Type: | Package |
Title: | Identification of Cancer Dysfunctional Subpathway with Omics Data |
Version: | 0.1.3 |
Maintainer: | Junwei Han <hanjunwei1981@163.com> |
Description: | Identify Cancer Dysfunctional Sub-pathway by integrating gene expression, DNA methylation and copy number variation, and pathway topological information. 1)We firstly calculate the gene risk scores by integrating three kinds of data: DNA methylation, copy number variation, and gene expression. 2)Secondly, we perform a greedy search algorithm to identify the key dysfunctional sub-pathways within the pathways for which the discriminative scores were locally maximal. 3)Finally, the permutation test was used to calculate statistical significance level for these key dysfunctional sub-pathways. |
Depends: | R (≥ 4.3.0) |
Imports: | igraph, graphite, metap, methods, org.Hs.eg.db |
Suggests: | knitr, rmarkdown |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.3.2 |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2024-08-01 06:56:52 UTC; btzheng |
Author: | Junwei Han [cre], Baotong Zheng [aut], Siyao Liu [ctb] |
Repository: | CRAN |
Date/Publication: | 2024-08-01 09:40:02 UTC |
Identification of Cancer Dysfunctional Subpathway by integrating DNA methylation, copy number variation, and gene expression data
Description
Identify Cancer Dysfunctional Subpathway by integrating gene expression, DNA methylation and copy number variation, and pathway topological information. 1)We firstly calculate the gene risk scores by integrating three kinds of data: DNA methylation, copy number variation, and gene expression. 2)Secondly, we perform a greedy search algorithm to identify the key dysfunctional subpathways within the pathways for which the discriminative scores were locally maximal. 3)Finally, the permutation test was used to calculate statistical significance level for these key dysfunctional subpathways.
Author(s)
Maintainer: Junwei Han hanjunwei1981@163.com
Authors:
Baotong Zheng btzheng1116@163.com
Other contributors:
Siyao Liu liusiyao29@163.com [contributor]
FindSubPath
Description
'FindSubPath' uses a greedy search algorithm to search for key subpathways in each entire pathway.
Usage
FindSubPath(
zz,
Pathway = "kegg",
delta = 0.05,
seed_p = 0.05,
min.size = 5,
out.F = FALSE,
out.file = "Subpath.txt"
)
Arguments
zz |
A numeric vector of z_scores. |
Pathway |
The name of the pathway database. |
delta |
Diffusion coefficient in each step of searching subpath. |
seed_p |
Define gene whose p-value smaller than seed_p as seed gene. |
min.size |
The smallest size of subpathways. |
out.F |
Logical,tell if output subpathways. |
out.file |
file name of subpathways. |
Value
Key dysfunctional subpathways in each pathway, in which the risk score of the genes were significantly higher.
Examples
require(graphite)
zz<-GetExampleData("zzz")
k<-FindSubPath(zz)
Get the example data
Description
Get the example data of test package for litte trials.
Usage
GetExampleData(exampleData)
Arguments
exampleData |
A character, should be one of "exp_data", "meth_data", "cnv_data", "amp_gene", "del_gene" ,"label1","label2","zz","exp.p","meth.p","cnv.p"and "pathdata". |
Details
The function getExampleData(ExampleData = "exp.p)") obtains a vector of lncRNAs confirmed to be related with breast cancer. The function getExampleData(ExampleData = "Profile") obtains the expression pr
References
Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. et al. (2005) Gene set enrichment analysis: a knowledgebased approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 102, 15545-15550.
Permutation
Description
the permutation test method 1 and method 2 were used to calculate the statistical significance level for these optimal subpathways.
Usage
Permutation(
subpathwayz,
zz,
nperm1 = 1000,
method1 = TRUE,
nperm2 = 1000,
method2 = FALSE
)
Arguments
subpathwayz |
Optimize intersted subpathways |
zz |
a vector of z-scores |
nperm1 |
times of permutation to perform use method1 |
method1 |
permutation analysis method1 |
nperm2 |
times of permutation to perform use method2 |
method2 |
permutation analysis method2 |
Value
the statistical significance p value and FDR for these optimal subpathways
Examples
require(graphite)
keysubpathways<-GetExampleData("keysubpathways")
zzz<-GetExampleData("zzz")
Permutation(keysubpathways,zzz,nperm1=10,method1=TRUE,nperm2=10,method2=FALSE)
PlotSubpathway
Description
PlotSubpathway:plot a network graph when user input a list of gene
Usage
PlotSubpathway(
subpID,
pathway.name,
zz,
Pathway = "kegg",
layout = layout.fruchterman.reingold
)
Arguments
subpID |
gene list of a interested subpathway |
pathway.name |
name of the interested subpathway |
zz |
z-score of each gene |
Pathway |
the name of the pathway database |
layout |
The layout specification( |
Value
Network graph
Examples
require(graphite)
subpID<-unlist(strsplit("ACSS1/ALDH3B2/ADH1B/ADH1A/ALDH2/DLAT/ACSS2","/"))
pathway.name="Glycolysis / Gluconeogenesis"
zzz<- GetExampleData("zzz")
PlotSubpathway(subpID=subpID,pathway.name=pathway.name,zz=zzz)
combinep_three
Description
'combinep_three' combine three kinds of p-values,then,calculate z-score for them.
Usage
combinep_three(p1, p2, p3)
Arguments
p1 |
the p-values or corrected p-values |
p2 |
the p-values or corrected p-values |
p3 |
the p-values or corrected p-values |
Value
A numeric vector of z_scores
Examples
exp.p<-GetExampleData("exp.p")
meth.p<-GetExampleData("meth.p")
cnv.p<-GetExampleData("cnv.p")
combinep_three(exp.p,meth.p,cnv.p)
combinep_two
Description
'combinep_two' combine two kinds of p-values,then,calculate z-score for them.
Usage
combinep_two(p1, p2)
Arguments
p1 |
A numeric vector of p-values or corrected p-values |
p2 |
A numeric vector of p-values or corrected p-values |
Value
A numeric vector of z_scores
Examples
exp.p<-GetExampleData("exp.p")
meth.p<-GetExampleData("meth.p")
combinep_two(exp.p,meth.p)
coverp2zscore
Description
'coverp2zscore' calculate z-scores for p-values
Usage
coverp2zscore(pdata)
Arguments
pdata |
A numeric vector of p-values or corrected p-values |
Value
A numeric vector of z_scores
Examples
exp.p<-GetExampleData("exp.p")
meth.p<-GetExampleData("meth.p")
cnv.p<-GetExampleData("cnv.p")
coverp2zscore(exp.p)
coverp2zscore(meth.p)
coverp2zscore(cnv.p)
The variables in the environment include an example expression profile,an methylation profile,an copy number variation data,amplified genes,deleted genes,A numeric vector of z_scores,p-values,A vector of 0/1s, indicating the class of samples,interested subpathways,Optimized subpathway,and the statistical significance p value and FDR for these optimal subpathways
Description
Identify Cancer Dysfunctional Subpathway by integrating gene expression, DNA methylation and copy number variation, and pathway topological information. 1)We firstly calculate the gene risk scores by integrating three kinds of data: DNA methylation, copy number variation, and gene expression. 2)Secondly, we perform a greedy search algorithm to identify the key dysfunctional subpathways within the pathways for which the discriminative scores were locally maximal. 3)Finally, the permutation test was used to calculate statistical significance level for these key dysfunctional subpathways.
Format
An environment variable
Details
The environment variable includes the variable exp_data
, meth_data
,cnv_data
,amp_gene
,del_gene
,zzz
,exp.p
,meth.p
,cnv.p
,label1
,label2
,subpathdata
,opt_subpathways
Author(s)
Junwei Hanhanjunwei1981@163.com,Baotong Zhengbtzheng1116@163.com,Siyao Liu liusiyao29@163.com
getCnvp
Description
'getCnvp' perform t-test on copy number variation data
Usage
getCnvp(
exp_data,
cnv_data,
amp_gene,
del_gene,
p.adjust = TRUE,
method = "fdr"
)
Arguments
exp_data |
A data frame |
cnv_data |
Copy number variation data |
amp_gene |
A vector of strings, the IDs of amplified genes. |
del_gene |
A vector of strings, the IDs of deleted genes. |
p.adjust |
Logical,tell if returns corrected p-values |
method |
Correction method,which can be one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", |
Details
cnv_data is TCGA level4 data.if p.adjust=TRUE,return corrected p-values,if p.adjust=FALSE,return p-values
Value
A numeric vector of p-values or corrected p-values
Examples
exp_data<-GetExampleData("exp_data")
meth_data<-GetExampleData("meth_data")
cnv_data<-GetExampleData("cnv_data")
amp_gene<-GetExampleData("amp_gene")
del_gene<-GetExampleData(("del_gene"))
getCnvp(exp_data,cnv_data,amp_gene,del_gene,p.adjust=FALSE,method="fdr")
getExpp
Description
'getExpp' perform t-test on Expression profile data
Usage
getExpp(exp_data, label, p.adjust = TRUE, method = "fdr")
Arguments
exp_data |
A data frame, the expression profile to calculate p-value for each gene, the rownames should be the symbol of genes. |
label |
A vector of 0/1s, indicating the class of samples in the expression profile, 0 represents case, 1 represents control. |
p.adjust |
Logical,tell if returns corrected p-values |
method |
Correction method,which can be one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", |
Details
For a given expression profile of two conditions, ICDS package provide t-test method to calculate p-values or corrected p-values(if p.adjust=TRUE,return corrected p-values,if p.adjust=FALSE,return p-values.) for each genes. The row of the expression profile should be gene symbols and the column of the expression profile should be names of samples. Samples should be under two conditions and the label should be given as 0 and 1.
Value
A numeric vector of p-values or corrected p-values
Examples
profile<-GetExampleData("exp_data")
label<-GetExampleData("label1")
getExpp(profile,label,p.adjust=FALSE)
getMethp
Description
'getMethp' perform t-test on Methylation profile data
Usage
getMethp(meth_data, label, p.adjust = TRUE, method = "fdr")
Arguments
meth_data |
A data frame, the Methylation profile to calculate p-value for each gene, the rownames should be the symbol of genes. |
label |
label A vector of 0/1s, indicating the class of samples in the Methylation profile, 0 represents case, 1 represents control. |
p.adjust |
Logical,tell if returns corrected p-values |
method |
Correction method,which can be one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", |
Details
For a given Methylation profile of two conditions, ICDS package provide t-test method to calculate p-values or corrected p-values(if p.adjust=TRUE,return corrected p-values,if p.adjust=FALSE,return p-values.) for each genes. The row of the Methylation profile should be gene symbols and the column of the Methylation profile should be names of samples. Samples should be under two conditions and the label should be given as 0 and 1.
Value
A numeric vector of p-values or corrected p-values
Examples
profile<-GetExampleData("meth_data")
label<-GetExampleData("label2")
getMethp(profile,label,p.adjust=FALSE)
opt_subpath
Description
'opt_subpath' Optimize interested subpathways.If the number of genes shared by the two pathways accounted for more than the Overlap ratio of each pathway genes,then combine two pathways.
Usage
opt_subpath(subpathdata, zz, overlap = 0.6)
Arguments
subpathdata |
interested subpathways |
zz |
a vector of z-scores |
overlap |
Overlap ratio of each two pathway genes |
Value
Optimized subpathway:the number of genes shared by any two pathways accounted for less than the Overlap ratio of each pathway genes.
Examples
zz<-GetExampleData("zzz")
subpathdata<-GetExampleData("subpathdata")
optsubpath<-opt_subpath(subpathdata,zz,overlap=0.6)