Type: Package
Title: Package for Easy Interpretation of Statistical Methods
Version: 0.90.0
Date: 2023-02-10
Maintainer: Konrad Krahl <Beratung@Hanseatic-Statistics.de>
URL: https://github.com/KonradKrahl/HanStat
BugReports: https://github.com/KonradKrahl/HanStat
Description: A simple and time saving multiple linear regression function (OLS) with interpretation, optional bootstrapping, effect size calculation and all tested requirements.
Depends: R (≥ 4.1.0)
Imports: boot, car, crayon, ggplot2, lmtest, olsrr, ggpubr, devtools
License: GPL (≥ 3)
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.2.3
Language: en-US
Suggests: testthat (≥ 3.0.0)
Config/testthat/edition: 3
NeedsCompilation: no
Packaged: 2023-02-11 13:09:06 UTC; konra
Author: Konrad Krahl ORCID iD [aut, cre]
Repository: CRAN
Date/Publication: 2023-02-13 09:20:25 UTC

Radomized data for testing models

Description

Contains 5 Variables, one dependent, 4 independent. The fourth independent is correlated with the dependent

Usage

data(data)

Format

data.frame

Source

https://www.hanseatic-statistics.de/

References

K.T.Krahl (2023)

Examples

data(data)


LinReg('dv',c('iv_1','iv_2','iv_3','iv_4'),data=data, BS = TRUE, NBS=1000, OC = TRUE, plot=TRUE)

LinReg

Description

A simple multiple linear regression function (OLS) and it's requirements. The function automatically interprets the results, creates plots and provides an indication of violations of assumptions. It also calculates the effect sizes of the models. The bootstrapping method can also be used.

Usage

LinReg(dv, iv, data, BS, NBS, OC, plot)

Arguments

dv

dependent variable name as a string

iv

a string vector with the names of the independent variables, separated by commas, use c(iv_1,iv_2...iv_n)

data

a data frame containing the variables

BS

Bootstrapping method, set BS to TRUE or FALSE, if FALSE Number of bootstraps are ignored

NBS

number of random samples used for bootstrapping

OC

Outlier controll, set OS to TRUE or FALSE, to use cooks distance to exclude outliers, if BS==TRUE, OS must be FALSE

plot

set plot to TRUE to create simple scatterplots of correlation between variables

Value

the results of linear regression, plots and all requirements plus an interpretation & conclusion about the violations

Source

https://www.hanseatic-statistics.de

Examples

m<-LinReg('dv',c('iv_1','iv_2','iv_3'),data=data,BS=FALSE,NBS=1000,OC=FALSE,plot=TRUE)
print(m$Results)
print(m$Require)
print(m$Plots)

Randomized data for testing models Contains 5 Variables, one dependent, 4 independent. The fourth independent is correlated with the dependent

Description

Randomized data for testing models Contains 5 Variables, one dependent, 4 independent. The fourth independent is correlated with the dependent

Usage

data(data)

Format

data.frame

Source

https://www.hanseatic-statistics.de

References

K.T.Krahl (2023)

Examples

data(data)
LinReg('dv',c('iv_1','iv_2','iv_3'),data=data,BS=FALSE,NBS=1000,OC=FALSE,plot=TRUE)