Version: 1.1
Date: 2025-05-18
Title: Two Dimensional High Throughput 'GoMiner'
Maintainer: Barry Zeeberg <barryz2013@gmail.com>
Author: Barry Zeeberg [aut, cre]
Depends: R (≥ 4.2.0)
Imports: minimalistGODB, GoMiner, HTGM, grDevices, stats, gplots, jaccard, vprint, randomGODB, HGNChelper
LazyData: true
LazyDataCompression: xz
Description: The Gene Ontology (GO) Consortium https://geneontology.org/ organizes genes into hierarchical categories based on biological process (BP), molecular function (MF) and cellular component (CC, i.e., subcellular localization). Tools such as 'GoMiner' (see Zeeberg, B.R., Feng, W., Wang, G. et al. (2003) <doi:10.1186/gb-2003-4-4-r28>) can leverage GO to perform ontological analysis of microarray and proteomics studies, typically generating a list of significant functional categories. Microarray studies are usually analyzed with BP, whereas proteomics researchers often prefer CC. To capture the benefit of both of those ontologies, I developed a two-dimensional version of 'High-Throughput GoMiner' ('HTGM2D'). I generate a 2D heat map whose axes are any two of BP, MF, or CC, and the value within a picture element of the heat map reflects the Jaccard metric p-value for the number of genes in common for the corresponding pair.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Encoding: UTF-8
VignetteBuilder: knitr
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
RoxygenNote: 7.3.2
Config/testthat/edition: 3
NeedsCompilation: no
Packaged: 2025-05-18 20:03:40 UTC; barryzeeberg
Repository: CRAN
Date/Publication: 2025-05-18 20:30:02 UTC

HTGM2D data set

Description

HTGM2D data set

Usage

data(GOGOA3small)

HTGM2D

Description

run 2D version of GoMiner

Usage

HTGM2D(dir, geneList, ontologies, GOGOA3)

Arguments

dir

character string full path name to the directory acting as result repository

geneList

character vector of user-supplied genes of interest

ontologies

character vector of 2 ontologies e.g. c("biological_process","cellular_component")

GOGOA3

return value of subsetGOGOA()

Value

returns the return value of Jaccard()

Examples

## Not run: 
# GOGOA3.RData is too large to include in the R package
# so I need to load it from a file that is not in the package.
# Since this is in a file in my own file system, I could not
# include this as a regular example in the package.
# you can generate it using the package 'minimalistGODB'
# or you can retrieve it from https://github.com/barryzee/GO/tree/main/databases
load("/Users/barryzeeberg/personal/GODB_RDATA/goa_human/GOGOA3_goa_human.RData")
subd<-tempdir()
geneList<-cluster52
ontologies<-c("biological_process","cellular_component")
mat<-HTGM2D(subd,geneList,ontologies,GOGOA3)

## End(Not run)


HTGM2Ddriver

Description

driver to invoke GoMiner and HTGM2D, and compare the results

Usage

HTGM2Ddriver(
  dir,
  geneList,
  ontologies,
  GOGOA3,
  enrichThresh = 2,
  countThresh = 5,
  pvalThresh = 0.1,
  fdrThresh = 0.1,
  nrand = 100,
  mn,
  mx,
  opt = 0,
  verbose = 1
)

Arguments

dir

character string full path name to the directory acting as result repository

geneList

character vector of user-supplied genes of interest

ontologies

character vector of 2 ontologies e.g. c("biological_process","cellular_component")

GOGOA3

return value of subsetGOGOA()

enrichThresh

numerical acceptance threshold for enrichment passed to GoMiner

countThresh

numerical acceptance threshold for gene count passed to GoMiner

pvalThresh

numerical acceptance threshold for pval

fdrThresh

numerical acceptance threshold for fdr

nrand

numeric number of randomizations to compute FDR

mn

integer param passed to trimGOGOA3, min size threshold for a category

mx

integer param passed to trimGOGOA3, max size threshold for a category

opt

integer 0:1 parameter used to select randomization method

verbose

integer vector representing classes

Value

returns no value, but saves hyperlinked SVG heatmap files to a results directory

Examples

## Not run: 
# GOGOA3.RData is too large to include in the R package
# so I need to load it from a file that is not in the package.
# Since this is in a file in my own file system, I could not
# include this as a regular example in the package.
# you can generate it using the package 'minimalistGODB'
# or you can retrieve it from https://github.com/barryzee/GO/tree/main/databases
load("/Users/barryzeeberg/personal/GODB_RDATA/goa_human/GOGOA3_goa_human.RData")
geneList<-cluster52
ontologies<-c("biological_process","cellular_component")
dir<-tempdir()
HTGM2Ddriver(dir,geneList,ontologies,GOGOA3,enrichThresh=2,
 countThresh=5,pvalThresh=0.10,fdrThresh=0.10,nrand=100,mn=2,mx=2000)

## End(Not run)


HTGM2D data set

Description

HTGM2D data set

Usage

data(Housekeeping_Genes)

Jaccard

Description

create the heat map data that is needed as input to JaccardHeatMap()

Usage

Jaccard(dir, m1, m2, thresh1 = 2, thresh2 = 3, B = 100)

Arguments

dir

character string full pathname to the directory acting as result repository

m1

return value of catGenes

m2

return value of catGenes

thresh1

integer acceptance threshold for the number of genes in a cat

thresh2

integer acceptance threshold for the number of common genes in 2 cats

B

integer a total bootstrap iteration

Value

returns a numerical matrix containing number of genes and associated p value in the intersection of 2 categories

Examples

#load("data/x_m1.RData")
#load("data/x_m2.RData")
mat<-Jaccard(dir=tempdir(),x_m1,x_m2)


JaccardHeatMap

Description

use the Jaccard metric to construct 2D heat map

Usage

JaccardHeatMap(dir, mat)

Arguments

dir

character string containing path name of output directory

mat

return value of Jaccard()

Value

returns a Jaccard matrix of cat1 vs cat2 FDR, and also saves hyperlinked SVG heatmap files to a results directory

Examples

#load("data/x_jmat.RData")
dir<-tempdir()
jHeatMap<-JaccardHeatMap(dir,x_jmat)


catGenes

Description

match up genes in gene list with categories in GOGOA3 database

Usage

catGenes(geneList, GOGOA3, ontology)

Arguments

geneList

character vector of user-supplied genes of interest

GOGOA3

return value of subsetGOGOA()

ontology

c("molecular_function","cellular_component","biological_process")

Value

returns a matrix of 1's and 0's indicating the presence or absence of gene-category pairs

Examples

#load("data/GOGOA3small.RData")
geneList<-cluster52
m1<-catGenes(geneList,GOGOA3small,"biological_process")


HTGM2D data set

Description

HTGM2D data set

Usage

data(cluster52)

compareGoMinerHTGM2D

Description

compare the results of GoMiner and HTGM2D

Usage

compareGoMinerHTGM2D(subd, mat, l, ontologies)

Arguments

subd

character string full path name to the output subdirectory

mat

return value of Jaccard()

l

of return values of GoMiner()

ontologies

character vector of 2 ontologies e.g. c("biological_process","cellular_component")

Value

returns no value, but saves files that list category difference between GoMiner and HTG2D

Examples

ontologies<-c("biological_process","cellular_component")
#load("data/x_l.Rdata")
#load("data/x_mat.Rdata")
subd<-tempdir()
compareGoMinerHTGM2D(subd,x_mat,x_l,ontologies)


HTGM2D data set

Description

HTGM2D data set

Usage

data(x_jmat)

HTGM2D data set

Description

HTGM2D data set

Usage

data(x_l)

HTGM2D data set

Description

HTGM2D data set

Usage

data(x_m1)

HTGM2D data set

Description

HTGM2D

Usage

data(x_m2)

HTGM2D data set

Description

HTGM2D

Usage

data(x_mat)