Type: | Package |
Title: | Ion Selective Electrodes Analysis Methods |
Version: | 3.2.0 |
Date: | 2022-10-14 |
Author: | Peter Dillingham [aut, cre], Christina McGraw [ctb], Aleksandar Radu [ctb], Basim Alsaedi [ctb] |
Maintainer: | Peter Dillingham <peter.dillingham@otago.ac.nz> |
Description: | Characterisation and calibration of single or multiple Ion Selective Electrodes (ISEs); activity estimation of experimental samples. Implements methods described in: Dillingham, P.W., Radu, T., Diamond, D., Radu, A. and McGraw, C.M. (2012) <doi:10.1002/elan.201100510>, Dillingham, P.W., Alsaedi, B.S.O. and McGraw, C.M. (2017) <doi:10.1109/ICSENS.2017.8233898>, Dillingham, P.W., Alsaedi, B.S.O., Radu, A., and McGraw, C.M. (2019) <doi:10.3390/s19204544>, and Dillingham, P.W., Alsaedi, B.S.O., Granados-Focil, S., Radu, A., and McGraw, C.M. (2020) <doi:10.1021/acssensors.9b02133>. |
Depends: | coda |
Imports: | graphics, stats, utils |
Suggests: | R2OpenBUGS, rjags, boot, R.rsp |
VignetteBuilder: | R.rsp |
SystemRequirements: | OpenBUGS (>=3.0) or JAGS (>=4.3.1) |
License: | GPL-2 |
NeedsCompilation: | no |
Packaged: | 2022-10-14 22:36:24 UTC; dillingh |
Repository: | CRAN |
Date/Publication: | 2022-10-19 09:17:57 UTC |
Ion Selective Electrodes Analysis Methods
Description
Bayesian calibration for single or multiple ISEs using R and OpenBUGS (or JAGS). Estimation of analyte activities using single ISEs or ISE arrays.
Details
Package: | ISEtools |
Type: | Package |
Version: | 3.2.0 |
Depends: R (>4.1.0) | |
Date: | 2022-10-14 |
License: | GPL-2 |
SystemRequirements: OpenBUGS (>3.0) or JAGS (>=4.3.1) | |
The primary funtions are loadISEdata (which loads calibration and experimental data from tab-delimited text files), describeISE (uses Bayesian calibration to estimate ISE parameters from calibration data), and analyseISE (combines calibration data with experimental data in basic or standard addition format to estimate analyte concentrations).
Author(s)
Peter Dillingham [aut, cre], Christina McGraw [ctb], Aleksandar Radu [ctb], Basim Alsaedi [ctb]
Maintainer: Peter Dillingham <peter.dillingham@otago.ac.nz>
References
Dillingham, P.W., Radu, T., Diamond, D., Radu, A. and McGraw, C.M. (2012). Bayesian Methods for Ion Selective Electrodes. Electroanalysis, 24, 316-324. <doi:10.1002/elan.201100510>
Dillingham, P.W., Alsaedi, B.S.O. and McGraw, C.M. (2017). Characterising uncertainty in instrumental limits of detection when sensor response is non-linear. 2017 IEEE SENSORS, Glasgow, United Kingdom, pp. 1-3. <doi:10.1109/ICSENS.2017.8233898>
Dillingham, P.W., Alsaedi, B.S.O., Radu, A., and McGraw, C.M. (2019). Semi-automated data analysis for ion-selective electrodes and arrays using the R package ISEtools. Sensors 19(20), 4544. <doi:10.3390/s19204544>
Dillingham, P.W., Alsaedi, B.S.O., Granados-Focil, S., Radu, A., and McGraw, C.M. (2020). Establishing meaningful Limits of Detection for ion-selective electrodes and other nonlinear sensors ACS Sensors, 5, 250-257. <doi:10.1021/acssensors.9b02133>
Examples
data(LeadStdAdd)
print(LeadStdAdd)
summary(LeadStdAdd)
plot(LeadStdAdd)
example1 = describeISE(LeadStdAdd, Z =2, temperature=21)
print(example1)
summary(example1)
plot(example1)
example2 = analyseISE(LeadStdAdd, Z =2, temperature=21)
print(example2)
summary(example2)
plot(example2, ylim = c(-7, -3), xlab = "ID (Sample)",
ylab = expression(paste(log[10], " ", Pb^{paste("2","+",sep="")} )))
ISE measurements of lead in soil
Description
A data set containing emf responses for 3 ISEs measuring lead in soil at Silvermines, Ireland. Calibration data and experimental data for 17 samples (in standard addition format) are included.
Usage
data(LeadStdAdd)
Format
Load example lead data as an object of type ISEdata (see function loadISEdata)
References
Dillingham, P.W., Radu, T., Diamond, D., Radu, A. and McGraw, C.M. (2012). Bayesian Methods for Ion Selective Electrodes. Electroanalysis, 24, 316-324. <doi:10.1002/elan.201100510>
Dillingham, P.W., Alsaedi, B.S.O., Radu, A., and McGraw, C.M. (2019). Semi-automated data analysis for ion-selective electrodes and arrays using the R package ISEtools. Sensors 19(20), 4544. <doi: 10.3390/s19204544>
Dillingham, P.W., Alsaedi, B.S.O., Granados-Focil, S., Radu, A., and McGraw, C.M. (2020). Establishing meaningful Limits of Detection for ion-selective electrodes and other nonlinear sensors. ACS Sensors, 5, 250-257. <doi:10.1021/acssensors.9b02133>
Examples
data(LeadStdAdd)
print(LeadStdAdd)
summary(LeadStdAdd)
plot(LeadStdAdd)
## Not run:
# Additional usage of this dataset with describeISE and analyseISE:
example1 = describeISE(LeadStdAdd, Z = 2, temperature = 21)
print(example1)
summary(example1)
plot(example1)
example2 = analyseISE(LeadStdAdd, Z = 2, temperature = 21)
print(example2)
summary(example2)
plot(example2, ylim = c(-7, -3), xlab = "ID (Sample)",
ylab = expression(paste(log[10], " ", Pb^{paste("2","+",sep="")} )))
## End(Not run)
Ion selective electrode characterisation and estimation of sample concentrations
Description
Use Bayesian calibration to estimate parameters for y = a + b log(x + c) + error, where error follows a normal distribution with mean 0 and standard deviation sigma. The limit of detection (false positive/negative method or S/N=3 method) is also estimated. These values are then used to the estimate sample concentrations.
Usage
analyseISE(data, model.path=NA, model.name=NA, Z=NA, temperature = 21,
burnin=25000, iters = 50000, chains=4, thin = 1,
a.init= NA, b.init=NA, cstar.init=NA, logc.limits = c(-8.9, -1.9),
sigma.upper = 5, diagnostic.print=FALSE, offset = 1,
alpha = 0.05, beta = 0.05, SN = NA, program="OpenBUGS")
Arguments
data |
Calibration and experimental data (of class 'ISEdata'; see loadISEdata) |
model.path |
The directory where the BUGS model is located (defaults to 'models' sub-directory under the location of ISEtools package, e.g. '.../ISEtools/models') |
model.name |
The name of the BUGS model (e.g. 'Single_ISE_model.txt') (defaults are located in ISEtools package) |
Z |
Ionic valence (e.g. for lead, Z = 2) |
temperature |
temperature in degrees C |
burnin |
Initial number of Monte Carlo simulations to discard. |
iters |
Total number of iterations. |
chains |
Number of parallel MCMC chains |
thin |
Thinning rate, equal to 1/Proportion of simulations saved (e.g. thin = 10 records every tenth iteration). |
a.init |
Initial value for parameter a |
b.init |
Initial value for parameter b |
cstar.init |
Initial value for parameter cstar (c = cstar^10) |
logc.limits |
Upper and lower limits for log c initial values |
sigma.upper |
Upper limit for initial value of sigma |
diagnostic.print |
logical flag indicating whether a diagnostic printout is desired (default is F) |
offset |
The initial value for the slope is based on the last data point as sorted by concentration (i.e. the Nth point) and the (N - offset) data point. The default is offset = 1, corresponding to the last and second to last data points. |
alpha |
False positive rate used for detection threshold (not output) to calculate LOD(alpha, beta) only returned if SN = NA |
beta |
False negative rate used to calculate LOD(alpha, beta) only returned if SN = NA |
SN |
Desired signal-to-noise ratio for LOD(S/N) calculations (default is to calculate the S/N equivalent based on alpha, beta) |
program |
Choice of "OpenBUGS" (default and recommended for Windows or Linux) or "jags" (for macOS, see manual for warnings). |
Value
analyseISE returns a list of class 'analyseISE'. Individual components include:
SampleID |
Sample identification number |
log10x.exp |
Estimated concentration (log scale, mol/l) |
ahat |
Estimated value for a (from the median of the posterior distribution) |
bhat |
Estimated value for b (from the median of the posterior distribution) |
chat |
Estimated value for c (from the median of the posterior distribution) |
cstarhat |
Estimated value for cstar (from the median of the posterior distribution) |
sigmahat |
Estimated value for cstar (from the median of the posterior distribution) |
LOD.info |
List describing LOD method (alpha, beta or S/N) and corresponding values (alpha, beta, SN) |
LOD.hat |
Estimated value for the limit of detection (from the median of the posterior distribution) |
<parametername>.lcl |
Lower limit for the above parameters (e.g. ahat.lcl, bhat.lcl, ...) (from the 2.5th percentile of the posterior distribution) |
<parametername>.ucl |
Upper limit for the above parameters (from the 97.5th percentile of the posterior distribution) |
LOD.Q1 |
25th percentile estimated value of the limit of detection |
LOD.Q3 |
75th percentile estimated value of the limit of detection |
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz
References
Dillingham, P.W., Radu, T., Diamond, D., Radu, A. and McGraw, C.M. (2012). Bayesian Methods for Ion Selective Electrodes. Electroanalysis, 24, 316-324. <doi:10.1002/elan.201100510>
Dillingham, P.W., Alsaedi, B.S.O. and McGraw, C.M. (2017). Characterising uncertainty in instrumental limits of detection when sensor response is non-linear. 2017 IEEE SENSORS, Glasgow, United Kingdom, pp. 1-3. <doi:10.1109/ICSENS.2017.8233898>
Dillingham, P.W., Alsaedi, B.S.O., Radu, A., and McGraw, C.M. (2019). Semi-automated data analysis for ion-selective electrodes and arrays using the R package ISEtools. Sensors 19(20), 4544. <doi: 10.3390/s19204544>
Dillingham, P.W., Alsaedi, B.S.O., Granados-Focil, S., Radu, A., and McGraw, C.M. (2020). Establishing meaningful Limits of Detection for ion-selective electrodes and other nonlinear sensors ACS Sensors, 5, 250-257. <doi:10.1021/acssensors.9b02133>
Examples
# Fast-running example with only 100 MCMC iterations for testing:
data(LeadStdAdd)
example2test = analyseISE(LeadStdAdd, Z = 2, temperature = 21,
burnin=100, iters=200, chains=1, a.init=c(176, 146, -112),
b.init=c(29, 30, 31), cstar.init=c(0.26, 0.27, 0.22), program="jags")
print(example2test)
summary(example2test)
plot(example2test, ylim = c(-7, -3), xlab = "ID (Sample)",
ylab = expression(paste(log[10], " ", Pb^{paste("2","+",sep="")} )))
# Full example with 100,000 iterations (25,000 by 4 chains):
data(LeadStdAdd)
example2 = analyseISE(LeadStdAdd, Z = 2, temperature = 21)
print(example2)
summary(example2)
plot(example2, ylim = c(-7, -3), xlab = "ID (Sample)",
ylab = expression(paste(log[10], " ", Pb^{paste("2","+",sep="")} )))
ISE measurements of carbonate in seawater
Description
A data set containing emf responses for 8 ISEs measuring carbonate in seawater
Usage
data(carbonate)
Format
Load example carbonate data as an object of type ISEdata (see function loadISEdata)
References
Dillingham, P.W., Alsaedi, B.S.O. and McGraw, C.M. (2017). Characterising uncertainty in instrumental limits of detection when sensor response is non-linear. 2017 IEEE SENSORS, Glasgow, United Kingdom, pp. 1-3. <doi:10.1109/ICSENS.2017.8233898>
Examples
data(carbonate)
print(carbonate)
plot(carbonate)
Ion selective electrode characterisation
Description
Use Bayesian calibration to estimate parameters for y = a + b log(x + c) + error, where error follows a nomral distribution with mean 0 and standard deviation sigma. The limit of detection is also estimated.
Usage
describeISE(data, model.path=NA, model.name = NA, Z=NA, temperature = 21,
burnin=25000, iters = 50000, chains=4, thin = 1,
a.init= NA, b.init=NA, cstar.init=NA,
logc.limits = c(-8.9, -1.9), sigma.upper = 5, diagnostic.print=FALSE, offset = 1,
alpha = 0.05, beta = 0.05, SN = NA,
keep.coda=TRUE, coda.n=1000, program="OpenBUGS")
Arguments
data |
Calibration data (of class 'ISEdata'; see loadISEdata) |
model.path |
The directory where the BUGS model is located (defaults to 'models' sub-directory under the location of ISEtools package, e.g. '.../ISEtools/models') |
model.name |
The name of the BUGS model (e.g. 'Single_ISE_model.txt') (defaults are located in ISEtools package) |
Z |
Ionic valence (e.g. for lead, Z = 2) |
temperature |
temperature in degrees C |
burnin |
Initial number of Monte Carlo simulations to discard. |
iters |
Total number of iterations. |
chains |
Number of parallel MCMC chains |
thin |
Thinning rate, equal to 1/Proportion of simulations saved (e.g. thin = 10 records every tenth iteration). |
a.init |
Initial value for parameter a |
b.init |
Initial value for parameter b |
cstar.init |
Initial value for parameter cstar (c = cstar^10) |
logc.limits |
Upper and lower limits for log c initial values |
sigma.upper |
Upper limit for initial value of sigma |
diagnostic.print |
logical flag indicating whether a diagnostic printout is desired (default is FALSE) |
offset |
The initial value for the slope is based on the last data point as sorted by concentration (i.e. the Nth point) and the (N - offset) data point. The default is offset = 1, corresponding to the last and second to last data points. |
alpha |
False positive rate used for detection threshold (not output) to calculate LOD(alpha, beta) only returned if SN = NA |
beta |
False negative rate used to calculate LOD(alpha, beta) only returned if SN = NA |
SN |
Desired signal-to-noise ratio for LOD(S/N) calculations (default is to calculate the S/N equivalent based on alpha, beta) |
keep.coda |
Logical flag indicating whether the MCMC simulations should be returned (keep.coda = TRUE) or not (keep.coda = FALSE) |
coda.n |
Indicates how many simulations to return (sampled with replacement). If coda.n >= the total, all are returned. |
program |
Choice of "OpenBUGS" (default and recommended for Windows or Linux) or "jags" (for macOS, see manual for warnings). |
Value
describeISE returns a list of class 'ISEdescription'. Individual components are:
ahat |
Estimated value for a (from the median of the posterior distribution) |
bhat |
Estimated value for b (from the median of the posterior distribution) |
chat |
Estimated value for c (from the median of the posterior distribution) |
cstarhat |
Estimated value for cstar (c to the 0.1 power) (from the median of the posterior distribution) |
sigmahat |
Estimated value for cstar (from the median of the posterior distribution) |
LOD.info |
List describing LOD method (alpha, beta or S/N) and corresponding values (alpha, beta, SN) |
LOD.hat |
Estimated value for the limit of detection (from the median of the posterior distribution) |
<parametername>.lcl |
Lower limit for the above parameters (e.g. ahat.lcl, bhat.lcl, ...) (from the 2.5th percentile of the posterior distribution) |
<parametername>.ucl |
Upper limit for the above parameters (from the 95.5th percentile of the posterior distribution) |
LOD.Q1 |
25th percentile estimated value of the limit of detection |
LOD.Q3 |
75th percentile estimated value of the limit of detection |
If keep.coda = TRUE, then these additional items are returned:
ahat.coda |
Random sample (without replacement) of length coda.n from the Markov Chain Monte Carlo simulations for a |
bhat.coda |
Random sample (without replacement) of length coda.n from the Markov Chain Monte Carlo simulations for b |
chat.coda |
Random sample (without replacement) of length coda.n from the Markov Chain Monte Carlo simulations for c |
sigmahat.coda |
Random sample (without replacement) of length coda.n from the Markov Chain Monte Carlo simulations for sigma |
cstarhat.coda |
Random sample (without replacement) of length coda.n from the Markov Chain Monte Carlo simulations for cstar |
LOD.coda |
Random sample (without replacement) of length coda.n from the Markov Chain Monte Carlo simulations for LOD |
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz
References
Dillingham, P.W., Radu, T., Diamond, D., Radu, A. and McGraw, C.M. (2012). Bayesian Methods for Ion Selective Electrodes. Electroanalysis, 24, 316-324.
Dillingham, P.W., Alsaedi, B.S.O. and McGraw, C.M. (2017). Characterising uncertainty in instrumental limits of detection when sensor response is non-linear. 2017 IEEE SENSORS, Glasgow, United Kingdom, pp. 1-3. <doi:10.1109/ICSENS.2017.8233898>
Dillingham, P.W., Alsaedi, B.S.O., Radu, A., and McGraw, C.M. (2019). Semi-automated data analysis for ion-selective electrodes and arrays using the R package ISEtools. Sensors 19(20), 4544. <doi: 10.3390/s19204544>
Dillingham, P.W., Alsaedi, B.S.O., Granados-Focil, S., Radu, A., and McGraw, C.M. (2020). Establishing meaningful Limits of Detection for ion-selective electrodes and other nonlinear sensors ACS Sensors, 5, 250-257. <doi:10.1021/acssensors.9b02133>
Examples
# Fast-running example with only 100 MCMC iterations for testing:
data(carbonate)
example3test = describeISE(carbonate, Z = -2, SN = 3.6,
burnin=100, iters=200, chains=1,
a.init= c(-50,180,140,65,100,170,100,130),
b.init=rep(-20,8), cstar.init=rep(0.2, 8), program="jags")
print(example3test)
summary(example3test)
plot(example3test)
# Full example with 100,000 iterations (25,000 by 4 chains):
data(carbonate)
example3 = describeISE(carbonate, Z = -2, SN = 3.6)
print(example3)
summary(example3)
plot(example3)
Load ISE calibration and experimental data.
Description
Loads tab-delimited calibration and (if it exists) experimental sample data.
Usage
loadISEdata(filename.calibration, filename.experimental = NA)
Arguments
filename.calibration |
The name and location of the tab-delimited calibration file |
filename.experimental |
The experimental file (if there is one, otherwise keep the default filename.experimental=NA) should have one of the following structures: |
Details
Internally calls 'ISEdata.calibration' if there is no experimental data.
Value
loadISEdata returns the following values in a list of class ISEdata:
Calibration variables:
N |
Total number of calibration measurements (e.g. for 5 calibration points measured with 3 ISEs, N = 15) |
R |
Number of ISEs |
ISEID |
Identifier for the ISE |
log10x |
log concentration (mol/l) of calibration data |
emf |
emf (mV) for calibration data |
Experimental variables:
M |
Number of experimental samples |
M.obs |
Total number of experimental measurements. E.g. for 4 samples each measured by 3 ISEs, M.obs = 12. Only returned if R > 1 |
ISEID.exp |
Identifier for the ISE for the experimental data (returned if R >1) |
x.exp |
Identifier for the experimental (returned if R > 1) |
Basic format only:
emf.exp |
emf (mV) for experimental data |
Standard addition format only:
delta.emf |
difference between emf1 and emf2 (mV) for experimental data |
V.s |
Sample volume (any units allowed but must be consistent) |
V.add |
Volume added to the sample |
conc.add |
Concentration added. |
Summary variables of calibration and experimental data:
calibration.only |
Indicates whether there was only calibration data (TRUE) or calibration and experimental data (FALSE) |
stdadd |
Indicates whether standard addition was used. Returns NA (calibration data only), FALSE (basic experimental data), or TRUE (standard addition experimental data) |
data.calib |
The loaded calibration data frame |
data.exp |
The loaded experimental data frame |
Author(s)
Peter Dillingham peter.dillingham@otago.ac.nz
Examples
###
# Loading the example tab-delimited text files for the lead data
###
# 1. Find pathnames for the lead example txt files:
path.calib = paste(path.package('ISEtools'), "/extdata",
"/Lead_calibration.txt", sep="")
path.basic = paste(path.package('ISEtools'), "/extdata",
"/Lead_experimentalBasic.txt", sep="")
path.sa = paste(path.package('ISEtools'), "/extdata",
"/Lead_experimentalSA.txt", sep="")
# Load the calibration data
lead.example1 = loadISEdata(filename.calibration = path.calib)
print(lead.example1)
# ... and with experimental data, Basic format
lead.example2 = loadISEdata(filename.calibration = path.calib,
filename.experimental = path.basic)
print(lead.example2)
# ... and with experimental data, Standard Addition format
lead.example3 = loadISEdata(filename.calibration = path.calib,
filename.experimental = path.sa)
print(lead.example3)
Basic plot of ion selective electrode calibration data
Description
Plots raw ISE calibration data; data should follow a hockey stick pattern coinciding with the equation y = a + b log(x + c) + error, where error follows a normal distribution with mean 0 and standard deviation sigma.
Usage
## S3 method for class 'ISEdata'
plot(x, xlab = expression(paste(log[10], " { ", italic(x),
" }")), ylab = "emf", pch = 20, ...)
Arguments
x |
ISE calibration data |
xlab |
Label for the x-axis |
ylab |
Label for the y-axis |
pch |
Plotting symbol for data |
... |
Other arguments to be passed through to plotting functions. |
Value
No return value, creates plot.
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz
See Also
Examples
data(LeadStdAdd)
plot(LeadStdAdd)
Plot ISE parameter values
Description
Plots histograms of ISE parameter values a, b, c, sigma, and LOD (alpha, beta or S/N) for the equation y = a + b log(x + c) + error, where error follows a normal distribution with mean 0 and standard deviation sigma.
Usage
## S3 method for class 'ISEdescription'
plot(x, breaks = 20, ...)
Arguments
x |
ISE description (e.g. object of class ISEdescription) |
breaks |
Approximate number of bins for histograms, defaults to 20 |
... |
Other arguments to be passed through to plotting (histogram) functions |
Value
No return value, creates plot.
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz
See Also
Plot function for ion selective electrode characterisation and estimation of sample concentrations
Description
Plots sample concentration estimates derived from Bayesian calibration. E.g. analyseISE uses Bayesian calibration to estimate parameters for y = a + b log(x + c) + error, where error follows a normal distribution with mean 0 and standard deviation sigma. These valus are combined with experimental data to estimate sample concentrations.
Usage
## S3 method for class 'analyseISE'
plot(x, xlab = "Sample ID",
ylab = expression(paste(log[10], " { ", italic(x), " }")), xlim = NA,
ylim = c(-15, 0), x.ticks = NA, y.ticks = NA, x.ticks.label = TRUE,
y.ticks.label = TRUE, y.las = 2, col = 1, x.shift = 0, xaxs = "r",
yaxs = "r", add.box = TRUE, ...)
Arguments
x |
Calibration and experimental sample results (of class 'analyseISE'; see analyseISE) |
xlab |
Label for the x-axis |
ylab |
Label for the y-axis |
xlim |
Limits for the x-axis. Automatically calculated if xlim = NA. |
ylim |
Limits for the y-axis. |
x.ticks |
Location of tickmarks for the x-axis. Automatically calculated if x.ticks = NA. |
y.ticks |
Location of tickmarks for the y-axis. Automatically calculated if y.ticks = NA. |
x.ticks.label |
Labels associated with x-axis tickmarks for the x-axis. Automatically calculated labels (TRUE), no labels (FALSE), or a column of text specifying custom labels (e.g. x.ticks.label = c("A", "B", "C") or similar, of the same length as x.ticks). |
y.ticks.label |
Labels associated with y-axis tickmarks for the y-axis. See x.ticks.label for details. |
y.las |
Indicates whether y-axis labels be perpendicular to the y-axis (2) or parallel to it (0). |
col |
Colour for the field of the plot. |
x.shift |
Shifts the plots to the left (- values) or right (+ values); useful for overlaying figures. |
xaxs |
The style of x-axis interval. See par for further details, but "r" adds 4 percent padding, "i" has no padding. |
yaxs |
The style of y-axis interval. See xaxs above. |
add.box |
Indicates whether a box should be drawn around the plot (TRUE) or not (FALSE). |
... |
Other arguments to be passed through to plotting functions. |
Value
No return value, creates plot.
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz
See Also
Prints ISE data
Description
Prints tables of calibration data and experimental data (if present).
Usage
## S3 method for class 'ISEdata'
print(x, ...)
Arguments
x |
ISE data (e.g. object of class ISEdata) |
... |
Other objects passed through. |
Value
No return value, prints ISE data.
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz
See Also
Examples
data(LeadStdAdd)
print(LeadStdAdd)
Prints tables of ISE parameters.
Description
Prints tables of ISE parameters for one or multiple ISEs.
Usage
## S3 method for class 'ISEdescription'
print(x, ...)
Arguments
x |
ISE analysis results (e.g. object of class analyseISE) |
... |
Other objects passed through. |
Value
No return value, prints results from describeISE.
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz
See Also
Prints tables of ISE parameters and estimated sample concentrations.
Description
Prints tables of ISE parameters and estimated sample concentrations.
Usage
## S3 method for class 'analyseISE'
print(x, ...)
Arguments
x |
ISE analysis results (e.g. object of class analyseISE) |
... |
Other objects passed through. |
Value
No return value, prints results from analyseISE.
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz
See Also
Summarises ISE data
Description
summary.ISE takes an object of class ISEdata (e.g. see loadISEdata) and produces metadata for it.
Usage
## S3 method for class 'ISEdata'
summary(object, ...)
Arguments
object |
Data set of class ISEdata |
... |
Other objects passed through. |
Value
metadata: Metadata for the ISEs, a list with N, R, calibration.only, M, and stdadd
N |
Total number of calibration observations |
R |
Number of ISEs |
calibration.only |
Indicates calibration only data (T), or calibration and experimental data (F) |
M |
Number of experimental samples (NA if no experimental data were loaded) |
stdadd |
Indicates whether standard addition used for experimental samples (T) or the basic model was used (F), or no experimental data (NA) |
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz
See Also
Examples
data(LeadStdAdd)
summary(LeadStdAdd)
Summarise ISE parameters
Description
summary.ISEdescription takes an object of class ISEddescription and prints a table of parameter values for y = a + b log(x + c) + error, with the erros following a Normal distribution with mean 0 and standard deviation sigma. Also calculates LOD using the conditional analytic method (alpha, beta, or S/N).
Usage
## S3 method for class 'ISEdescription'
summary(object, ...)
Arguments
object |
object of class ISEdescription |
... |
Other objects passed through. |
Value
table1: A matrix with parameter values for each ISE
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz
See Also
Summary of estimates for ISE parameter values and experimental sample concentrations.
Description
summary.analyseISE takes an object of class analyseISE and produces summary tables.
Usage
## S3 method for class 'analyseISE'
summary(object, ...)
Arguments
object |
Data set of class ISEdata |
... |
Other objects passed through. |
Value
tables: Two tables (table1 and table2) are returned as a list.
table1 |
A table of ISE parameter values (see summary.describeISE for details) |
table2 |
A table of estimated analyte concentrations for experimental samples |
Author(s)
Peter Dillingham, peter.dillingham@otago.ac.nz