3 method for class 'LDA_VEM'
plot(
 х,
  . . . ,
 xtime = NULL,
  xname = NULL,
  cols = NULL,
  option = "C",
 alpha = 0.8,
 LDATS = FALSE
)
LDA_plot_top_panel(
  х,
  cols = NULL,
  option = "C",
  alpha = 0.8,
  together = FALSE,
 LDATS = FALSE
)
LDA_plot_bottom_panel(
  х,
 xtime = NULL,
  xname = NULL,
  cols = NULL,
  option = "C",
  alpha = 0.8,
  together = FALSE,
  LDATS = FALSE
```

Arguments

Х

Object of class LDA_VEM.

48 plot.TS_fit

	Not used, retained for alignment with base function.
xtime	Optional x values used to plot the topic proportions according to a specific time value (rather than simply the order of observations).
xname	Optional name for the x values used in plotting the topic proportions (otherwise defaults to "Document").
cols	Colors to be used to plot the topics. Any valid color values (<i>e.g.</i> , see colors, rgb) can be input as with a standard plot. The default (cols = NULL) triggers use of viridis color options (see option).
option	A character string indicating the color option from viridis to use if 'cols == NULL'. Four options are available: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C", the default option), "viridis" (or "D") and "cividis" (or "E").
alpha	Numeric value [0,1] that indicates the transparency of the colors used. Supported only on some devices, see rgb.
LDATS	logical indicating if the LDA plot is part of a larger LDATS plot output.
together	logical indicating if the subplots are part of a larger LDA plot output.

Value

NULL.

Examples

```
data(rodents)
lda_data <- rodents$document_term_table
r_LDA <- LDA_set(lda_data, topics = 4, nseeds = 10)
best_lda <- select_LDA(r_LDA)[[1]]
plot(best_lda, option = "cividis")
LDA_plot_top_panel(best_lda, option = "cividis")
LDA_plot_bottom_panel(best_lda, option = "cividis")</pre>
```

plot.TS_fit

Plot an LDATS TS model

Description

Generalization of the plot function to work on fitted TS model objects (class TS_fit) returned from TS.

plot.TS_fit 49

Usage

```
## S3 method for class 'TS_fit'
plot(
    x,
    ...,
    plot_type = "summary",
    interactive = FALSE,
    cols = set_TS_summary_plot_cols(),
    bin_width = 1,
    xname = NULL,
    border = NA,
    selection = "median",
    LDATS = FALSE
)
```

Arguments

x A TS_fit object of a multinomial time series model fit by TS.

... Additional arguments to be passed to subfunctions. Not currently used, just

retained for alignment with plot.

plot_type "diagnostic" or "summary".

interactive logical input, should be codeTRUE unless testing.

cols list of elements used to define the colors for the two panels of the summary

plot, as generated simply using set_TS_summary_plot_cols. cols has two elements rho and gamma, each corresponding to the related panel, and each containing default values for entries named cols, option, and alpha. See

set_gamma_colors and set_rho_hist_colors for details on usage.

bin_width Width of the bins used in the histograms of the summary time series plot, in

units of the x-axis (the time variable used to fit the model).

xname Label for the x-axis in the summary time series plot. Defaults to NULL, which re-

sults in usage of the timename element of the control list (held incontrol \$TS_control \$timename).

To have no label printed, set xname = "".

border Border for the histogram, default is NA.

selection Indicator of the change points to use in the time series summary plot. Currently

only defined for "median" and "mode".

LDATS logical indicating if the plot is part of a larger LDATS plot output.

Value

NULL.

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table</pre>
```

50 posterior_plot

```
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)
TSmod <- TS(data, gamma ~ 1, nchangepoints = 1, "newmoon", weights)
plot(TSmod)</pre>
```

posterior_plot

Produce the posterior distribution histogram panel for the TS diagnostic plot of a parameter

Description

Produce a vanilla histogram plot using hist for the parameter of interest (rho or eta) as part of TS_diagnostics_plot. A vertical line is added to show the median of the posterior.

Usage

```
posterior_plot(x, xlab = "parameter value")
```

Arguments

x Vector of parameter values drawn from the posterior distribution, indexed to the

iteration by the order of the vector.

xlab character value used to label the x axis.

Value

NULL.

```
posterior_plot(rnorm(100, 0, 1))
```

prep_chunks 51

prep_chunks	Prepare the time chunk table for a multinomial change point Time Series model

Description

Creates the table containing the start and end times for each chunk within a time series, based on the change points (used to break up the time series) and the range of the time series. If there are no change points (i.e. changepoints is NULL, there is still a single chunk defined by the start and end of the time series.

Usage

```
prep_chunks(data, changepoints = NULL, timename = "time")
```

Arguments

data Class data.frame object including the predictor and response variables, but

specifically here containing the column indicated by the timename input.

changepoints Numeric vector indicating locations of the change points. Must be conformable

to integer values.

timename character element indicating the time variable used in the time series. Defaults

to "time". The variable must be integer-conformable or a Date. If the variable named is a Date, the input is converted to an integer, resulting in the timestep

being 1 day, which is often not desired behavior.

Value

```
data. frame of start and end times (columns) for each chunk (rows).
```

```
data(rodents)
dtt <- rodents$document_term_table
lda <- LDA_set(dtt, 2, 1, list(quiet = TRUE))
dct <- rodents$document_covariate_table
dct$gamma <- lda[[1]]@gamma
chunks <- prep_chunks(dct, changepoints = 100, timename = "newmoon")</pre>
```

52 prep_cpts

prep_cpts Initialize and update the change point matrix used in the ptMCMC algorithm	prep_cpts	Initialize and update the change point matrix used in the ptMCMC algorithm
--	-----------	--

Description

Each of the chains is initialized by prep_cpts using a draw from the available times (i.e. assuming a uniform prior), the best fit (by likelihood) draw is put in the focal chain with each subsequently worse fit placed into the subsequently hotter chain. update_cpts updates the change points after every iteration in the ptMCMC algorithm.

Usage

```
prep_cpts(data, formula, nchangepoints, timename, weights, control = list())
update_cpts(cpts, swaps)
```

Arguments

data data. frame including [1] the time variable (indicated in timename), [2] the pre-

dictor variables (required by formula) and [3], the multinomial response variable (indicated in formula) as verified by check_timename and check_formula. Note that the response variables should be formatted as a data.frame object named as indicated by the response entry in the control list, such as gamma

for a standard TS analysis on LDA output.

formula formula defining the regression relationship between the change points, see

formula. Any predictor variable included must also be a column in data and any (multinomial) response variable must be a set of columns in data, as verified

by check_formula.

nchangepoints integer corresponding to the number of change points to include in the model.

0 is a valid input (corresponding to no change points, so a singular time series model), and the current implementation can reasonably include up to 6 change points. The number of change points is used to dictate the segmentation of the

data for each continuous model and each LDA model.

timename character element indicating the time variable used in the time series. Defaults

to "time". The variable must be integer-conformable or a Date. If the variable named is a Date, the input is converted to an integer, resulting in the timestep

being 1 day, which is often not desired behavior.

weights Optional class numeric vector of weights for each document. Defaults to NULL,

translating to an equal weight for each document. When using multinom_TS in a standard LDATS analysis, it is advisable to weight the documents by their total size, as the result of LDA is a matrix of proportions, which does not account for size differences among documents. For most models, a scaling of the weights (so that the average is 1) is most appropriate, and this is accomplished using

document_weights.

prep_ids 53

control A list of parameters to control the fitting of the Time Series model including the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values not input assume defaults set by TS_control.

cpts The existing matrix of change points.

swaps Chain configuration after among-temperature swaps.

Value

list of [1] matrix of change points (rows) for each temperature (columns) and [2] vector of log-likelihood values for each of the chains.

Examples

```
data(rodents)
document_term_table <- rodents$document_term_table</pre>
document_covariate_table <- rodents$document_covariate_table</pre>
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table</pre>
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)</pre>
data <- data[order(data[,"newmoon"]), ]</pre>
saves <- prep_saves(1, TS_control())</pre>
inputs <- prep_ptMCMC_inputs(data, gamma ~ 1, 1, "newmoon", weights,</pre>
                                TS_control())
cpts <- prep_cpts(data, gamma ~ 1, 1, "newmoon", weights, TS_control())</pre>
ids <- prep_ids(TS_control())</pre>
for(i in 1:TS_control()$nit){
  steps <- step_chains(i, cpts, inputs)</pre>
  swaps <- swap_chains(steps, inputs, ids)</pre>
  saves <- update_saves(i, saves, steps, swaps)</pre>
  cpts <- update_cpts(cpts, swaps)</pre>
  ids <- update_ids(ids, swaps)</pre>
}
```

prep_ids

Initialize and update the chain ids throughout the ptMCMC algorithm

Description

prep_ids creates and update_ids updates the active vector of identities (ids) for each of the chains in the ptMCMC algorithm. These ids are used to track trips of the particles among chains.

These functions were designed to work within TS and specifically est_changepoints, but have been generalized and would work within any general ptMCMC as long as control, ids, and swaps are formatted properly.

54 prep_ids

Usage

```
prep_ids(control = list())
update_ids(ids, swaps)
```

Arguments

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values

not input assume defaults set by TS_control.

ids The existing vector of chain ids.

swaps Chain configuration after among-temperature swaps.

Value

The vector of chain ids.

```
prep_ids()
data(rodents)
document_term_table <- rodents$document_term_table</pre>
document_covariate_table <- rodents$document_covariate_table</pre>
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table</pre>
data$gamma <- LDA_models@gamma</pre>
weights <- document_weights(document_term_table)</pre>
data <- data[order(data[,"newmoon"]), ]</pre>
saves <- prep_saves(1, TS_control())</pre>
inputs <- prep_ptMCMC_inputs(data, gamma ~ 1, 1, "newmoon", weights,</pre>
                                TS_control())
cpts <- prep_cpts(data, gamma ~ 1, 1, "newmoon", weights, TS_control())</pre>
ids <- prep_ids(TS_control())</pre>
for(i in 1:TS_control()$nit){
  steps <- step_chains(i, cpts, inputs)</pre>
  swaps <- swap_chains(steps, inputs, ids)</pre>
  saves <- update_saves(i, saves, steps, swaps)</pre>
  cpts <- update_cpts(cpts, swaps)</pre>
  ids <- update_ids(ids, swaps)</pre>
```

prep_LDA_control 55

prep_LDA_control

Set the control inputs to include the seed

Description

Update the control list for the LDA model with the specific seed as indicated. And remove controls not used within the LDA itself.

Usage

```
prep_LDA_control(seed, control = list())
```

Arguments

seed

integer used to set the seed of the specific model.

control

Named list of control parameters to be used in LDA Note that if control has an element named seed it will be overwritten by the seed argument of prep_LDA_control.

Value

list of controls to be used in the LDA.

Examples

```
prep_LDA_control(seed = 1)
```

prep_pbar

Initialize and tick through the progress bar

Description

prep_pbar creates and update_pbar steps through the progress bars (if desired) in TS

Usage

```
prep_pbar(control = list(), bar_type = "rho", nr = NULL)
update_pbar(pbar, control = list())
```

56 prep_proposal_dist

Arguments

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values not input assume defaults set by TS_control. Of use here is quiet which is a a logical indicator of whether there should be information (i.e. the progress bar)

printed during the run or not. Default is TRUE.

bar_type "rho" (for change point locations) or "eta" (for regressors).

nr integer number of unique realizations, needed when bar_type = "eta".

pbar The progress bar object returned from prep_pbar.

Value

prep_pbar: the initialized progress bar object.

update_pbar: the ticked-forward pbar.

Examples

```
pb <- prep_pbar(control = list(nit = 2)); pb
pb <- update_pbar(pb); pb
pb <- update_pbar(pb); pb</pre>
```

prep_proposal_dist

Pre-calculate the change point proposal distribution for the ptMCMC algorithm

Description

Calculate the proposal distribution in advance of actually running the ptMCMC algorithm in order to decrease computation time. The proposal distribution is a joint of three distributions: [1] a multinomial distribution selecting among the change points within the chain, [2] a binomial distribution selecting the direction of the step of the change point (earlier or later in the time series), and [3] a geometric distribution selecting the magnitude of the step.

Usage

```
prep_proposal_dist(nchangepoints, control = list())
```

Arguments

nchangepoints

Integer corresponding to the number of change points to include in the model. 0 is a valid input (corresponding to no change points, so a singular time series model), and the current implementation can reasonably include up to 6 change points. The number of change points is used to dictate the segmentation of the data for each continuous model and each LDA model.

control

A list of parameters to control the fitting of the Time Series model including the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values not input assume defaults set by TS_control. Currently relevant here is magnitude, which controls the magnitude of the step size (is the average of the geometric distribution).

Value

list of two matrix elements: [1] the size of the proposed step for each iteration of each chain and [2] the identity of the change point location to be shifted by the step for each iteration of each chain.

Examples

```
prep_proposal_dist(nchangepoints = 2)
```

prep_ptMCMC_inputs

Prepare the inputs for the ptMCMC algorithm estimation of change points

Description

Package the static inputs (controls and data structures) used by the ptMCMC algorithm in the context of estimating change points.

This function was designed to work within TS and specifically est_changepoints. It is still hard-coded to do so, but has the capacity to be generalized to work with any estimation via ptMCMC with additional coding work.

Usage

```
prep_ptMCMC_inputs(
   data,
   formula,
   nchangepoints,
   timename,
   weights = NULL,
   control = list()
)
```

Arguments

data

Class data. frame object including [1] the time variable (indicated in control), [2] the predictor variables (required by formula) and [3], the multinomial re-

sponse variable (indicated in formula).

formula

formula describing the continuous change. Any predictor variable included must also be a column in the data. Any (multinomial) response variable must

also be a set of columns in data.

58 prep_saves

0 is a valid input (corresponding to no change points, so a singular time series model), and the current implementation can reasonably include up to 6 change points. The number of change points is used to dictate the segmentation of the

data for each continuous model and each LDA model.

timename character element indicating the time variable used in the time series. Defaults

to "time". The variable must be integer-conformable or a Date. If the variable named is a Date, the input is converted to an integer, resulting in the timestep

being 1 day, which is often not desired behavior.

weights Optional class numeric vector of weights for each document. Defaults to NULL,

translating to an equal weight for each document. When using multinom_TS in a standard LDATS analysis, it is advisable to weight the documents by their total size, as the result of LDA is a matrix of proportions, which does not account for size differences among documents. For most models, a scaling of the weights (so that the average is 1) is most appropriate, and this is accomplished using

document_weights.

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values

not input assume defaults set by TS_control.

Value

Class ptMCMC_inputs list, containing the static inputs for use within the ptMCMC algorithm for estimating change points.

prep_saves 59

Description

prep_saves creates the data structure used to save the output from each iteration of the ptMCMC algorithm, which is added via update_saves. Once the ptMCMC is complete, the saved data objects are then processed (burn-in iterations are dropped and the remaining iterations are thinned) via process_saves.

This set of functions was designed to work within TS and specifically est_changepoints. They are still hardcoded to do so, but have the capacity to be generalized to work with any estimation via ptMCMC with additional coding work.

Usage

```
prep_saves(nchangepoints, control = list())
update_saves(i, saves, steps, swaps)
process_saves(saves, control = list())
```

Arguments

nchangepoints integer corresponding to the number of change points to include in the model.

0 is a valid input (corresponding to no change points, so a singular time series model), and the current implementation can reasonably include up to 6 change points. The number of change points is used to dictate the segmentation of the

data for each continuous model and each LDA model.

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values

not input assume defaults set by TS_control.

i integer iteration index.

saves The existing list of saved data objects.

steps Chain configuration after within-temperature steps.
swaps Chain configuration after among-temperature swaps.

Value

list of ptMCMC objects: change points (\$cpts), log-likelihoods (\$lls), chain ids (\$ids), step acceptances (\$step_accepts), and swap acceptances (\$swap_accepts).

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)
data <- data[order(data[,"newmoon"]), ]</pre>
```

prep_temp_sequence

prep_temp_sequence

Prepare the ptMCMC temperature sequence

Description

Create the series of temperatures used in the ptMCMC algorithm.

This function was designed to work within TS and est_changepoints specifically, but has been generalized and would work with any ptMCMC model as long as control includes the relevant control parameters (and provided that the check_control function and its use here are generalized).

Usage

```
prep_temp_sequence(control = list())
```

Arguments

control

A list of parameters to control the fitting of the Time Series model including the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values not input assume defaults set by TS_control.

Value

vector of temperatures.

```
prep_temp_sequence()
```

prep_TS_data 61

prep_TS_data	Prepare the model-specific data to be used in the TS analysis of LDA output

Description

Append the estimated topic proportions from a fitted LDA model to the document covariate table to create the data structure needed for TS.

Usage

```
prep_TS_data(document_covariate_table, LDA_models, mods, i = 1)
```

Arguments

document_covariate_table

Document covariate table (rows: documents, columns: time index and covariate options). Every model needs a covariate to describe the time value for each document (in whatever units and whose name in the table is input in timename) that dictates the application of the change points. In addition, all covariates named within specific models in formula must be included. Must be a conformable to a data table, as verified by check_document_covariate_table.

LDA_models

List of LDA models (class LDA_set, produced by LDA_set) or a singular LDA

model (class LDA, produced by LDA).

mods

The data.table created by expand_TS that contains each of the models (defined by the LDA model to use and the and formula number of changepoints for

the TS model). Indexed here by i.

i integer index referencing the row in mods to use.

Value

Class data.frame object including [1] the time variable (indicated in control), [2] the predictor variables (required by formula) and [3], the multinomial response variable (indicated in formula), ready for input into TS.

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDAs <- LDA_set(document_term_table, topics = 2:3, nseeds = 2)
LDA_models <- select_LDA(LDAs)
weights <- document_weights(document_term_table)
formulas <- c(~ 1, ~ newmoon)
mods <- expand_TS(LDA_models, formulas = ~1, nchangepoints = 0)
data1 <- prep_TS_data(document_covariate_table, LDA_models, mods)</pre>
```

62 print.TS_fit

print.LDA_TS

Print the selected LDA and TS models of LDA_TS object

Description

Convenience function to print only the selected elements of a LDA_TS-class object returned by LDA_TS

Usage

```
## S3 method for class 'LDA_TS'
print(x, ...)
```

Arguments

- x Class LDA_TS object to be printed.
- ... Not used, simply included to maintain method compatibility.

Value

The selected models in x as a two-element list with the TS component only returning the non-hidden components.

Examples

print.TS_fit

Print a Time Series model fit

Description

Convenience function to print only the most important components of a TS_fit-class object fit by TS.

Usage

```
## S3 method for class 'TS_fit'
print(x, ...)
```

print.TS_on_LDA 63

Arguments

- x Class TS_fit object to be printed.
- ... Not used, simply included to maintain method compatibility.

Value

The non-hidden parts of x as a list.

Examples

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)
TSmod <- TS(data, gamma ~ 1, nchangepoints = 1, "newmoon", weights)
print(TSmod)</pre>
```

print.TS_on_LDA

Print a set of Time Series models fit to LDAs

Description

Convenience function to print only the names of a TS_on_LDA-class object generated by TS_on_LDA.

Usage

```
## S3 method for class 'TS_on_LDA'
print(x, ...)
```

Arguments

- x Class TS_on_LDA object to be printed.
- ... Not used, simply included to maintain method compatibility.

Value

character vector of the names of x's models.

Examples

```
print_model_run_message
```

Print the message to the console about which combination of the Time Series and LDA models is being run

Description

If desired, print a message at the beginning of every model combination stating the TS model and the LDA model being evaluated.

Usage

```
print_model_run_message(models, i, LDA_models, control)
```

Arguments

models data. frame object returned from expand_TS that contains the combinations of LDA models, and formulas and nchangepoints used in the TS models.

i integer index of the row to use from models.

LDA_models List of LDA models (class LDA_set, produced by LDA_set) or a singular LDA

model (class LDA, produced by LDA).

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values not input assume defaults set by TS_control. Of particular importance here is

the logical-class element named quiet.

Value

NULL.

proposed_step_mods 65

Examples

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDAs <- LDA_set(document_term_table, topics = 2:3, nseeds = 2)
LDA_models <- select_LDA(LDAs)
weights <- document_weights(document_term_table)
formulas <- c(~ 1, ~ newmoon)
nchangepoints <- 0:1
mods <- expand_TS(LDA_models, formulas, nchangepoints)
print_model_run_message(mods, 1, LDA_models, TS_control())</pre>
```

proposed_step_mods

Fit the chunk-level models to a time series, given a set of proposed change points within the ptMCMC algorithm

Description

This function wraps around TS_memo (optionally memoised multinom_TS) to provide a simpler interface within the ptMCMC algorithm and is implemented within propose_step.

Usage

```
proposed_step_mods(prop_changepts, inputs)
```

Arguments

prop_changepts matrix of proposed change points across chains.

inputs

Class ptMCMC_inputs list, containing the static inputs for use within the ptM-CMC algorithm.

Value

List of models associated with the proposed step, with an element for each chain.

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)
data <- data[order(data[,"newmoon"]), ]
saves <- prep_saves(1, TS_control())
inputs <- prep_ptMCMC_inputs(data, gamma ~ 1, 1, "newmoon", weights,</pre>
```

rho_lines

```
TS_control())
cpts <- prep_cpts(data, gamma ~ 1, 1, "newmoon", weights, TS_control())
i <- 1
pdist <- inputs$pdist
ntemps <- length(inputs$temps)
selection <- cbind(pdist$which_steps[i, ], 1:ntemps)
prop_changepts <- cpts$changepts
curr_changepts_s <- cpts$changepts[selection]
prop_changepts_s <- curr_changepts_s + pdist$steps[i, ]
if(all(is.na(prop_changepts_s))){
   prop_changepts_s <- NULL
}
prop_changepts[selection] <- prop_changepts_s
mods <- proposed_step_mods(prop_changepts, inputs)</pre>
```

rho_lines

Add change point location lines to the time series plot

Description

Adds vertical lines to the plot of the time series of fitted proportions associated with the change points of interest.

Usage

```
rho_lines(spec_rhos)
```

Arguments

spec_rhos

numeric vector indicating the locations along the x axis where the specific change points being used are located.

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)
TSmod <- TS(data, gamma ~ 1, nchangepoints = 1, "newmoon", weights)
pred_gamma_TS_plot(TSmod)
rho_lines(200)</pre>
```

rodents 67

rodents

Portal rodent data

Description

An example LDATS dataset, functionally that used in Christensen *et al.* (2018). The data are counts of 21 rodent species across 436 sampling events, with the count being the total number observed across 8 50 m x 50 m plots, each sampled using 49 live traps (Brown 1998, Ernest *et al.* 2016).

Usage

rodents

Format

A list of two data. frame-class objects with rows corresponding to documents (sampling events). One element is the document term table (called document_term_table), which contains counts of the species (terms) in each sample (document), and the other is the document covariate table (called document_covariate_table) with columns of covariates (newmoon number, sin and cos of the fraction of the year).

Source

https://github.com/weecology/PortalData/tree/master/Rodents

References

Brown, J. H. 1998. The desert granivory experiments at Portal. Pages 71-95 in W. J. Resetarits Jr. and J. Bernardo, *editors*, *Experimental Ecology*. Oxford University Press, New York, New York, USA.

Christensen, E., D. J. Harris, and S. K. M. Ernest. 2018. Long-term community change through multiple rapid transitions in a desert rodent community. *Ecology* **99**:1523-1529. link.

Ernest, S. K. M., *et al.* 2016. Long-term monitoring and experimental manipulation of a Chihuahuan desert ecosystem near Portal, Arizona (1977-2013). *Ecology* **97**:1082. link.

select_LDA

Select the best LDA model(s) for use in time series

Description

Select the best model(s) of interest from an LDA_set object, based on a set of user-provided functions. The functions default to choosing the model with the lowest AIC value.

Usage

```
select_LDA(LDA_models = NULL, control = list())
```

68 select_TS

Arguments

LDA_models An object of class LDA_set produced by LDA_set.

control A list of parameters to control the running and selecting of LDA models. Val-

ues not input assume default values set by LDA_set_control. Values for running the LDAs replace defaults in (LDAcontol, see LDA (but if seed is given, it

will be overwritten; use iseed instead).

Value

A reduced version of LDA_models that only includes the selected LDA model(s). The returned object is still an object of class LDA_set.

Examples

```
data(rodents)
lda_data <- rodents$document_term_table
r_LDA <- LDA_set(lda_data, topics = 2, nseeds = 2)
select_LDA(r_LDA)</pre>
```

select_TS

Select the best Time Series model

Description

Select the best model of interest from an TS_on_LDA object generated by TS_on_LDA, based on a set of user-provided functions. The functions default to choosing the model with the lowest AIC value.

Presently, the set of functions should result in a singular selected model. If multiple models are chosen via the selection, only the first is returned.

Usage

```
select_TS(TS_models, control = list())
```

Arguments

TS_models An object of class TS_on_LDA produced by TS_on_LDA.

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values

not input assume defaults set by TS_control.

Value

A reduced version of TS_models that only includes the selected TS model. The returned object is a single TS model object of class TS_fit.

set_gamma_colors 69

Examples

set_gamma_colors

Prepare the colors to be used in the gamma time series

Description

Based on the inputs, create the set of colors to be used in the time series of the fitted gamma (topic proportion) values.

Usage

```
set_gamma_colors(x, cols = NULL, option = "D", alpha = 1)
```

Arguments

x	Object of class TS_fit, fit by TS.
cols	Colors to be used to plot the time series of fitted topic proportions.
option	A character string indicating the color option from viridis to use if "cols == NULL". Four options are available: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D", the default option) and "cividis" (or "E").
alpha	Numeric value [0,1] that indicates the transparency of the colors used. Supported only on some devices, see righ

Value

Vector of character hex codes indicating colors to use.

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma</pre>
```

70 set_LDA_plot_colors

```
weights <- document_weights(document_term_table)
TSmod <- TS(data, gamma ~ 1, nchangepoints = 1, "newmoon", weights)
set_gamma_colors(TSmod)</pre>
```

set_LDA_plot_colors

Prepare the colors to be used in the LDA plots

Description

Based on the inputs, create the set of colors to be used in the LDA plots made by plot.LDA_TS.

Usage

```
set_LDA_plot_colors(x, cols = NULL, option = "C", alpha = 0.8)
```

Arguments

Х	Object of class LDA.
cols	Colors to be used to plot the topics. Any valid color values (<i>e.g.</i> , see colors, rgb) can be input as with a standard plot. The default (cols = NULL) triggers use of viridis color options (see option).
option	A character string indicating the color option from viridis to use if 'cols == NULL'. Four options are available: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C", the default option), "viridis" (or "D") and "cividis" (or "E").
alpha	Numeric value [0,1] that indicates the transparency of the colors used. Supported only on some devices, see rgb.

Value

vector of character hex codes indicating colors to use.

```
data(rodents)
lda_data <- rodents$document_term_table
r_LDA <- LDA_set(lda_data, topics = 4, nseeds = 10)
set_LDA_plot_colors(r_LDA[[1]])</pre>
```

```
set_LDA_TS_plot_cols Create the list of colors for the LDATS summary plot
```

Description

A default list generator function that produces the options for the colors controlling the panels of the LDATS summary plots, needed because the change point histogram panel should be in a different color scheme than the LDA and fitted time series model panels, which should be in a matching color scheme. See set_LDA_plot_colors, set_TS_summary_plot_cols, set_gamma_colors, and set_rho_hist_colors for specific details on usage.

Usage

```
set_LDA_TS_plot_cols(
  rho_cols = NULL,
  rho_option = "D",
  rho_alpha = 0.4,
  gamma_cols = NULL,
  gamma_option = "C",
  gamma_alpha = 0.8
)
```

Arguments

rho_cols	Colors to be used to plot the histograms of change points. Any valid color values (<i>e.g.</i> , see colors, rgb) can be input as with a standard plot. The default (rho_cols = NULL) triggers use of viridis color options (see rho_option).
rho_option	A character string indicating the color option from viridis to use if 'rho_cols == NULL'. Four options are available: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D", the default option) and "cividis" (or "E").
rho_alpha	Numeric value [0,1] that indicates the transparency of the colors used. Supported only on some devices, see rgb.
gamma_cols	Colors to be used to plot the LDA topic proportions, time series of observed topic proportions, and time series of fitted topic proportions. Any valid color values (<i>e.g.</i> , see colors, rgb) can be input as with a standard plot. The default (gamma_cols = NULL) triggers use of viridis color options (see gamma_option).
gamma_option	A character string indicating the color option from viridis to use if gamma_cols == NULL'. Four options are available: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C", the default option), "viridis" (or "D") and "cividis" (or "E").
gamma_alpha	Numeric value [0,1] that indicates the transparency of the colors used. Supported only on some devices, see rgb.

72 set_rho_hist_colors

Value

list of elements used to define the colors for the two panels of the summary plot, as generated simply using set_LDA_TS_plot_cols. cols has two elements: LDA and TS, each corresponding the set of plots for its stage in the full model. LDA contains entries cols and options (see set_LDA_plot_colors). TS contains two entries, rho and gamma, each corresponding to the related panel, and each containing default values for entries named cols, option, and alpha (see set_TS_summary_plot_cols, set_gamma_colors, and set_rho_hist_colors).

Examples

```
set_LDA_TS_plot_cols()
```

set_rho_hist_colors

Prepare the colors to be used in the change point histogram

Description

Based on the inputs, create the set of colors to be used in the change point histogram.

Usage

```
set_rho_hist_colors(x = NULL, cols = NULL, option = "D", alpha = 1)
```

Arguments

X	$\label{thm:matrix} \mbox{ matrix of change point locations (element rhos) from an object of class TS_fit, \\ \mbox{ fit by TS.} $
cols	Colors to be used to plot the histograms of change points. Any valid color values (<i>e.g.</i> , see colors, rgb) can be input as with a standard plot. The default (rho_cols = NULL) triggers use of viridis color options (see rho_option).
option	A character string indicating the color option from viridis to use if "cols == NULL". Four options are available: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D", the default option) and "cividis" (or "E").
alpha	Numeric value [0,1] that indicates the transparency of the colors used. Supported only on some devices, see rgb.

Value

Vector of character hex codes indicating colors to use.

Examples

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)
TSmod <- TS(data, gamma ~ 1, nchangepoints = 1, "newmoon", weights)
set_rho_hist_colors(TSmod$rhos)</pre>
```

```
set_TS_summary_plot_cols
```

Create the list of colors for the TS summary plot

Description

A default list generator function that produces the options for the colors controlling the panels of the TS summary plots, so needed because the panels should be in different color schemes. See set_gamma_colors and set_rho_hist_colors for specific details on usage.

Usage

```
set_TS_summary_plot_cols(
  rho_cols = NULL,
  rho_option = "D",
  rho_alpha = 0.4,
  gamma_cols = NULL,
  gamma_option = "C",
  gamma_alpha = 0.8
)
```

rho_cols	Colors to be used to plot the histograms of change points. Any valid color values (<i>e.g.</i> , see colors, rgb) can be input as with a standard plot. The default (rho_cols = NULL) triggers use of viridis color options (see rho_option).
rho_option	A character string indicating the color option from viridis to use if 'rho_cols == NULL'. Four options are available: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D", the default option) and "cividis" (or "E").
rho_alpha	Numeric value [0,1] that indicates the transparency of the colors used. Supported only on some devices, see rgb.
gamma_cols	Colors to be used to plot the LDA topic proportions, time series of observed topic proportions, and time series of fitted topic proportions. Any valid color values (<i>e.g.</i> , see colors, rgb) can be input as with a standard plot. The default (gamma_cols = NULL) triggers use of viridis color options (see gamma_option).

74 sim_LDA_data

gamma_option	A character string indicating the color option from viridis to use if gamma_cols == NULL'. Four options are available: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D", the default option) and "cividis" (or "E").
gamma_alpha	Numeric value [0,1] that indicates the transparency of the colors used. Supported only on some devices, see rgb.

Value

list of elements used to define the colors for the two panels. Contains two elements rho and gamma, each corresponding to the related panel, and each containing default values for entries named cols, option, and alpha.

Examples

```
set_TS_summary_plot_cols()
```

sim_LDA_data	Simulate LDA data from an LDA structure given parameters	

Description

For a given set of parameters alpha and Beta and document-specific total word counts, simulate a document-by-term matrix. Additional structuring variables (the numbers of topics (k), documents (M), terms (V)) are inferred from input objects.

Usage

```
sim_LDA_data(N, Beta, alpha = NULL, Theta = NULL, seed = NULL)
```

N	A vector of document sizes (total word counts). Must be integer conformable. Is used to infer the total number of documents.
Beta	matrix of categorical distribution parameters defining terms within topics. Dimension: $k \times V$ (number of topics x number of terms). Used to infer both (k) and (V) . Must be non-negative and sum to 1 within topics.
alpha	Single positive numeric value for the Dirichlet distribution parameter defining topics within documents. To specifically define document topic probabilities, use Theta.
Theta	matrix of probabilities defining topics within documents. Dimension: $M \times k$ (documents x topics). Must be non-negative and sum to 1 within documents. To generally define document topic probabilities, use alpha.
seed	Input to set.seed.

sim_LDA_TS_data 75

Value

A document-by-term matrix of counts (dim: M x V).

Examples

sim_LDA_TS_data

Simulate LDA_TS data from LDA and TS model structures and parameters

Description

For a given set of covariates X; parameters Beta, Eta, rho, and err; and document-specific time stamps tD and lengths N), simulate a document-by-topic matrix. Additional structuring variables (the numbers of topics (k), terms (V), documents (M), segments (S), and covariates per segment (C)) are inferred from input objects.

Usage

```
sim_LDA_TS_data(N, Beta, X, Eta, rho, tD, err = 0, seed = NULL)
```

N	A vector of document sizes (total word counts). Must be integer conformable. Is used to infer the total number of documents.
Beta	matrix of categorical distribution parameters defining terms within topics. Dimension: $k \times V$ (number of topics x number of terms). Used to infer both (k) and (V) . Must be non-negative and sum to 1 within topics.
X	matrix of covariates, dimension M (number of documents) x C (number of covariates, including the intercept) (a.k.a the design matrix).
Eta	matrix of regression parameters across the segments, dimension: SC (number of segments x number of covariates, including the intercept) x k (number of topics).
rho	Vector of integer-conformable time locations of changepoints or NULL if no changepoints. Used to determine the number of segments. Must exist within the bounds of the times of the documents, tD.
tD	Vector of integer-conformable times of the documents. Must be of length M (as determined by X).

76 sim_TS_data

err Additive error on the link-scale. Must be a non-negative numeric value. Default value of 0 indicates no error.

seed Input to set.seed.

Value

A document-by-term matrix of counts (dim: M x V).

Examples

```
 N \leftarrow c(10, 22, 15, 31)   tD \leftarrow c(1, 3, 4, 6)   rho \leftarrow 3   X \leftarrow cbind(rep(1, 4), 1:4)   Eta \leftarrow cbind(c(0.5, 0.3, 0.9, 0.5), c(1.2, 1.1, 0.1, 0.5))   Beta \leftarrow matrix(c(0.1, 0.1, 0.8, 0.2, 0.6, 0.2), 2, 3, byrow = TRUE)   err \leftarrow 1   sim_LDA_TS_data(N, Beta, X, Eta, rho, tD, err)
```

sim_TS_data

Simulate TS data from a TS model structure given parameters

Description

For a given set of covariates X; parameters Eta, rho, and err; and document-specific time stamps tD, simulate a document-by-topic matrix. Additional structuring variables (numbers of topics (k), documents (M), segments (S), and covariates per segment (C)) are inferred from input objects.

Usage

```
sim_TS_data(X, Eta, rho, tD, err = 0, seed = NULL)
```

X	matrix of covariates, dimension M (number of documents) x C (number of covariates, including the intercept) (a.k.a. the design matrix).
Eta	matrix of regression parameters across the segments, dimension: SC (number of segments x number of covariates, including the intercept) x k (number of topics).
rho	Vector of integer-conformable time locations of changepoints or NULL if no changepoints. Used to determine the number of segments. Must exist within the bounds of the times of the documents, tD.
tD	Vector of integer-conformable times of the documents. Must be of length M (as determined by X).
err	Additive error on the link-scale. Must be a non-negative numeric value. Default value of 0 indicates no error.
seed	Input to set.seed.

softmax 77

Value

A document-by-topic matrix of probabilities (dim: M x k).

Examples

softmax

Calculate the softmax of a vector or matrix of values

Description

Calculate the softmax (normalized exponential) of a vector of values or a set of vectors stacked rowwise.

Usage

```
softmax(x)
```

Arguments

Χ

numeric vector or matrix

Value

The softmax of x.

```
dat <- matrix(runif(100, -1, 1), 25, 4)
softmax(dat)
softmax(dat[,1])</pre>
```

78 step_chains

:	step_chains	Conduct a within-chain step of the ptMCMC algorithm

Description

This set of functions steps the chains forward one iteration of the within-chain component of the ptMCMC algorithm. step_chains is the main function, comprised of a proposal (made by prop_step), an evaluation of that proposal (made by eval_step), and then an update of the configuration (made by take_step).

This set of functions was designed to work within TS and specifically est_changepoints. They are still hardcoded to do so, but have the capacity to be generalized to work with any estimation via ptMCMC with additional coding work.

Usage

```
step_chains(i, cpts, inputs)
propose_step(i, cpts, inputs)
eval_step(i, cpts, prop_step, inputs)
take_step(cpts, prop_step, accept_step)
```

Arguments

i integer iteration index.

cpts matrix of change point locations across chains.

inputs Class ptMCMC_inputs list, containing the static inputs for use within the ptM-

CMC algorithm.

prop_step Proposed step output from propose_step.

accept_step logical indicator of acceptance of each chain's proposed step.

Details

For each iteration of the ptMCMC algorithm, all of the chains have the potential to take a step. The possible step is proposed under a proposal distribution (here for change points we use a symmetric geometric distribution), the proposed step is then evaluated and either accepted or not (following the Metropolis-Hastings rule; Metropolis, *et al.* 1953, Hasting 1960, Gupta *et al.* 2018), and then accordingly taken or not (the configurations are updated).

Value

step_chains: list of change points, log-likelihoods, and logical indicators of acceptance for each chain.

step_chains 79

propose_step: list of change points and log-likelihood values for the proposal.

eval_step: logical vector indicating if each chain's proposal was accepted.

take_step: list of change points, log-likelihoods, and logical indicators of acceptance for each chain.

References

Gupta, S., L. Hainsworth, J. S. Hogg, R. E. C. Lee, and J. R. Faeder. 2018. Evaluation of parallel tempering to accelerate Bayesian parameter estimation in systems biology. link.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov Chains and their applications. *Biometrika* **57**:97-109. link.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equations of state calculations by fast computing machines. *Journal of Chemical Physics* **21**: 1087-1092. link.

```
data(rodents)
document_term_table <- rodents$document_term_table</pre>
document_covariate_table <- rodents$document_covariate_table</pre>
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table</pre>
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)</pre>
data <- data[order(data[,"newmoon"]), ]</pre>
saves <- prep_saves(1, TS_control())</pre>
inputs <- prep_ptMCMC_inputs(data, gamma ~ 1, 1, "newmoon", weights,</pre>
                                TS_control())
cpts <- prep_cpts(data, gamma ~ 1, 1, "newmoon", weights, TS_control())</pre>
ids <- prep_ids(TS_control())</pre>
for(i in 1:TS_control()$nit){
  steps <- step_chains(i, cpts, inputs)</pre>
  swaps <- swap_chains(steps, inputs, ids)</pre>
  saves <- update_saves(i, saves, steps, swaps)</pre>
  cpts <- update_cpts(cpts, swaps)</pre>
  ids <- update_ids(ids, swaps)</pre>
# within step_chains()
cpts <- prep_cpts(data, gamma ~ 1, 1, "newmoon", weights, TS_control())</pre>
i <- 1
prop_step <- propose_step(i, cpts, inputs)</pre>
accept_step <- eval_step(i, cpts, prop_step, inputs)</pre>
take_step(cpts, prop_step, accept_step)
```

80 summarize_rhos

summarize_etas

Summarize the regressor (eta) distributions

Description

summarize_etas calculates summary statistics for each of the chunk-level regressors.

measure_ets_vcov generates the variance-covariance matrix for the regressors.

Usage

```
summarize_etas(etas, control = list())
measure_eta_vcov(etas)
```

Arguments

etas Matrix of regressors (columns) across iterations of the ptMCMC (rows), as re-

turned from est_regressors.

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values

not input assume defaults set by TS_control.

Value

summarize_etas: table of summary statistics for chunk-level regressors including mean, median, mode, posterior interval, standard deviation, MCMC error, autocorrelation, and effective sample size for each regressor.

measure_eta_vcov: variance-covariance matrix for chunk-level regressors.

Examples

```
etas <- matrix(rnorm(100), 50, 2)
summarize_etas(etas)
measure_eta_vcov(etas)</pre>
```

summarize_rhos

Summarize the rho distributions

Description

summarize_rho calculates summary statistics for each of the change point locations.

measure_rho_vcov generates the variance-covariance matrix for the change point locations.

swap_chains 81

Usage

```
summarize_rhos(rhos, control = list())
measure_rho_vcov(rhos)
```

Arguments

rhos Matrix of change point locations (columns) across iterations of the ptMCMC

(rows) or NULL if no change points are in the model, as returned from est_changepoints.

control A list of parameters to control the fitting of the Time Series model including

the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values

not input assume defaults set by TS_control.

Value

summarize_rhos: table of summary statistics for change point locations including mean, median, mode, posterior interval, standard deviation, MCMC error, autocorrelation, and effective sample size for each change point location.

measure_rho_vcov: variance-covariance matrix for change point locations.

Examples

```
rhos <- matrix(sample(80:100, 100, TRUE), 50, 2)
summarize_rhos(rhos)
measure_rho_vcov(rhos)</pre>
```

swap_chains

Conduct a set of among-chain swaps for the ptMCMC algorithm

Description

This function handles the among-chain swapping based on temperatures and likelihood differentials.

This function was designed to work within TS and specifically est_changepoints. It is still hard-coded to do so, but has the capacity to be generalized to work with any estimation via ptMCMC with additional coding work.

Usage

```
swap_chains(chainsin, inputs, ids)
```

Arguments

chainsin Chain configuration to be evaluated for swapping.

inputs Class ptMCMC_inputs list, containing the static inputs for use within the ptM-

CMC algorithm.

ids The vector of integer chain ids.

82 swap_chains

Details

The ptMCMC algorithm couples the chains (which are taking their own walks on the distribution surface) through "swaps", where neighboring chains exchange configurations (Geyer 1991, Falcioni and Deem 1999) following the Metropolis criterion (Metropolis *et al.* 1953). This allows them to share information and search the surface in combination (Earl and Deem 2005).

Value

list of updated change points, log-likelihoods, and chain ids, as well as a vector of acceptance indicators for each swap.

References

Earl, D. J. and M. W. Deem. 2005. Parallel tempering: theory, applications, and new perspectives. *Physical Chemistry Chemical Physics* **7**: 3910-3916. link.

Falcioni, M. and M. W. Deem. 1999. A biased Monte Carlo scheme for zeolite structure solution. *Journal of Chemical Physics* **110**: 1754-1766. link.

Geyer, C. J. 1991. Markov Chain Monte Carlo maximum likelihood. *In Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface*. pp 156-163. American Statistical Association, New York, USA. link.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equations of state calculations by fast computing machines. *Journal of Chemical Physics* **21**: 1087-1092. link.

```
data(rodents)
document_term_table <- rodents$document_term_table</pre>
document_covariate_table <- rodents$document_covariate_table</pre>
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table</pre>
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)</pre>
data <- data[order(data[,"newmoon"]), ]</pre>
saves <- prep_saves(1, TS_control())</pre>
inputs <- prep_ptMCMC_inputs(data, gamma ~ 1, 1, "newmoon", weights,</pre>
                                TS_control())
cpts <- prep_cpts(data, gamma ~ 1, 1, "newmoon", weights, TS_control())</pre>
ids <- prep_ids(TS_control())</pre>
for(i in 1:TS_control()$nit){
  steps <- step_chains(i, cpts, inputs)</pre>
  swaps <- swap_chains(steps, inputs, ids)</pre>
  saves <- update_saves(i, saves, steps, swaps)</pre>
  cpts <- update_cpts(cpts, swaps)</pre>
  ids <- update_ids(ids, swaps)</pre>
```

trace_plot 83

trace_plot

Produce the trace plot panel for the TS diagnostic plot of a parameter

Description

Produce a trace plot for the parameter of interest (rho or eta) as part of TS_diagnostics_plot. A horizontal line is added to show the median of the posterior.

Usage

```
trace_plot(x, ylab = "parameter value")
```

Arguments

x Vector of parameter values drawn from the posterior distribution, indexed to the

iteration by the order of the vector.

ylab character value used to label the y axis.

Value

NULL.

Examples

```
trace_plot(rnorm(100, 0, 1))
```

TS

Conduct a single multinomial Bayesian Time Series analysis

Description

This is the main interface function for the LDATS application of Bayesian change point Time Series analyses (Christensen *et al.* 2018), which extends the model of Western and Kleykamp (2004; see also Ruggieri 2013) to multinomial (proportional) response data using softmax regression (Ripley 1996, Venables and Ripley 2002, Bishop 2006) using a generalized linear modeling approach (McCullagh and Nelder 1989). The models are fit using parallel tempering Markov Chain Monte Carlo (ptMCMC) methods (Earl and Deem 2005) to locate change points and neural networks (Ripley 1996, Venables and Ripley 2002, Bishop 2006) to estimate regressors.

check_TS_inputs checks that the inputs to TS are of proper classes for a full analysis.

84 TS

Usage

```
TS(
  data,
  formula = gamma \sim 1,
  nchangepoints = 0,
  timename = "time",
 weights = NULL,
  control = list()
)
check_TS_inputs(
  data,
  formula = gamma \sim 1,
  nchangepoints = 0,
  timename = "time",
 weights = NULL,
  control = list()
)
```

Arguments

data

data.frame including [1] the time variable (indicated in timename), [2] the predictor variables (required by formula) and [3], the multinomial response variable (indicated in formula) as verified by check_timename and check_formula. Note that the response variables should be formatted as a data.frame object named as indicated by the response entry in the control list, such as gamma for a standard TS analysis on LDA output. See Examples.

formula

formula defining the regression between relationship the change points. Any predictor variable included must also be a column in data and any (multinomial) response variable must be a set of columns in data, as verified by check_formula.

nchangepoints

integer corresponding to the number of change points to include in the model. 0 is a valid input (corresponding to no change points, so a singular time series model), and the current implementation can reasonably include up to 6 change points. The number of change points is used to dictate the segmentation of the time series into chunks fit with separate models dictated by formula.

timename

character element indicating the time variable used in the time series. Defaults to "time". The variable must be integer-conformable or a Date. If the variable named is a Date, the input is converted to an integer, resulting in the timestep being 1 day, which is often not desired behavior.

weights

Optional class numeric vector of weights for each document. Defaults to NULL, translating to an equal weight for each document. When using multinom_TS in a standard LDATS analysis, it is advisable to weight the documents by their total size, as the result of LDA is a matrix of proportions, which does not account for size differences among documents. For most models, a scaling of the weights (so that the average is 1) is most appropriate, and this is accomplished using document_weights.

TS 85

control

A list of parameters to control the fitting of the Time Series model including the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values not input assume defaults set by TS_control.

Value

TS: TS_fit-class list containing the following elements, many of which are hidden for printing, but are accessible:

data data input to the function.

formula formula input to the function.

nchangepoints input to the function.

weights weights input to the function.

control control input to the function.

lls Iteration-by-iteration logLik values for the full time series fit by multinom_TS.

rhos Iteration-by-iteration change point estimates from est_changepoints.

etas Iteration-by-iteration marginal regressor estimates from est_regressors, which have been unconditioned with respect to the change point locations.

ptMCMC_diagnostics ptMCMC diagnostics, see diagnose_ptMCMC

rho_summary Summary table describing rhos (the change point locations), see summarize_rhos.

rho_vcov Variance-covariance matrix for the estimates of rhos (the change point locations), see measure_rho_vcov.

eta_summary Summary table describing ets (the regressors), see summarize_etas.

eta_vcov Variance-covariance matrix for the estimates of etas (the regressors), see measure_eta_vcov.

logLik Across-iteration average of log-likelihoods (11s).

nparams Total number of parameters in the full model, including the change point locations and regressors.

deviance Penalized negative log-likelihood, based on logLik and nparams.

check_TS_inputs: An error message is thrown if any input is not proper, else NULL.

References

Bishop, C. M. 2006. Pattern Recognition and Machine Learning. Springer, New York, NY, USA.

Christensen, E., D. J. Harris, and S. K. M. Ernest. 2018. Long-term community change through multiple rapid transitions in a desert rodent community. *Ecology* **99**:1523-1529. link.

Earl, D. J. and M. W. Deem. 2005. Parallel tempering: theory, applications, and new perspectives. *Physical Chemistry Chemical Physics* **7**: 3910-3916. link.

McCullagh, P. and J. A. Nelder. 1989. *Generalized Linear Models*. 2nd Edition. Chapman and Hall, New York, NY, USA.

Ripley, B. D. 1996. *Pattern Recognition and Neural Networks*. Cambridge University Press, Cambridge, UK.

Ruggieri, E. 2013. A Bayesian approach to detecting change points in climactic records. *International Journal of Climatology* **33**:520-528. link.

TS_control

Venables, W. N. and B. D. Ripley. 2002. *Modern and Applied Statistics with S.* Fourth Edition. Springer, New York, NY, USA.

Western, B. and M. Kleykamp. 2004. A Bayesian change point model for historical time series analysis. *Political Analysis* **12**:354-374. link.

Examples

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)

TSmod <- TS(data, gamma ~ 1, nchangepoints = 1, "newmoon", weights)
check_TS_inputs(data, timename = "newmoon")</pre>
```

TS_control

Create the controls list for the Time Series model

Description

This function provides a simple creation and definition of a list used to control the time series model fit occurring within TS.

Usage

```
TS_control(
 memoise = TRUE,
 response = "gamma",
 lambda = 0,
 measurer = AIC,
  selector = min,
  ntemps = 6,
  penultimate_temp = 2^6,
  ultimate_temp = 1e+10,
  q = 0,
  nit = 10000,
 magnitude = 12,
  quiet = FALSE,
  burnin = 0,
  thin_frac = 1,
  summary_prob = 0.95,
  seed = NULL
)
```

TS_control 87

Arguments

character element indicating the response variable used in the time series. lambda numeric "weight" decay term used to set the prior on the regressors within each chunk-level model. Defaults to 0, corresponding to a fully vague prior. measurer, selector Function names for use in evaluation of the TS models. measurer is used to create a value for each model and selector operates on the values to choose the model. ntemps integer number of temperatures (chains) to use in the ptMCMC algorithm. penultimate_temp Penultimate temperature in the ptMCMC sequence. ultimate_temp Ultimate temperature in the ptMCMC sequence. q Exponent controlling the ptMCMC temperature sequence from the focal chain (reference with temperature = 1) to the penultimate chain. 0 (default) implies a geometric sequence. 1 implies squaring before exponentiating. nit integer number of iterations (steps) used in the ptMCMC algorithm. magnitude Average magnitude (defining a geometric distribution) for the proposed step size in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be (0, 1], and the default value of 1 represents no thinning.	memoise	logical indicator of whether the multinomial functions should be memoised (via memoise). Memoisation happens to both multinom_TS and multinom_TS_chunk.	
chunk-level model. Defaults to 0, corresponding to a fully vague prior. measurer, selector Function names for use in evaluation of the TS models. measurer is used to create a value for each model and selector operates on the values to choose the model. ntemps integer number of temperatures (chains) to use in the ptMCMC algorithm. penultimate_temp Penultimate temperature in the ptMCMC sequence. ultimate_temp Ultimate temperature in the ptMCMC sequence. q Exponent controlling the ptMCMC temperature sequence from the focal chain (reference with temperature = 1) to the penultimate chain. 0 (default) implies a geometric sequence. 1 implies squaring before exponentiating. nit integer number of iterations (steps) used in the ptMCMC algorithm. magnitude Average magnitude (defining a geometric distribution) for the proposed step size in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be (0,1], and the default value of 1 repre-	response	character element indicating the response variable used in the time series.	
Function names for use in evaluation of the TS models. measurer is used to create a value for each model and selector operates on the values to choose the model. ntemps integer number of temperatures (chains) to use in the ptMCMC algorithm. penultimate_temp Penultimate temperature in the ptMCMC sequence. ultimate_temp Ultimate temperature in the ptMCMC sequence. q Exponent controlling the ptMCMC temperature sequence from the focal chain (reference with temperature = 1) to the penultimate chain. 0 (default) implies a geometric sequence. 1 implies squaring before exponentiating. nit integer number of iterations (steps) used in the ptMCMC algorithm. magnitude Average magnitude (defining a geometric distribution) for the proposed step size in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be (0, 1], and the default value of 1 repre-	lambda		
create a value for each model and selector operates on the values to choose the model. ntemps integer number of temperatures (chains) to use in the ptMCMC algorithm. penultimate_temp Penultimate temperature in the ptMCMC sequence. ultimate_temp Ultimate temperature in the ptMCMC sequence. q Exponent controlling the ptMCMC temperature sequence from the focal chain (reference with temperature = 1) to the penultimate chain. 0 (default) implies a geometric sequence. 1 implies squaring before exponentiating. nit integer number of iterations (steps) used in the ptMCMC algorithm. magnitude Average magnitude (defining a geometric distribution) for the proposed step size in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be (0, 1], and the default value of 1 repre-	measurer, selec	tor	
Penultimate_temp Penultimate temperature in the ptMCMC sequence. Ultimate_temp Ultimate temperature in the ptMCMC sequence. Q Exponent controlling the ptMCMC temperature sequence from the focal chain (reference with temperature = 1) to the penultimate chain. 0 (default) implies a geometric sequence. 1 implies squaring before exponentiating. nit integer number of iterations (steps) used in the ptMCMC algorithm. magnitude Average magnitude (defining a geometric distribution) for the proposed step size in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be (0, 1], and the default value of 1 repre-		create a value for each model and selector operates on the values to choose	
Penultimate temperature in the ptMCMC sequence. Ultimate_temp Ultimate temperature in the ptMCMC sequence. Exponent controlling the ptMCMC temperature sequence from the focal chain (reference with temperature = 1) to the penultimate chain. 0 (default) implies a geometric sequence. 1 implies squaring before exponentiating. nit integer number of iterations (steps) used in the ptMCMC algorithm. Magnitude Average magnitude (defining a geometric distribution) for the proposed step size in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be (0, 1], and the default value of 1 repre-	ntemps	integer number of temperatures (chains) to use in the ptMCMC algorithm.	
ultimate_temp Ultimate temperature in the ptMCMC sequence. Q Exponent controlling the ptMCMC temperature sequence from the focal chain (reference with temperature = 1) to the penultimate chain. 0 (default) implies a geometric sequence. 1 implies squaring before exponentiating. nit integer number of iterations (steps) used in the ptMCMC algorithm. magnitude Average magnitude (defining a geometric distribution) for the proposed step size in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be (0, 1], and the default value of 1 repre-	penultimate_tem	пр	
Exponent controlling the ptMCMC temperature sequence from the focal chain (reference with temperature = 1) to the penultimate chain. 0 (default) implies a geometric sequence. 1 implies squaring before exponentiating. nit integer number of iterations (steps) used in the ptMCMC algorithm. Average magnitude (defining a geometric distribution) for the proposed step size in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be (0,1], and the default value of 1 repre-		Penultimate temperature in the ptMCMC sequence.	
(reference with temperature = 1) to the penultimate chain. 0 (default) implies a geometric sequence. 1 implies squaring before exponentiating. nit integer number of iterations (steps) used in the ptMCMC algorithm. Average magnitude (defining a geometric distribution) for the proposed step size in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be (0,1], and the default value of 1 repre-	ultimate_temp	Ultimate temperature in the ptMCMC sequence.	
Average magnitude (defining a geometric distribution) for the proposed step size in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be (0,1], and the default value of 1 repre-	q	(reference with temperature = 1) to the penultimate chain. 0 (default) implies a	
in the ptMCMC algorithm. quiet logical indicator of whether the model should run quietly (if FALSE, a progress bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be $(0,1]$, and the default value of 1 repre-	nit	integer number of iterations (steps) used in the ptMCMC algorithm.	
bar and notifications are printed). burnin integer number of iterations to remove from the beginning of the ptMCMC algorithm. thin_frac Fraction of iterations to retain, must be $(0,1]$, and the default value of 1 repre-	magnitude		
algorithm. thin_frac Fraction of iterations to retain, must be $(0,1]$, and the default value of 1 repre-	quiet		
	burnin		
	thin_frac	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
summary_prob Probability used for summarizing the posterior distributions (via the highest posterior density interval, see HPDinterval).	summary_prob		
seed Input to set. seed for replication purposes.	seed	Input to set . seed for replication purposes.	

Value

list, with named elements corresponding to the arguments.

Examples

TS_control()

88 TS_diagnostics_plot

TS_diagnostics_plot

Plot the diagnostics of the parameters fit in a TS model

Description

Plot 4-panel figures (showing trace plots, posterior ECDF, posterior density, and iteration autocorrelation) for each of the parameters (change point locations and regressors) fitted within a multinomial time series model (fit by TS).

eta_diagnostics_plots creates the diagnostic plots for the regressors (etas) of a time series model.

rho_diagnostics_plots creates the diagnostic plots for the change point locations (rho) of a time series model.

Usage

```
TS_diagnostics_plot(x, interactive = TRUE)
eta_diagnostics_plots(x, interactive)
rho_diagnostics_plots(x, interactive)
```

Arguments

x Object of class TS_fit, generated by TS to have its diagnostics plotted.

interactive logical input, should be codeTRUE unless testing.

Value

NULL.

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)
TSmod <- TS(data, gamma ~ 1, nchangepoints = 1, "newmoon", weights)
TS_diagnostics_plot(TSmod)</pre>
```

TS_on_LDA 89

TS_on_LDA

Conduct a set of Time Series analyses on a set of LDA models

Description

This is a wrapper function that expands the main Time Series analyses function (TS) across the LDA models (estimated using LDA or LDA_set and the Time Series models, with respect to both continuous time formulas and the number of discrete changepoints. This function allows direct passage of the control parameters for the parallel tempering MCMC through to the main Time Series function, TS, via the ptMCMC_controls argument.

check_TS_on_LDA_inputs checks that the inputs to TS_on_LDA are of proper classes for a full analysis.

Usage

```
TS_on_LDA(
  LDA_models,
  document_covariate_table,
  formulas = \sim 1,
  nchangepoints = 0,
  timename = "time",
 weights = NULL,
  control = list()
)
check_TS_on_LDA_inputs(
  LDA_models,
  document_covariate_table,
  formulas = \sim 1,
  nchangepoints = 0,
  timename = "time",
 weights = NULL,
  control = list()
)
```

Arguments

LDA_models

List of LDA models (class LDA_set, produced by LDA_set) or a singular LDA model (class LDA, produced by LDA).

document_covariate_table

Document covariate table (rows: documents, columns: time index and covariate options). Every model needs a covariate to describe the time value for each document (in whatever units and whose name in the table is input in timename) that dictates the application of the change points. In addition, all covariates named within specific models in formula must be included. Must be a conformable to a data table, as verified by check_document_covariate_table.

90 TS_on_LDA

formulas

Vector of formula(s) for the continuous (non-change point) component of the time series models. Any predictor variable included in a formula must also be a column in the document_covariate_table. Each element (formula) in the vector is evaluated for each number of change points and each LDA model.

nchangepoints

Vector of integers corresponding to the number of change points to include in the time series models. 0 is a valid input corresponding to no change points (*i.e.*, a singular time series model), and the current implementation can reasonably include up to 6 change points. Each element in the vector is the number of change points used to segment the data for each formula (entry in formulas) component of the TS model, for each selected LDA model.

timename

character element indicating the time variable used in the time series. Defaults to "time". The variable must be integer-conformable or a Date. If the variable named is a Date, the input is converted to an integer, resulting in the timestep being 1 day, which is often not desired behavior.

weights

Optional class numeric vector of weights for each document. Defaults to NULL, translating to an equal weight for each document. When using multinom_TS in a standard LDATS analysis, it is advisable to weight the documents by their total size, as the result of LDA is a matrix of proportions, which does not account for size differences among documents. For most models, a scaling of the weights (so that the average is 1) is most appropriate, and this is accomplished using document_weights.

control

A list of parameters to control the fitting of the Time Series model including the parallel tempering Markov Chain Monte Carlo (ptMCMC) controls. Values not input assume defaults set by TS_control.

Value

TS_on_LDA: TS_on_LDA-class list of results from TS applied for each model on each LDA model input.

check_TS_inputs: An error message is thrown if any input is not proper, else NULL.

TS_summary_plot 91

TS_summary_plot

Create the summary plot for a TS fit to an LDA model

Description

Produces a two-panel figure of [1] the change point distributions as histograms over time and [2] the time series of the fitted topic proportions over time, based on a selected set of change point locations.

pred_gamma_TS_plot produces a time series of the fitted topic proportions over time, based on a selected set of change point locations.

rho_hist: make a plot of the change point distributions as histograms over time.

Usage

```
TS_summary_plot(
  cols = set_TS_summary_plot_cols(),
 bin_width = 1,
  xname = NULL,
 border = NA,
  selection = "median",
 LDATS = FALSE
)
pred_gamma_TS_plot(
  selection = "median",
 cols = set_gamma_colors(x),
 xname = NULL,
  together = FALSE,
  LDATS = FALSE
)
rho_hist(
  cols = set_rho_hist_colors(x$rhos),
 bin_width = 1,
 xname = NULL,
 border = NA,
  together = FALSE,
 LDATS = FALSE
)
```

Arguments

x Object of class TS_fit produced by TS.

cols list of elements used to define the colors for the two panels, as generated sim-

ply using set_TS_summary_plot_cols. Has two elements rho and gamma, each corresponding to the related panel, and each containing default values for entries named cols, option, and alpha. See set_gamma_colors and set_rho_hist_colors

for details on usage.

bin_width Width of the bins used in the histograms, in units of the x-axis (the time variable

used to fit the model).

xname Label for the x-axis in the summary time series plot. Defaults to NULL, which re-

sults in usage of the timename element of the control list (held incontrol\$TS_control\$timename).

To have no label printed, set xname = "".

border Border for the histogram, default is NA.

selection Indicator of the change points to use. Currently only defined for "median" and

"mode".

LDATS logical indicating if the plot is part of a larger LDATS plot output.

together logical indicating if the subplots are part of a larger LDA plot output.

Value

NULL.

Examples

```
data(rodents)
document_term_table <- rodents$document_term_table
document_covariate_table <- rodents$document_covariate_table
LDA_models <- LDA_set(document_term_table, topics = 2)[[1]]
data <- document_covariate_table
data$gamma <- LDA_models@gamma
weights <- document_weights(document_term_table)
TSmod <- TS(data, gamma ~ 1, nchangepoints = 1, "newmoon", weights)
TS_summary_plot(TSmod)
pred_gamma_TS_plot(TSmod)
rho_hist(TSmod)</pre>
```

verify_changepoint_locations

Verify the change points of a multinomial time series model

Description

Verify that a time series can be broken into a set of chunks based on input change points.

Usage

```
verify_changepoint_locations(data, changepoints = NULL, timename = "time")
```

Arguments

data Class data. frame object including the predictor and response variables.

changepoints Numeric vector indicating locations of the change points. Must be conformable

to integer values.

timename character element indicating the time variable used in the time series. Defaults

to "time". The variable must be integer-conformable or a Date. If the variable named is a Date, the input is converted to an integer, resulting in the timestep

being 1 day, which is often not desired behavior.

Value

Logical indicator of the check passing TRUE or failing FALSE.

Index

* datasets jornada, 21 rodents, 67 * package LDATS, 22 acf, 4 AIC, 4 AICc, 4	est_changepoints, 13, 14, 16, 18, 42, 43, 53, 57, 59, 60, 78, 81, 85 est_regressors, 18, 42, 43, 80, 85 eta_diagnostics_plots
autocorr_plot, 4	04, 03, 90
character, 37	HPDinterval, 29,87
check_changepoints, 5, 36 check_control, 6, 60	iftrue, 21
check_document_covariate_table, 6, 26, 61, 89	jornada, 21
check_document_term_table, 7, 7, 15, 24, 26 check_formula, 8, 8, 17, 18, 35, 36, 42, 52, 84 check_formulas, 8 check_LDA_models, 9 check_LDA_TS_inputs (LDA_TS), 25 check_multinom_TS_inputs (multinom_TS), 35 check_nchangepoints, 10 check_seeds, 10 check_timename, 8, 11, 17, 18, 35, 42, 52, 84 check_topics, 12 check_TS_inputs (TS), 83 check_TS_on_LDA_inputs (TS_on_LDA), 89 check_weights, 12	LDA, 9, 17, 18, 20, 23–25, 27, 29, 36, 37, 40, 42, 44, 47, 52, 55, 58, 61, 64, 68, 84, 89, 90 LDA_msg, 23 LDA_plot_bottom_panel (plot.LDA_VEM), 46 LDA_plot_top_panel (plot.LDA_VEM), 46 LDA_set, 9, 20, 23, 25, 27, 40, 41, 44, 61, 64, 68, 89 LDA_set_control, 24, 24, 68 LDA_TS, 25, 28, 41, 45, 46, 62 LDA_TS_control, 27, 28 LDATS, 22 logLik, 4, 30, 43, 85 logLik.LDA_VEM, 29 logLik.multinom_TS_fit, 30 logLik.TS_fit, 31
colors, 48, 70–73 conform_LDA_TS_data (LDA_TS), 25	logsumexp, 32
count_trips, 13, <i>14</i> diagnose_ptMCMC, <i>13</i> , 14, <i>43</i> , <i>85</i>	measure_eta_vcov, 43, 85 measure_eta_vcov (summarize_etas), 80 measure_rho_vcov, 43, 85
document_weights, 15, 36, 52, 58	measure_rho_vcov (summarize_rhos), 80 memoise, 28, 33, 87
ecdf_plot, 16	memoise_fun, 33

INDEX 95

messageq, 33	set.seed, 74, 76
mirror_vcov, 34	set_gamma_colors, 46, 49, 69, 71–73, 92
modalvalue, 34	set_LDA_plot_colors, 46, 70, 71, 72
multinom, 30, 34, 35, 37	set_LDA_TS_plot_cols, 46, 71, 72
multinom_TS, 18, 28, 30, 31, 35, 43, 65, 85, 87	set_rho_hist_colors, 46, 49, 71, 72, 72, 73,
multinom_TS_chunk, 28, 37, 39, 87	92
normalize, 38	set_TS_summary_plot_cols, 46, 49, 71, 72, 73, 92
nackage chunk fite 20	sim_LDA_data, 74
package_chunk_fits, 39	sim_LDA_TS_data, 75
package_LDA_set, 40	sim_TS_data, 76
package_LDA_TS, 41	softmax, 77
package_TS, 42	step_chains, 78
package_TS_on_LDA, 44	$summarize_etas, 43, 80, 85$
plot, 45, 48, 49	summarize_rhos, <i>43</i> , <i>80</i> , <i>85</i>
plot.LDA_set, 45	swap_chains, 81
plot.LDA_TS, 45, 70	
plot.LDA_VEM, 46	take_step(step_chains), 78
plot.TS_fit, 48	trace_plot, 83
posterior_plot, 50	TS, 13, 14, 41, 42, 44, 48, 49, 53, 55, 57,
<pre>pred_gamma_TS_plot (TS_summary_plot), 91</pre>	59–62, 69, 72, 78, 81, 83, 86, 88–91
prep_chunks, 51	TS_control, 9, 17, 18, 36, 37, 42, 53, 54,
prep_cpts, 52	56–60, 64, 68, 80, 81, 85, 86, 90
prep_ids, 53	TS_diagnostics_plot, 4, 16, 50, 83, 88
<pre>prep_LDA_control, 55</pre>	TS_on_LDA, 25, 27, 41, 63, 68, 89
prep_pbar, 55	TS_summary_plot, 91
prep_proposal_dist, 56	
prep_ptMCMC_inputs, 57	update_cpts (prep_cpts), 52
prep_saves, 58	update_ids (prep_ids), 53
prep_temp_sequence, 60	update_pbar (prep_pbar), 55
prep_TS_data, 61	update_saves (prep_saves), 58
print.LDA_TS, 62	
print.TS_fit, 62	vcov, <i>34</i>
print.TS_on_LDA, 63	verify_changepoint_locations, 36 , 92
print_model_run_message, 64	viridis, <i>48</i> , <i>69–74</i>
process_saves (prep_saves), 58	
propose_step, 65	
propose_step(step_chains), 78	
proposed_step_mods, 65	
proposed_step_illous, 03	
rgb, 48, 69–74	
rho_diagnostics_plots	
(TS_diagnostics_plot), 88	
rho_hist (TS_summary_plot), 91	
rho_lines, 66	
rodents, 67	
Touches, U/	
select_LDA, 25, 27, 41, 67	
select_TS, 25, 27, 41, 68	