Type: | Package |
Title: | Parameter Estimation of Item Response Theory with Estimation of Latent Distribution |
Version: | 2.1.0 |
Description: | Item response theory (IRT) parameter estimation using marginal maximum likelihood and expectation-maximization algorithm (Bock & Aitkin, 1981 <doi:10.1007/BF02293801>). Within parameter estimation algorithm, several methods for latent distribution estimation are available. Reflecting some features of the true latent distribution, these latent distribution estimation methods can possibly enhance the estimation accuracy and free the normality assumption on the latent distribution. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
URL: | https://github.com/SeewooLi/IRTest |
BugReports: | https://github.com/SeewooLi/IRTest/issues |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0), gridExtra |
VignetteBuilder: | knitr |
Imports: | betafunctions, dcurver, ggplot2, usethis |
Depends: | R (≥ 2.10) |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2024-10-03 03:55:44 UTC; CU |
Author: | Seewoo Li [aut, cre, cph] |
Maintainer: | Seewoo Li <seewooli@g.ucla.edu> |
Repository: | CRAN |
Date/Publication: | 2024-10-04 15:50:02 UTC |
Generating an artificial item response dataset
Description
This function generates an artificial item response dataset allowing various options.
Usage
DataGeneration(
seed = 1,
N = 2000,
nitem_D = 0,
nitem_P = 0,
nitem_C = 0,
model_D = "2PL",
model_P = "GPCM",
latent_dist = "Normal",
item_D = NULL,
item_P = NULL,
item_C = NULL,
theta = NULL,
prob = 0.5,
d = 1.7,
sd_ratio = 1,
m = 0,
s = 1,
a_l = 0.8,
a_u = 2.5,
b_m = NULL,
b_sd = NULL,
c_l = 0,
c_u = 0.2,
categ = 5,
possible_ans = c(0.1, 0.3, 0.5, 0.7, 0.9)
)
Arguments
seed |
A numeric value that is used for random sampling. Seed number can guarantee a replicability of the result. |
N |
A numeric value of the number of examinees. |
nitem_D |
A numeric value of the number of dichotomous items. |
nitem_P |
A numeric value of the number of polytomous items. |
nitem_C |
A numeric value of the number of continuous response items. |
model_D |
A vector or a character string that represents the probability model for the dichotomous items. |
model_P |
A character string that represents the probability model for the polytomous items. |
latent_dist |
A character string that determines the type of latent distribution.
Currently available options are |
item_D |
An item parameter matrix for using fixed parameter values. The number of columns should be 3: |
item_P |
An item parameter matrix for using fixed parameter values. The number of columns should be 7: |
item_C |
An item parameter matrix for using fixed parameter values. The number of columns should be 3: |
theta |
An ability parameter vector for using fixed parameter values. Default is |
prob |
A numeric value for using |
d |
A numeric value for using |
sd_ratio |
A numeric value for using |
m |
A numeric value of the overall mean of the latent distribution. The default is 0. |
s |
A numeric value of the overall standard deviation of the latent distribution. The default is 1. |
a_l |
A numeric value. The lower bound of item discrimination parameters (a). |
a_u |
A numeric value. The upper bound of item discrimination parameters (a). |
b_m |
A numeric value. The mean of item difficulty parameters (b).
If unspecified, |
b_sd |
A numeric value. The standard deviation of item difficulty parameters (b).
If unspecified, |
c_l |
A numeric value. The lower bound of item guessing parameters (c). |
c_u |
A numeric value. The lower bound of item guessing parameters (c). |
categ |
A scalar or a numeric vector of length |
possible_ans |
Possible options for continuous items (e.g., 0.1, 0.3, 0.5, 0.7, 0.9) |
Value
This function returns a list
of several objects:
theta |
A vector of ability parameters ( |
item_D |
A matrix of dichotomous item parameters. |
initialitem_D |
A matrix that contains initial item parameter values for dichotomous items. |
data_D |
A matrix of dichotomous item responses where rows indicate examinees and columns indicate items. |
item_P |
A matrix of polytomous item parameters. |
initialitem_P |
A matrix that contains initial item parameter values for polytomous items. |
data_P |
A matrix of polytomous item responses where rows indicate examinees and columns indicate items. |
item_D |
A matrix of continuous response item parameters. |
initialitem_D |
A matrix that contains initial item parameter values for continuous response items. |
data_D |
A matrix of continuous response item responses where rows indicate examinees and columns indicate items. |
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.
Examples
# Dichotomous item responses
Alldata <- DataGeneration(N = 500,
nitem_D = 10)
# Polytomous item responses
Alldata <- DataGeneration(N = 1000,
nitem_P = 10)
# Mixed-format items
Alldata <- DataGeneration(N = 1000,
nitem_D = 20,
nitem_P = 10)
# Continuous items
AllData <- DataGeneration(N = 1000,
nitem_C = 10)
# Dataset from non-normal latent density using two-component Gaussian mixture distribution
Alldata <- DataGeneration(N=1000,
nitem_P = 10,
latent_dist = "2NM",
d = 1.664,
sd_ratio = 2,
prob = 0.3)
Item and ability parameters estimation for continuous response items
Description
This function estimates IRT item and ability parameters when all items are scored continuously. Based on Bock & Aitkin's (1981) marginal maximum likelihood and EM algorithm (EM-MML), this function provides several latent distribution estimation algorithms which could free the normality assumption on the latent variable. If the normality assumption is violated, application of these latent distribution estimation methods could reflect non-normal characteristics of the unknown true latent distribution, thereby providing more accurate parameter estimates (Li, 2021; Woods & Lin, 2009; Woods & Thissen, 2006).
Usage
IRTest_Cont(
data,
range = c(-6, 6),
q = 121,
initialitem = NULL,
ability_method = "EAP",
latent_dist = "Normal",
max_iter = 200,
threshold = 1e-04,
bandwidth = "SJ-ste",
h = NULL
)
Arguments
data |
A matrix or data frame of item responses where responses are coded as 0 or 1. Rows and columns indicate examinees and items, respectively. |
range |
Range of the latent variable to be considered in the quadrature scheme.
The default is from |
q |
A numeric value that represents the number of quadrature points. The default value is 121. |
initialitem |
A matrix of initial item parameter values for starting the estimation algorithm. The default value is |
ability_method |
The ability parameter estimation method.
The available options are Expected a posteriori ( |
latent_dist |
A character string that determines latent distribution estimation method.
Insert |
max_iter |
A numeric value that determines the maximum number of iterations in the EM-MML. The default value is 200. |
threshold |
A numeric value that determines the threshold of EM-MML convergence. A maximum item parameter change is monitored and compared with the threshold. The default value is 0.0001. |
bandwidth |
A character value that can be used if |
h |
A natural number less than or equal to 10 if |
Details
-
The probability of a response
u=x
, where0<u<1
(see Martinez, 2023) -
P(u=x | a, b, \nu) = \frac{1}{B(\mu\nu, \,\nu(1-\mu))} u^{\mu\nu-1} (1-u)^{\nu(1-\mu)-1}
where
\mu = \frac{e^{a(\theta -b)}}{1+e^{a(\theta -b)}}
. - Latent distribution estimation methods
-
1) Empirical histogram method
P(\theta=X_k)=A(X_k)
where
k=1, 2, ..., q
,X_k
is the location of thek
th quadrature point, andA(X_k)
is a value of probability mass function evaluated atX_k
. Empirical histogram method thus hasq-1
parameters.2) Two-component Gaussian mixture distribution
P(\theta=X)=\pi \phi(X; \mu_1, \sigma_1)+(1-\pi) \phi(X; \mu_2, \sigma_2)
where
\phi(X; \mu, \sigma)
is the value of a Gaussian component with mean\mu
and standard deviation\sigma
evaluated atX
.3) Davidian curve method
P(\theta=X)=\left\{\sum_{\lambda=0}^{h}{{m}_{\lambda}{X}^{\lambda}}\right\}^{2}\phi(X; 0, 1)
where
h
corresponds to the argumenth
and determines the degree of the polynomial.4) Kernel density estimation method
P(\theta=X)=\frac{1}{Nh}\sum_{j=1}^{N}{K\left(\frac{X-\theta_j}{h}\right)}
where
N
is the number of examinees,\theta_j
isj
th examinee's ability parameter,h
is the bandwidth which corresponds to the argumentbandwidth
, andK( \cdot )
is a kernel function. The Gaussian kernel is used in this function.5) Log-linear smoothing method
P(\theta=X_{q})=\exp{\left(\beta_{0}+\sum_{m=1}^{h}{\beta_{m}X_{q}^{m}}\right)}
where
h
is the hyper parameter which determines the smoothness of the density, and\theta
can take totalQ
finite values (X_1, \dots ,X_q, \dots, X_Q
).
Value
This function returns a list
of several objects:
par_est |
The item parameter estimates. |
se |
The asymptotic standard errors for item parameter estimates. |
fk |
The estimated frequencies of examinees at quadrature points. |
iter |
The number of EM-MML iterations elapsed for the convergence. |
quad |
The location of quadrature points. |
diff |
The final value of the monitored maximum item parameter change. |
Ak |
The estimated discrete latent distribution. It is discrete (i.e., probability mass function) by the quadrature scheme. |
Pk |
The posterior probabilities of examinees at quadrature points. |
theta |
The estimated ability parameter values. If |
theta_se |
Standard error of ability estimates. The asymptotic standard errors for |
logL |
The deviance (i.e., -2logL). |
density_par |
The estimated density parameters. |
Options |
A replication of input arguments and other information. |
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443-459.
Casabianca, J. M., & Lewis, C. (2015). IRT item parameter recovery with marginal maximum likelihood estimation using loglinear smoothing models. Journal of Educational and Behavioral Statistics, 40(6), 547-578.
Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.
Li, S. (2022). The effect of estimating latent distribution using kernel density estimation method on the accuracy and efficiency of parameter estimation of item response models [Master's thesis, Yonsei University, Seoul]. Yonsei University Library.
Martinez, A. J. (2023). Beta item factor analysis for asymmetric, bounded, and continuous item response data. OSF. DOI:10.31234/osf.io/tp8sx.
Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49(3), 359-381.
Mislevy, R. J., & Bock, R. D. (1985). Implementation of the EM algorithm in the estimation of item parameters: The BILOG computer program. In D. J. Weiss (Ed.). Proceedings of the 1982 item response theory and computerized adaptive testing conference (pp. 189-202). University of Minnesota, Department of Psychology, Computerized Adaptive Testing Conference.
Woods, C. M., & Lin, N. (2009). Item response theory with estimation of the latent density using Davidian curves. Applied Psychological Measurement, 33(2), 102-117.
Woods, C. M., & Thissen, D. (2006). Item response theory with estimation of the latent population distribution using spline-based densities. Psychometrika, 71(2), 281-301.
Examples
# Generating a continuous item response data
data <- DataGeneration(N = 1000, nitem_C = 10)$data_C
# Analysis
M1 <- IRTest_Cont(data, max_iter = 3) # increase `max_iter` in real analyses.
Item and ability parameters estimation for dichotomous items
Description
This function estimates IRT item and ability parameters when all items are scored dichotomously. Based on Bock & Aitkin's (1981) marginal maximum likelihood and EM algorithm (EM-MML), this function provides several latent distribution estimation algorithms which could free the normality assumption on the latent variable. If the normality assumption is violated, application of these latent distribution estimation methods could reflect non-normal characteristics of the unknown true latent distribution, and, thus, could provide more accurate parameter estimates (Li, 2021; Woods & Lin, 2009; Woods & Thissen, 2006).
Usage
IRTest_Dich(
data,
model = "2PL",
range = c(-6, 6),
q = 121,
initialitem = NULL,
ability_method = "EAP",
latent_dist = "Normal",
max_iter = 200,
threshold = 1e-04,
bandwidth = "SJ-ste",
h = NULL
)
Arguments
data |
A matrix or data frame of item responses where responses are coded as 0 or 1. Rows and columns indicate examinees and items, respectively. |
model |
A scalar or vector that represents types of item characteristic functions.
Insert |
range |
Range of the latent variable to be considered in the quadrature scheme.
The default is from |
q |
A numeric value that represents the number of quadrature points. The default value is 121. |
initialitem |
A matrix of initial item parameter values for starting the estimation algorithm. The default value is |
ability_method |
The ability parameter estimation method.
The available options are Expected a posteriori ( |
latent_dist |
A character string that determines latent distribution estimation method.
Insert |
max_iter |
A numeric value that determines the maximum number of iterations in the EM-MML. The default value is 200. |
threshold |
A numeric value that determines the threshold of EM-MML convergence. A maximum item parameter change is monitored and compared with the threshold. The default value is 0.0001. |
bandwidth |
A character value that can be used if |
h |
A natural number less than or equal to 10 if |
Details
-
The probabilities for a correct response (
u=1
) -
1) One-parameter logistic (1PL) model
P(u=1|\theta, b)=\frac{\exp{(\theta-b)}}{1+\exp{(\theta-b)}}
2) Two-parameter logistic (2PL) model
P(u=1|\theta, a, b)=\frac{\exp{(a(\theta-b))}}{1+\exp{(a(\theta-b))}}
3) Three-parameter logistic (3PL) model
P(u=1|\theta, a, b, c)=c + (1-c)\frac{\exp{(a(\theta-b))}}{1+\exp{(a(\theta-b))}}
- Latent distribution estimation methods
-
1) Empirical histogram method
P(\theta=X_k)=A(X_k)
where
k=1, 2, ..., q
,X_k
is the location of thek
th quadrature point, andA(X_k)
is a value of probability mass function evaluated atX_k
. Empirical histogram method thus hasq-1
parameters.2) Two-component Gaussian mixture distribution
P(\theta=X)=\pi \phi(X; \mu_1, \sigma_1)+(1-\pi) \phi(X; \mu_2, \sigma_2)
where
\phi(X; \mu, \sigma)
is the value of a Gaussian component with mean\mu
and standard deviation\sigma
evaluated atX
.3) Davidian curve method
P(\theta=X)=\left\{\sum_{\lambda=0}^{h}{{m}_{\lambda}{X}^{\lambda}}\right\}^{2}\phi(X; 0, 1)
where
h
corresponds to the argumenth
and determines the degree of the polynomial.4) Kernel density estimation method
P(\theta=X)=\frac{1}{Nh}\sum_{j=1}^{N}{K\left(\frac{X-\theta_j}{h}\right)}
where
N
is the number of examinees,\theta_j
isj
th examinee's ability parameter,h
is the bandwidth which corresponds to the argumentbandwidth
, andK( \cdot )
is a kernel function. The Gaussian kernel is used in this function.5) Log-linear smoothing method
P(\theta=X_{q})=\exp{\left(\beta_{0}+\sum_{m=1}^{h}{\beta_{m}X_{q}^{m}}\right)}
where
h
is the hyper parameter which determines the smoothness of the density, and\theta
can take totalQ
finite values (X_1, \dots ,X_q, \dots, X_Q
).
Value
This function returns a list
of several objects:
par_est |
The item parameter estimates. |
se |
The asymptotic standard errors for item parameter estimates. |
fk |
The estimated frequencies of examinees at quadrature points. |
iter |
The number of EM-MML iterations elapsed for the convergence. |
quad |
The location of quadrature points. |
diff |
The final value of the monitored maximum item parameter change. |
Ak |
The estimated discrete latent distribution. It is discrete (i.e., probability mass function) by the quadrature scheme. |
Pk |
The posterior probabilities of examinees at quadrature points. |
theta |
The estimated ability parameter values. If |
theta_se |
Standard error of ability estimates. The asymptotic standard errors for |
logL |
The deviance (i.e., -2logL). |
density_par |
The estimated density parameters. |
Options |
A replication of input arguments and other information. |
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443-459.
Casabianca, J. M., & Lewis, C. (2015). IRT item parameter recovery with marginal maximum likelihood estimation using loglinear smoothing models. Journal of Educational and Behavioral Statistics, 40(6), 547-578.
Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.
Li, S. (2022). The effect of estimating latent distribution using kernel density estimation method on the accuracy and efficiency of parameter estimation of item response models [Master's thesis, Yonsei University, Seoul]. Yonsei University Library.
Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49(3), 359-381.
Mislevy, R. J., & Bock, R. D. (1985). Implementation of the EM algorithm in the estimation of item parameters: The BILOG computer program. In D. J. Weiss (Ed.). Proceedings of the 1982 item response theory and computerized adaptive testing conference (pp. 189-202). University of Minnesota, Department of Psychology, Computerized Adaptive Testing Conference.
Woods, C. M., & Lin, N. (2009). Item response theory with estimation of the latent density using Davidian curves. Applied Psychological Measurement, 33(2), 102-117.
Woods, C. M., & Thissen, D. (2006). Item response theory with estimation of the latent population distribution using spline-based densities. Psychometrika, 71(2), 281-301.
Examples
# A preparation of dichotomous item response data
data <- DataGeneration(N=500,
nitem_D = 10)$data_D
# Analysis
M1 <- IRTest_Dich(data)
Item and ability parameters estimation for a mixed-format item response data
Description
This function estimates IRT item and ability parameters when a test consists of mixed-format items (i.e., a combination of dichotomous and polytomous items). In educational context, the combination of these two item formats takes an advantage; Dichotomous item format expedites scoring and is conducive to cover broad domain, while Polytomous item format (e.g., free response item) encourages students to exert complex cognitive skills (Lee et al., 2020). Based on Bock & Aitkin's (1981) marginal maximum likelihood and EM algorithm (EM-MML), this function incorporates several latent distribution estimation algorithms which could free the normality assumption on the latent variable. If the normality assumption is violated, application of these latent distribution estimation methods could reflect some features of the unknown true latent distribution, and, thus, could provide more accurate parameter estimates (Li, 2021; Woods & Lin, 2009; Woods & Thissen, 2006).
Usage
IRTest_Mix(
data_D,
data_P,
model_D = "2PL",
model_P = "GPCM",
range = c(-6, 6),
q = 121,
initialitem_D = NULL,
initialitem_P = NULL,
ability_method = "EAP",
latent_dist = "Normal",
max_iter = 200,
threshold = 1e-04,
bandwidth = "SJ-ste",
h = NULL
)
Arguments
data_D |
A matrix or data frame of item responses where responses are coded as 0 or 1. Rows and columns indicate examinees and items, respectively. |
data_P |
A matrix or data frame of item responses coded as |
model_D |
A scalar or vector that represents types of item characteristic functions.
Insert |
model_P |
A character value for an IRT model to be applied.
Currently, |
range |
Range of the latent variable to be considered in the quadrature scheme.
The default is from |
q |
A numeric value that represents the number of quadrature points. The default value is 121. |
initialitem_D |
A matrix of initial item parameter values for starting the estimation algorithm. The default value is |
initialitem_P |
A matrix of initial item parameter values for starting the estimation algorithm. The default value is |
ability_method |
The ability parameter estimation method.
The available options are Expected a posteriori ( |
latent_dist |
A character string that determines latent distribution estimation method.
Insert |
max_iter |
A numeric value that determines the maximum number of iterations in the EM-MML. The default value is 200. |
threshold |
A numeric value that determines the threshold of EM-MML convergence. A maximum item parameter change is monitored and compared with the threshold. The default value is 0.0001. |
bandwidth |
A character value that can be used if |
h |
A natural number less than or equal to 10 if |
Details
-
Dichotomous: the probabilities for a correct response (
u=1
) -
1) One-parameter logistic (1PL) model
P(u=1|\theta, b)=\frac{\exp{(\theta-b)}}{1+\exp{(\theta-b)}}
2) Two-parameter logistic (2PL) model
P(u=1|\theta, a, b)=\frac{\exp{(a(\theta-b))}}{1+\exp{(a(\theta-b))}}
3) Three-parameter logistic (3PL) model
P(u=1|\theta, a, b, c)=c + (1-c)\frac{\exp{(a(\theta-b))}}{1+\exp{(a(\theta-b))}}
-
Polytomous: the probability for scoring
u=k
(i.e.,k=0, 1, ..., m; m \ge 2
) -
1) Partial credit model (PCM)
P(u=0|\theta, b_1, ..., b_{m})=\frac{1}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{a(\theta-b_v)}\right]}}}
P(u=1|\theta, b_1, ..., b_{m})=\frac{\exp{(\theta-b_1)}}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{\theta-b_v}\right]}}}
\vdots
P(u=m|\theta, b_1, ..., b_{m})=\frac{\exp{\left[\sum_{v=1}^{m}{\theta-b_v}\right]}}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{\theta-b_v}\right]}}}
2) Generalized partial credit model (GPCM)
P(u=0|\theta, a, b_1, ..., b_{m})=\frac{1}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{a(\theta-b_v)}\right]}}}
P(u=1|\theta, a, b_1, ..., b_{m})=\frac{\exp{(a(\theta-b_1))}}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{a(\theta-b_v)}\right]}}}
\vdots
P(u=m|\theta, a, b_1, ..., b_{m})=\frac{\exp{\left[\sum_{v=1}^{m}{a(\theta-b_v)}\right]}}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{a(\theta-b_v)}\right]}}}
3) Graded response model (GRM)
P(u=0|\theta, a, b_1, ..., b_{m})=1-\frac{1}{1+\exp{\left[-a(\theta-b_1)\right]}}
P(u=1|\theta, a, b_1, ..., b_{m})=\frac{1}{1+\exp{\left[-a(\theta-b_1)\right]}}-\frac{1}{1+\exp{\left[-a(\theta-b_2)\right]}}
\vdots
P(u=m|\theta, a, b_1, ..., b_{m})=\frac{1}{1+\exp{\left[-a(\theta-b_m)\right]}}-0
- Latent distribution estimation methods
-
1) Empirical histogram method
P(\theta=X_k)=A(X_k)
where
k=1, 2, ..., q
,X_k
is the location of thek
th quadrature point, andA(X_k)
is a value of probability mass function evaluated atX_k
. Empirical histogram method thus hasq-1
parameters.2) Two-component Gaussian mixture distribution
P(\theta=X)=\pi \phi(X; \mu_1, \sigma_1)+(1-\pi) \phi(X; \mu_2, \sigma_2)
where
\phi(X; \mu, \sigma)
is the value of a Gaussian component with mean\mu
and standard deviation\sigma
evaluated atX
.3) Davidian curve method
P(\theta=X)=\left\{\sum_{\lambda=0}^{h}{{m}_{\lambda}{X}^{\lambda}}\right\}^{2}\phi(X; 0, 1)
where
h
corresponds to the argumenth
and determines the degree of the polynomial.4) Kernel density estimation method
P(\theta=X)=\frac{1}{Nh}\sum_{j=1}^{N}{K\left(\frac{X-\theta_j}{h}\right)}
where
N
is the number of examinees,\theta_j
isj
th examinee's ability parameter,h
is the bandwidth which corresponds to the argumentbw
, andK( \bullet )
is a kernel function. The Gaussian kernel is used in this function.5) Log-linear smoothing method
P(\theta=X_{q})=\exp{\left(\beta_{0}+\sum_{m=1}^{h}{\beta_{m}X_{q}^{m}}\right)}
where
h
is the hyper parameter which determines the smoothness of the density, and\theta
can take totalQ
finite values (X_1, \dots ,X_q, \dots, X_Q
).
Value
This function returns a list
of several objects:
par_est |
The list of item parameter estimates. The first and second objects are the matrices of dichotomous and polytomous item parameter estimates, respectively |
se |
The list of standard errors of the item parameter estimates. The first and second objects are the matrices of standard errors of dichotomous and polytomous item parameter estimates, respectively |
fk |
The estimated frequencies of examinees at quadrature points. |
iter |
The number of EM-MML iterations elapsed for the convergence. |
quad |
The location of quadrature points. |
diff |
The final value of the monitored maximum item parameter change. |
Ak |
The estimated discrete latent distribution. It is discrete (i.e., probability mass function) by the quadrature scheme. |
Pk |
The posterior probabilities of examinees at quadrature points. |
theta |
The estimated ability parameter values. If |
theta_se |
Standard error of ability estimates. The asymptotic standard errors for |
logL |
The deviance (i.e., -2logL). |
density_par |
The estimated density parameters. |
Options |
A replication of input arguments and other information. |
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443-459.
Casabianca, J. M., & Lewis, C. (2015). IRT item parameter recovery with marginal maximum likelihood estimation using loglinear smoothing models. Journal of Educational and Behavioral Statistics, 40(6), 547-578.
Lee, W. C., Kim, S. Y., Choi, J., & Kang, Y. (2020). IRT Approaches to Modeling Scores on Mixed-Format Tests. Journal of Educational Measurement, 57(2), 230-254.
Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.
Li, S. (2022). The effect of estimating latent distribution using kernel density estimation method on the accuracy and efficiency of parameter estimation of item response models [Master's thesis, Yonsei University, Seoul]. Yonsei University Library.
Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49(3), 359-381.
Mislevy, R. J., & Bock, R. D. (1985). Implementation of the EM algorithm in the estimation of item parameters: The BILOG computer program. In D. J. Weiss (Ed.). Proceedings of the 1982 item response theory and computerized adaptive testing conference (pp. 189-202). University of Minnesota, Department of Psychology, Computerized Adaptive Testing Conference.
Woods, C. M., & Lin, N. (2009). Item response theory with estimation of the latent density using Davidian curves. Applied Psychological Measurement, 33(2), 102-117.
Woods, C. M., & Thissen, D. (2006). Item response theory with estimation of the latent population distribution using spline-based densities. Psychometrika, 71(2), 281-301.
Examples
# A preparation of mixed-format item response data
Alldata <- DataGeneration(N=1000,
nitem_D = 5,
nitem_P = 3)
DataD <- Alldata$data_D # item response data for the dichotomous items
DataP <- Alldata$data_P # item response data for the polytomous items
# Analysis
M1 <- IRTest_Mix(DataD, DataP)
Item and ability parameters estimation for polytomous items
Description
This function estimates IRT item and ability parameters when all items are scored polytomously. Based on Bock & Aitkin's (1981) marginal maximum likelihood and EM algorithm (EM-MML), this function provides several latent distribution estimation algorithms which could free the normality assumption on the latent variable. If the normality assumption is violated, application of these latent distribution estimation methods could reflect non-normal characteristics of the unknown true latent distribution, and, thus, could provide more accurate parameter estimates (Li, 2021; Woods & Lin, 2009; Woods & Thissen, 2006).
Usage
IRTest_Poly(
data,
model = "GPCM",
range = c(-6, 6),
q = 121,
initialitem = NULL,
ability_method = "EAP",
latent_dist = "Normal",
max_iter = 200,
threshold = 1e-04,
bandwidth = "SJ-ste",
h = NULL
)
Arguments
data |
A matrix or data frame of item responses coded as |
model |
A character value for an IRT model to be applied.
Currently, |
range |
Range of the latent variable to be considered in the quadrature scheme.
The default is from |
q |
A numeric value that represents the number of quadrature points. The default value is 121. |
initialitem |
A matrix of initial item parameter values for starting the estimation algorithm. The default value is |
ability_method |
The ability parameter estimation method.
The available options are Expected a posteriori ( |
latent_dist |
A character string that determines latent distribution estimation method.
Insert |
max_iter |
A numeric value that determines the maximum number of iterations in the EM-MML. The default value is 200. |
threshold |
A numeric value that determines the threshold of EM-MML convergence. A maximum item parameter change is monitored and compared with the threshold. The default value is 0.0001. |
bandwidth |
A character value that can be used if |
h |
A natural number less than or equal to 10 if |
Details
-
The probability for scoring
u=k
(i.e.,k=0, 1, ..., m; m \ge 2
) -
1) Partial credit model (PCM)
P(u=0|\theta, b_1, ..., b_{m})=\frac{1}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{a(\theta-b_v)}\right]}}}
P(u=1|\theta, b_1, ..., b_{m})=\frac{\exp{(\theta-b_1)}}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{\theta-b_v}\right]}}}
\vdots
P(u=m|\theta, b_1, ..., b_{m})=\frac{\exp{\left[\sum_{v=1}^{m}{\theta-b_v}\right]}}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{\theta-b_v}\right]}}}
2) Generalized partial credit model (GPCM)
P(u=0|\theta, a, b_1, ..., b_{m})=\frac{1}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{a(\theta-b_v)}\right]}}}
P(u=1|\theta, a, b_1, ..., b_{m})=\frac{\exp{(a(\theta-b_1))}}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{a(\theta-b_v)}\right]}}}
\vdots
P(u=m|\theta, a, b_1, ..., b_{m})=\frac{\exp{\left[\sum_{v=1}^{m}{a(\theta-b_v)}\right]}}{1+\sum_{c=1}^{m}{\exp{\left[\sum_{v=1}^{c}{a(\theta-b_v)}\right]}}}
3) Graded response model (GRM)
P(u=0|\theta, a, b_1, ..., b_{m})=1-\frac{1}{1+\exp{\left[-a(\theta-b_1)\right]}}
P(u=1|\theta, a, b_1, ..., b_{m})=\frac{1}{1+\exp{\left[-a(\theta-b_1)\right]}}-\frac{1}{1+\exp{\left[-a(\theta-b_2)\right]}}
\vdots
P(u=m|\theta, a, b_1, ..., b_{m})=\frac{1}{1+\exp{\left[-a(\theta-b_m)\right]}}-0
- Latent distribution estimation methods
-
1) Empirical histogram method
P(\theta=X_k)=A(X_k)
where
k=1, 2, ..., q
,X_k
is the location of thek
th quadrature point, andA(X_k)
is a value of probability mass function evaluated atX_k
. Empirical histogram method thus hasq-1
parameters.2) Two-component Gaussian mixture distribution
P(\theta=X)=\pi \phi(X; \mu_1, \sigma_1)+(1-\pi) \phi(X; \mu_2, \sigma_2)
where
\phi(X; \mu, \sigma)
is the value of a Gaussian component with mean\mu
and standard deviation\sigma
evaluated atX
.3) Davidian curve method
P(\theta=X)=\left\{\sum_{\lambda=0}^{h}{{m}_{\lambda}{X}^{\lambda}}\right\}^{2}\phi(X; 0, 1)
where
h
corresponds to the argumenth
and determines the degree of the polynomial.4) Kernel density estimation method
P(\theta=X)=\frac{1}{Nh}\sum_{j=1}^{N}{K\left(\frac{X-\theta_j}{h}\right)}
where
N
is the number of examinees,\theta_j
isj
th examinee's ability parameter,h
is the bandwidth which corresponds to the argumentbw
, andK( \bullet )
is a kernel function. The Gaussian kernel is used in this function.5) Log-linear smoothing method
P(\theta=X_{q})=\exp{\left(\beta_{0}+\sum_{m=1}^{h}{\beta_{m}X_{q}^{m}}\right)}
where
h
is the hyper parameter which determines the smoothness of the density, and\theta
can take totalQ
finite values (X_1, \dots ,X_q, \dots, X_Q
).
Value
This function returns a list
of several objects:
par_est |
The item parameter estimates. |
se |
The asymptotic standard errors for item parameter estimates. |
fk |
The estimated frequencies of examinees at quadrature points. |
iter |
The number of EM-MML iterations elapsed for the convergence. |
quad |
The location of quadrature points. |
diff |
The final value of the monitored maximum item parameter change. |
Ak |
The estimated discrete latent distribution. It is discrete (i.e., probability mass function) by the quadrature scheme. |
Pk |
The posterior probabilities of examinees at quadrature points. |
theta |
The estimated ability parameter values. If |
theta_se |
Standard error of ability estimates. The asymptotic standard errors for |
logL |
The deviance (i.e., -2logL). |
density_par |
The estimated density parameters. |
Options |
A replication of input arguments and other information. |
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443-459.
Casabianca, J. M., & Lewis, C. (2015). IRT item parameter recovery with marginal maximum likelihood estimation using loglinear smoothing models. Journal of Educational and Behavioral Statistics, 40(6), 547-578.
Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.
Li, S. (2022). The effect of estimating latent distribution using kernel density estimation method on the accuracy and efficiency of parameter estimation of item response models [Master's thesis, Yonsei University, Seoul]. Yonsei University Library.
Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49(3), 359-381.
Mislevy, R. J., & Bock, R. D. (1985). Implementation of the EM algorithm in the estimation of item parameters: The BILOG computer program. In D. J. Weiss (Ed.). Proceedings of the 1982 item response theory and computerized adaptive testing conference (pp. 189-202). University of Minnesota, Department of Psychology, Computerized Adaptive Testing Conference.
Woods, C. M., & Lin, N. (2009). Item response theory with estimation of the latent density using Davidian curves. Applied Psychological Measurement, 33(2), 102-117.
Woods, C. M., & Thissen, D. (2006). Item response theory with estimation of the latent population distribution using spline-based densities. Psychometrika, 71(2), 281-301.
Examples
# Preparation of dichotomous item response data
data <- DataGeneration(N=1000,
nitem_P = 8)$data_P
# Analysis
M1 <- IRTest_Poly(data)
Ability parameter estimation with fixed item parameters
Description
Ability parameter estimation when item responses and item parameters are given. This function can be useful in ability parameter estimation is adaptive testing.
Usage
adaptive_test(
response,
item,
model = "dich",
ability_method = "EAP",
quad = NULL,
prior = NULL
)
Arguments
response |
A matrix of item responses. For mixed-format test, a list of item responses where dichotomous item responses are the first element and polytomous item responses are the second element. |
item |
A matrix of item parameters. For mixed-format test, a list of item parameters where dichotomous item parameters are the first element and polytomous item parameters are the second element. |
model |
|
ability_method |
The ability parameter estimation method.
The available options are Expected a posteriori ( |
quad |
A vector of quadrature points for |
prior |
A vector of the prior distribution for |
Value
theta |
The estimated ability parameter values. If |
theta_se |
The standard errors of ability parameter estimates.
It returns standard deviations of posteriors for |
Author(s)
Seewoo Li cu@yonsei.ac.kr
Examples
# dichotomous
response <- c(1,1,0)
item <- matrix(
c(
1, -0.5, 0,
1.5, -1, 0,
1.2, 0, 0.2
), nrow = 3, byrow = TRUE
)
adaptive_test(response, item, model = "dich", ability_method = "WLE")
# polytomous
response <- c(1,2,0)
item <- matrix(
c(
1, -0.5, 0.5,
1.5, -1, 0,
1.2, 0, 0.4
), nrow = 3, byrow = TRUE
)
adaptive_test(response, item, model="GPCM", ability_method = "WLE")
# mixed-format test
response <- list(c(0,0,0),c(2,2,1))
item <- list(
matrix(
c(
1, -0.5, 0,
1.5, -1, 0,
1.2, 0, 0
), nrow = 3, byrow = TRUE
),
matrix(
c(
1, -0.5, 0.5,
1.5, -1, 0,
1.2, 0, 0.4
), nrow = 3, byrow = TRUE
)
)
adaptive_test(response, item, model = "GPCM", ability_method = "WLE")
# continuous response
response <- c(0.88, 0.68, 0.21)
item <- matrix(
c(
1, -0.5, 10,
1.5, -1, 8,
1.2, 0, 11
), nrow = 3, byrow = TRUE
)
adaptive_test(response, item, model = "cont", ability_method = "WLE")
Model comparison
Description
Model comparison
Usage
## S3 method for class 'IRTest'
anova(...)
Arguments
... |
Objects of |
Value
Model-fit indices and results of likelihood ratio test (LRT).
Author(s)
Seewoo Li cu@yonsei.ac.kr
Selecting the best model
Description
Selecting the best model
Usage
best_model(..., criterion = "HQ")
Arguments
... |
Candidate models |
criterion |
The criterion to be used. The default is |
Value
The best model and model-fit indices.
Author(s)
Seewoo Li cu@yonsei.ac.kr
A recommendation for category collapsing of items based on item parameters
Description
In a polytomous item, one or more score categories may not have the highest probability among the categories in an acceptable \theta
range.
In this case, the category may possibly be regarded as redundant in a psychometric point of view and can be collapsed into another score category.
This function returns a recommendation for a recategorization scheme based on item parameters.
Usage
cat_clps(item.matrix, range = c(-4, 4), increment = 0.005)
Arguments
item.matrix |
A matrix of item parameters. |
range |
A range of |
increment |
A width of the grid scheme. The default is |
Value
A list of recommended recategorization for each item.
Author(s)
Seewoo Li cu@yonsei.ac.kr
Extract Model Coefficients
Description
A generic function which extracts model coefficients from objects returned by modeling functions.
Usage
## S3 method for class 'IRTest'
coef(object, complete = TRUE, ...)
Arguments
object |
An object for which the extraction of model coefficients is meaningful. |
complete |
A logical value indicating if the full coefficient vector should be returned. |
... |
Other arguments. |
Value
Coefficients extracted from the model (object
).
Extract Standard Errors of Model Coefficients
Description
Standard errors of model coefficients calculated by using Fisher information functions.
Usage
coef_se(object, complete = TRUE)
Arguments
object |
An object for which the extraction of standard errors is meaningful. |
complete |
A logical value indicating if the full standard-error vector should be returned. |
Value
Standard errors extracted from the model (object
).
Re-parameterized two-component normal mixture distribution
Description
Probability density for the re-parameterized two-component normal mixture distribution.
Usage
dist2(x, prob = 0.5, d = 0, sd_ratio = 1, overallmean = 0, overallsd = 1)
Arguments
x |
A numeric vector. The location to evaluate the density function. |
prob |
A numeric value of |
d |
A numeric value of |
sd_ratio |
A numeric value of |
overallmean |
A numeric value of |
overallsd |
A numeric value of |
Details
- The overall mean and overall standard deviation obtained from original parameters;
-
1) Overall mean (
\bar{\mu}
)\bar{\mu}=\pi\mu_1 + (1-\pi)\mu_2
2) Overall standard deviation (
\bar{\sigma}
)\bar{\sigma}=\sqrt{\pi\sigma_{1}^{2}+(1-\pi)\sigma_{2}^{2}+\pi(1-\pi)(\mu_2-\mu_1)^2}
Value
The evaluated probability density value(s).
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.
Examples
# Evaluated density
dnst <- dist2(seq(-6,6,.1), prob = 0.3, d = 1, sd_ratio=0.5)
# Plot of the density
plot(seq(-6,6,.1), dnst)
Estimated factor scores
Description
Factor scores of examinees.
Usage
factor_score(x, ability_method = "EAP", quad = NULL, prior = NULL)
Arguments
x |
A model fit object from either |
ability_method |
The ability parameter estimation method.
The available options are Expected a posteriori ( |
quad |
A vector of quadrature points for |
prior |
A vector of the prior distribution for |
Value
theta |
The estimated ability parameter values. If |
theta_se |
The standard errors of ability parameter estimates.
It returns standard deviations of posteriors for |
Author(s)
Seewoo Li cu@yonsei.ac.kr
Examples
# A preparation of dichotomous item response data
data <- DataGeneration(N=500, nitem_D = 10)$data_D
# Analysis
M1 <- IRTest_Dich(data)
# Item fit statistics
factor_score(M1, ability_method = "MLE")
Item information function
Description
Item information function
Usage
inform_f_item(x, test, item = 1, type = "d")
Arguments
x |
A vector of |
test |
An object returned from an estimation function. |
item |
A natural number indicating the |
type |
A character value for a mixed format test which determines the item type:
|
Value
A vector of the evaluated item information values.
Author(s)
Seewoo Li cu@yonsei.ac.kr
Test information function
Description
Test information function
Usage
inform_f_test(x, test)
Arguments
x |
A vector of |
test |
An object returned from an estimation function. |
Value
A vector of test information values of the same length as x
.
Author(s)
Seewoo Li cu@yonsei.ac.kr
Item fit diagnostics
Description
This function analyzes and reports item-fit test results.
Usage
item_fit(x, bins = 10, bin.center = "mean")
Arguments
x |
A model fit object from either |
bins |
The number of bins to be used for calculating the statistics.
Following Yen's |
bin.center |
A method for calculating the center of each bin.
Following Yen's |
Details
Bock's \chi^{2}
(1960) or Yen's Q_{1}
(1981) is currently available.
Value
This function returns a matrix
of item-fit test results.
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Bock, R.D. (1960), Methods and applications of optimal scaling. Chapel Hill, NC: L.L. Thurstone Psychometric Laboratory.
Yen, W. M. (1981). Using simulation results to choose a latent trait model. Applied Psychological Measurement, 5(2), 245–262.
Examples
# A preparation of dichotomous item response data
data <- DataGeneration(N=500,
nitem_D = 10)$data_D
# Analysis
M1 <- IRTest_Dich(data)
# Item fit statistics
item_fit(M1)
Latent density function
Description
Density function of the estimated latent distribution with mean and standard deviation equal to 0 and 1, respectively.
Usage
latent_distribution(x, model.fit)
Arguments
x |
A numeric vector. Value(s) on the |
model.fit |
An object returned from an estimation function. |
Value
The evaluated values of the PDF, a length of which equals to that of x
.
Examples
# Data generation and model fitting
data <- DataGeneration(N=1000,
nitem_D = 15,
latent_dist = "2NM",
d = 1.664,
sd_ratio = 2,
prob = 0.3)$data_D
M1 <- IRTest_Dich(data = data, latent_dist = "KDE")
# Plotting the latent distribution
ggplot2::ggplot()+
ggplot2::stat_function(fun=latent_distribution, args=list(M1))+
ggplot2::lims(x=c(-6,6), y=c(0,0.5))
Extract Log-Likelihood
Description
Extract Log-Likelihood
Usage
## S3 method for class 'IRTest'
logLik(object, ...)
Arguments
object |
A |
... |
Other arguments. |
Value
Extracted log-likelihood.
Recovering original parameters of two-component Gaussian mixture distribution from re-parameterized values
Description
Recovering original parameters of two-component Gaussian mixture distribution from re-parameterized values
Usage
original_par_2GM(
prob = 0.5,
d = 0,
sd_ratio = 1,
overallmean = 0,
overallsd = 1
)
Arguments
prob |
The |
d |
The |
sd_ratio |
A numeric value of |
overallmean |
A numeric value of |
overallsd |
A numeric value of |
Details
- Original two-component Gaussian mixture distribution
-
f(x)=\pi\times \phi(x | \mu_1, \sigma_1)+(1-\pi)\times \phi(x | \mu_2, \sigma_2)
, where
\phi
is a Gaussian component. - Re-parameterized two-component Gaussian mixture distribution
-
f(x)=2GM(x|\pi, \delta, \zeta, \bar{\mu}, \bar{\sigma})
, where
\bar{\mu}
is overall mean and\bar{\sigma}
is overall standard deviation of the distribution. - The original parameters retrieved from re-parameterized values
-
1) Mean of the first Gaussian component (
m1
).\mu_1=-(1-\pi)\delta\bar{\sigma}+\bar{\mu}
2) Mean of the second Gaussian component (
m2
).\mu_2=\pi\delta\bar{\sigma}+\bar{\mu}
3) Standard deviation of the first Gaussian component (
s1
).\sigma_1^2=\bar{\sigma}^2\left(\frac{1-\pi(1-\pi)\delta^2}{\pi+(1-\pi)\zeta^2}\right)
4) Standard deviation of the second Gaussian component (
s2
).\sigma_2^2=\bar{\sigma}^2\left(\frac{1-\pi(1-\pi)\delta^2}{\frac{1}{\zeta^2}\pi+(1-\pi)}\right)=\zeta^2\sigma_1^2
Value
This function returns a vector of length 4: c(m1,m2,s1,s2)
.
m1 |
The location parameter (mean) of the first Gaussian component. |
m2 |
The location parameter (mean) of the second Gaussian component. |
s1 |
The scale parameter (standard deviation) of the first Gaussian component. |
s2 |
The scale parameter (standard deviation) of the second Gaussian component. |
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Li, S. (2021). Using a two-component normal mixture distribution as a latent distribution in estimating parameters of item response models. Journal of Educational Evaluation, 34(4), 759-789.
Plot of the estimated latent distribution
Description
This function draws a plot of the estimated latent distribution (the population distribution of the latent variable).
Usage
## S3 method for class 'IRTest'
plot(x, ...)
Arguments
x |
An object of |
... |
Other aesthetic argument(s) for drawing the plot.
Arguments are passed on to |
Value
A plot of estimated latent distribution.
Author(s)
Seewoo Li cu@yonsei.ac.kr
Examples
# Data generation and model fitting
data <- DataGeneration(N=1000,
nitem_D = 15,
latent_dist = "2NM",
d = 1.664,
sd_ratio = 2,
prob = 0.3)$data_D
M1 <- IRTest_Dich(data = data, latent_dist = "KDE")
# Plotting the latent distribution
plot(x = M1, linewidth = 1, color = 'red') +
ggplot2::lims(x = c(-6, 6), y = c(0, .5))
Plot of item response functions
Description
This function draws item response functions of an item of the fitted model.
Usage
plot_item(x, item.number = 1, type = NULL)
Arguments
x |
A model fit object from either |
item.number |
A numeric value indicating the item number. |
type |
A character string required if |
Value
This function returns a plot of item response functions.
Author(s)
Seewoo Li cu@yonsei.ac.kr
Examples
# A preparation of dichotomous item response data
data <- DataGeneration(N=500, nitem_D = 10)$data_D
# Analysis
M1 <- IRTest_Dich(data)
# Plotting item response function
plot_item(M1, item.number = 1)
Printing the result
Description
This function prints the summarized information.
Usage
## S3 method for class 'IRTest'
print(x, ...)
Arguments
x |
An object of |
... |
Additional arguments (currently non-functioning). |
Value
Printed texts on the console recommending the usage of summary
function and the direct access to the details using "$" sign.
Author(s)
Seewoo Li cu@yonsei.ac.kr
Examples
data <- DataGeneration(N=1000, nitem_P = 8)$data_P
M1 <- IRTest_Poly(data = data, latent_dist = "KDE")
M1
Printing the summary
Description
This function prints the summarized information.
Usage
## S3 method for class 'IRTest_summary'
print(x, ...)
Arguments
x |
An object returned from |
... |
Additional arguments (currently non-functioning). |
Value
Summarized texts on the console.
Author(s)
Seewoo Li cu@yonsei.ac.kr
Examples
data <- DataGeneration(N=1000, nitem_P = 8)$data_P
M1 <- IRTest_Poly(data = data,
latent_dist = "2NM")
summary(M1)
Recategorization of data using a new categorization scheme
Description
With a recategorization scheme as an input, this function implements recategorization for the input data.
Usage
recategorize(data, new_cat)
Arguments
data |
An item response matrix. |
new_cat |
A list of a new categorization scheme. |
Value
Recategorized data
Author(s)
Seewoo Li cu@yonsei.ac.kr
Examples
# Preparation of dichotomous item response data
data <- DataGeneration(N=1000,
nitem_P = 8)$data_P
# Analysis
M1 <- IRTest_Poly(data)
# Recommendation of category collapsing
new_cat <- cat_clps(M1$par_est)
# Recategorization of data
recategorize(data, new_cat)
Marginal reliability coefficient of IRT
Description
Marginal reliability coefficient of IRT
Usage
reliability(x)
Arguments
x |
A model fit object from either |
Details
- Reliability coefficient on summed-score scale
-
In accordance with the concept of reliability in classical test theory (CTT), this function calculates the IRT reliability coefficients.
The basic concept and formula of the reliability coefficient can be expressed as follows (Kim & Feldt, 2010):
An observed score of Item
i
,X_i
, is decomposed as the sum of a true scoreT_i
and an errore_i
. Then, with the assumption of\sigma_{T_{i}e_{j}}=\sigma_{e_{i}e_{j}}=0
, the reliability coefficient of a test is defined as;\rho_{TX}=\rho_{XX^{'}}=\frac{\sigma_{T}^{2}}{\sigma_{X}^{2}}=\frac{\sigma_{T}^{2}}{\sigma_{T}^{2}+\sigma_{e}^{2}}=1-\frac{\sigma_{e}^{2}}{\sigma_{X}^{2}}
See May and Nicewander (1994) for the specific formula used in this function.
- Reliability coefficient on
\theta
scale -
For the coefficient on the
\theta
scale, this function calculates the parallel-forms reliability (Green et al., 1984; Kim, 2012):\rho_{\hat{\theta} \hat{\theta}^{'}} =\frac{\sigma_{E\left(\hat{\theta}\mid \theta \right )}^{2}}{\sigma_{E\left(\hat{\theta}\mid \theta \right )}^{2}+E\left( \sigma_{\hat{\theta}|\theta}^{2} \right)} =\frac{1}{1+E\left(I\left(\hat{\theta}\right)^{-1}\right)}
This assumes that
\sigma_{E\left(\hat{\theta}\mid \theta \right )}^{2}=\sigma_{\theta}^{2}=1
. Although the formula is often employed in several IRT studies and applications, the underlying assumption may not be true.
Value
Estimated marginal reliability coefficients.
Author(s)
Seewoo Li cu@yonsei.ac.kr
References
Green, B.F., Bock, R.D., Humphreys, L.G., Linn, R.L., & Reckase, M.D. (1984). Technical guidelines for assessing computerized adaptive tests. Journal of Educational Measurement, 21(4), 347–360.
Kim, S. (2012). A note on the reliability coefficients for item response model-based ability estimates. Psychometrika, 77(1), 153-162.
Kim, S., Feldt, L.S. (2010). The estimation of the IRT reliability coefficient and its lower and upper bounds, with comparisons to CTT reliability statistics. Asia Pacific Education Review, 11, 179–188.
May, K., Nicewander, A.W. (1994). Reliability and information functions for percentile ranks. Journal of Educational Measurement, 31(4), 313-325.
Examples
data <- DataGeneration(N=500, nitem_D = 10)$data_D
# Analysis
M1 <- IRTest_Dich(data)
# Reliability coefficients
reliability(M1)
Summary of the results
Description
This function summarizes the output (e.g., convergence of the estimation algorithm, number of parameters, model-fit, and estimated latent distribution).
Usage
## S3 method for class 'IRTest'
summary(object, ...)
Arguments
object |
An object of |
... |
Other argument(s). |
Value
Summarized information.
Examples
data <- DataGeneration(N=1000, nitem_P = 8)$data_P
M1 <- IRTest_Poly(data = data, latent_dist = "KDE")
summary(M1)