Type: | Package |
Title: | Hierarchical Model-Based Estimation Approach |
Version: | 1.1 |
Date: | 2020-05-06 |
Description: | For estimation of a variable of interest using two sources of auxiliary information available in a nested structure. For reference see Saarela et al. (2016)<doi:10.1007/s13595-016-0590-1> and Saarela et al. (2018) <doi:10.3390/rs10111832>. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Encoding: | UTF-8 |
LazyData: | TRUE |
Imports: | Rcpp (≥ 0.12.16) |
Depends: | methods, stats, R (≥ 3.5) |
LinkingTo: | Rcpp, RcppArmadillo |
Collate: | RcppExports.R helper_functions.R HMB-class.R SummaryHMB-class.R ghmb.R gtsmb.R hmb.R tsmb.R |
RoxygenNote: | 6.1.0 |
NeedsCompilation: | yes |
Packaged: | 2020-05-06 06:36:16 UTC; svla0001 |
Author: | Svetlana Saarela [cre, aut], Sören Holm [aut], Zhiqiang Yang [aut], Wilmer Prentius [ctb] |
Maintainer: | Svetlana Saarela <admin@svetlanasaarela.com> |
Repository: | CRAN |
Date/Publication: | 2020-05-06 07:10:02 UTC |
Class HMB
Description
Class HMB
is the base class for the HMB-package
See Also
Sample Data for HMB package
Description
A data frame with 100000 records.
Names are GSV: hMAX: h80: CRR: pVeg: B20: B30: B50:
Class SummaryHMB
Description
Class SummaryHMB
defines summary information for HMB object.
Method getSpec
Description
Get model specifications of HMB-class object
Usage
getSpec(obj)
## S4 method for signature 'HMB'
getSpec(obj)
Arguments
obj |
Object of class HMB |
Value
A list containing the estimated parameters, together with model arguments
Examples
pop_U = sample(nrow(HMB_data), 20000)
pop_Sa = sample(pop_U, 5000)
pop_S = sample(pop_U, 300)
y_S = HMB_data[pop_S, "GSV"]
X_S = HMB_data[pop_S, c("hMAX", "h80", "CRR", "pVeg")]
X_Sa = HMB_data[pop_Sa, c("hMAX", "h80", "CRR", "pVeg")]
Z_Sa = HMB_data[pop_Sa, c("B20", "B30", "B50")]
Z_U = HMB_data[pop_U, c("B20", "B30", "B50")]
hmb_model = hmb(y_S, X_S, X_Sa, Z_Sa, Z_U)
getSpec(hmb_model)
Generalized Hierarchical Model-Based estimation method
Description
Generalized Hierarchical Model-Based estimation method
Usage
ghmb(y_S, X_S, X_Sa, Z_Sa, Z_U, Omega_S, Sigma_Sa)
Arguments
y_S |
Response object that can be coerced into a column vector. The
|
X_S |
Object of predictors variables that can be coerced into a matrix.
The rows of |
X_Sa |
Object of predictor variables that can be coerced into a matrix. The set Sa is the intermediate sample. |
Z_Sa |
Object of predictor variables that can be coerced into a matrix.
The set Sa is the intermediate sample, and the Z-variables often some
sort of auxilairy, inexpensive data. The rows of |
Z_U |
Object of predictor variables that can be coerced into a matrix. The set U is the universal population sample. |
Omega_S |
The covariance structure of |
Sigma_Sa |
The covariance structure of |
Details
The GHMB assumes two models
y = \boldsymbol{x} \boldsymbol{\beta} + \epsilon
\boldsymbol{x} \boldsymbol{\beta} = \boldsymbol{z} \boldsymbol{\alpha} + \boldsymbol{u}
\epsilon \perp u
For a sample from the superpopulation, the GHMB assumes
E(\boldsymbol{\epsilon}) = \mathbf{0},
E(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^T) = \omega^2 \boldsymbol{\Omega}
E(\boldsymbol{u}) = \mathbf{0},
E(\boldsymbol{u} \boldsymbol{u}^T) = \sigma^2 \boldsymbol{\Sigma}
Value
A fitted object of class HMB.
References
Saarela, S., Holm, S., Healey, S.P., Andersen, H.-E., Petersson, H., Prentius, W., Patterson, P.L., Næsset, E., Gregoire, T.G. & Ståhl, G. (2018). Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data, Remote Sensing, 10(11), 1832.
See Also
Examples
pop_U = sample(nrow(HMB_data), 20000)
pop_Sa = sample(pop_U, 2500)
pop_S = sample(pop_U, 300)
y_S = HMB_data[pop_S, "GSV"]
X_S = HMB_data[pop_S, c("hMAX", "h80", "CRR", "pVeg")]
X_Sa = HMB_data[pop_Sa, c("hMAX", "h80", "CRR", "pVeg")]
Z_Sa = HMB_data[pop_Sa, c("B20", "B30", "B50")]
Z_U = HMB_data[pop_U, c("B20", "B30", "B50")]
Omega_S = diag(1, nrow(X_S))
Sigma_Sa = diag(1, nrow(Z_Sa))
ghmb_model = ghmb(
y_S, X_S, X_Sa, Z_Sa, Z_U, Omega_S, Sigma_Sa)
ghmb_model
Generalized Two-Staged Model-Based estmation
Description
Generalized Two-Staged Model-Based estmation
Usage
gtsmb(y_S, X_S, X_Sa, Z_Sa, Z_U, Omega_S, Phis_Sa)
Arguments
y_S |
Response object that can be coersed into a column vector. The
|
X_S |
Object of predictors variables that can be coersed into a matrix.
The rows of |
X_Sa |
Object of predictor variables that can be coresed into a matrix. The set Sa is the intermediate sample. |
Z_Sa |
Object of predictor variables that can be coresed into a matrix.
The set Sa is the intermediate sample, and the Z-variables often some
sort of auxilairy, inexpensive data. The rows of |
Z_U |
Object of predictor variables that can be coresed into a matrix. The set U is the universal population sample. |
Omega_S |
The covariance structure of |
Phis_Sa |
A 3D array, where the third dimension corresponds to the
covariance structure of
|
Details
The GTSMB assumes the superpopulations
y = \boldsymbol{x} \boldsymbol{\beta} + \epsilon
x_k = \boldsymbol{z} \boldsymbol{\gamma}_k + \xi_k
\epsilon \perp \xi_k
For a sample from the superpopulation, the GTSMB assumes
E(\boldsymbol{\epsilon}) = \mathbf{0},
E(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^T) = \omega^2 \boldsymbol{\Omega}
E(\boldsymbol{\xi}_k) = \mathbf{0},
E(\boldsymbol{\xi}_k \boldsymbol{\xi}_j^T) = \theta_{\Phi,k,j}^2 \boldsymbol{\Phi}_{k,j},
\theta_{\Phi,k,j}^2 \boldsymbol{\Phi}_{k,j} = \theta_{\Phi,j,k}^2 \boldsymbol{\Phi}_{j,k}
Value
A fitted object of class HMB.
References
Holm, S., Nelson, R. & Ståhl, G. (2017) Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar. Remote Sensing of Environment, 197, 85–97.
Saarela, S., Holm, S., Healey, S.P., Andersen, H.-E., Petersson, H., Prentius, W., Patterson, P.L., Næsset, E., Gregoire, T.G. & Ståhl, G. (2018). Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data, Remote Sensing, 10(11), 1832.
See Also
Examples
pop_U = sample(nrow(HMB_data), 20000)
pop_Sa = sample(pop_U, 500)
pop_S = sample(pop_U, 100)
y_S = HMB_data[pop_S, "GSV"]
X_S = HMB_data[pop_S, c("hMAX", "h80", "CRR")]
X_Sa = HMB_data[pop_Sa, c("hMAX", "h80", "CRR")]
Z_Sa = HMB_data[pop_Sa, c("B20", "B30", "B50")]
Z_U = HMB_data[pop_U, c("B20", "B30", "B50")]
Omega_S = diag(1, nrow(X_S))
Phis_Sa = array(0, c(nrow(X_Sa), nrow(X_Sa), ncol(X_Sa) * (ncol(X_Sa) + 1) / 2))
Phis_Sa[, , 1] = diag(1, nrow(X_Sa)) # Phi(1,1)
Phis_Sa[, , 2] = diag(1, nrow(X_Sa)) # Phi(2,1)
Phis_Sa[, , 3] = diag(1, nrow(X_Sa)) # Phi(2,2)
Phis_Sa[, , 4] = diag(1, nrow(X_Sa)) # Phi(3,1)
Phis_Sa[, , 5] = diag(1, nrow(X_Sa)) # Phi(3,2)
Phis_Sa[, , 6] = diag(1, nrow(X_Sa)) # Phi(3,3)
gtsmb_model = gtsmb(y_S, X_S, X_Sa, Z_Sa, Z_U, Omega_S, Phis_Sa)
gtsmb_model
Hierarchical Model-Based estmation
Description
Hierarchical Model-Based estmation
Usage
hmb(y_S, X_S, X_Sa, Z_Sa, Z_U)
Arguments
y_S |
Response object that can be coersed into a column vector. The
|
X_S |
Object of predictors variables that can be coersed into a matrix.
The rows of |
X_Sa |
Object of predictor variables that can be coresed into a matrix. The set Sa is the intermediate sample. |
Z_Sa |
Object of predictor variables that can be coresed into a matrix.
The set Sa is the intermediate sample, and the Z-variables often some
sort of auxilairy, inexpensive data. The rows of |
Z_U |
Object of predictor variables that can be coresed into a matrix. The set U is the universal population sample. |
Details
The HMB assumes two models
y = \boldsymbol{x} \boldsymbol{\beta} + \epsilon
\boldsymbol{x} \boldsymbol{\beta} = \boldsymbol{z} \boldsymbol{\alpha} + u
\epsilon \perp u
For a sample from the superpopulation, the HMB assumes
E(\boldsymbol{\epsilon}) = \mathbf{0},
E(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^T) = \omega^2 \mathbf{I}
E(\boldsymbol{u}) = \mathbf{0},
E(\boldsymbol{u} \boldsymbol{u}^T) = \sigma^2 \mathbf{I}
Value
A fitted object of class HMB.
References
Saarela, S., Holm, S., Grafström, A., Schnell, S., Næsset, E., Gregoire, T.G., Nelson, R.F. & Ståhl, G. (2016). Hierarchical model-based inference for forest inventory utilizing three sources of information, Annals of Forest Science, 73(4), 895-910.
Saarela, S., Holm, S., Healey, S.P., Andersen, H.-E., Petersson, H., Prentius, W., Patterson, P.L., Næsset, E., Gregoire, T.G. & Ståhl, G. (2018). Generalized Hierarchical Model-Based Estimation for Aboveground Biomass Assessment Using GEDI and Landsat Data, Remote Sensing, 10(11), 1832.
See Also
Examples
pop_U = sample(nrow(HMB_data), 20000)
pop_Sa = sample(pop_U, 5000)
pop_S = sample(pop_U, 300)
y_S = HMB_data[pop_S, "GSV"]
X_S = HMB_data[pop_S, c("hMAX", "h80", "CRR", "pVeg")]
X_Sa = HMB_data[pop_Sa, c("hMAX", "h80", "CRR", "pVeg")]
Z_Sa = HMB_data[pop_Sa, c("B20", "B30", "B50")]
Z_U = HMB_data[pop_U, c("B20", "B30", "B50")]
hmb_model = hmb(y_S, X_S, X_Sa, Z_Sa, Z_U)
hmb_model
Method show
Description
Display model outputs
Display model summary properties
Usage
## S4 method for signature 'HMB'
show(object)
## S4 method for signature 'SummaryHMB'
show(object)
Arguments
object |
Object of class HMB |
Examples
pop_U = sample(nrow(HMB_data), 20000)
pop_Sa = sample(pop_U, 5000)
pop_S = sample(pop_U, 300)
y_S = HMB_data[pop_S, "GSV"]
X_S = HMB_data[pop_S, c("hMAX", "h80", "CRR", "pVeg")]
X_Sa = HMB_data[pop_Sa, c("hMAX", "h80", "CRR", "pVeg")]
Z_Sa = HMB_data[pop_Sa, c("B20", "B30", "B50")]
Z_U = HMB_data[pop_U, c("B20", "B30", "B50")]
hmb_model = hmb(y_S, X_S, X_Sa, Z_Sa, Z_U)
show(hmb_model)
pop_U = sample(nrow(HMB_data), 20000)
pop_Sa = sample(pop_U, 5000)
pop_S = sample(pop_U, 300)
y_S = HMB_data[pop_S, "GSV"]
X_S = HMB_data[pop_S, c("hMAX", "h80", "CRR", "pVeg")]
X_Sa = HMB_data[pop_Sa, c("hMAX", "h80", "CRR", "pVeg")]
Z_Sa = HMB_data[pop_Sa, c("B20", "B30", "B50")]
Z_U = HMB_data[pop_U, c("B20", "B30", "B50")]
hmb_model = hmb(y_S, X_S, X_Sa, Z_Sa, Z_U)
show(summary(hmb_model))
Method summary
Description
Summary of HMB model
Usage
summary(obj)
## S4 method for signature 'HMB'
summary(obj)
Arguments
obj |
Object of class HMB |
Value
Summary of HMB model.
Examples
pop_U = sample(nrow(HMB_data), 20000)
pop_Sa = sample(pop_U, 5000)
pop_S = sample(pop_U, 300)
y_S = HMB_data[pop_S, "GSV"]
X_S = HMB_data[pop_S, c("hMAX", "h80", "CRR", "pVeg")]
X_Sa = HMB_data[pop_Sa, c("hMAX", "h80", "CRR", "pVeg")]
Z_Sa = HMB_data[pop_Sa, c("B20", "B30", "B50")]
Z_U = HMB_data[pop_U, c("B20", "B30", "B50")]
S_Sa_map = matrix(pop_S, nrow = nrow(X_S), ncol = nrow(X_Sa))
S_Sa_map = t(apply(S_Sa_map, 1, function(x) {
return(x == pop_Sa)
})) * 1
hmb_model = hmb(y_S, X_S, X_Sa, Z_Sa, Z_U)
summary(hmb_model)
Two-staged Model-Based estmation
Description
Two-staged Model-Based estmation
Usage
tsmb(y_S, X_S, X_Sa, Z_Sa, Z_U)
Arguments
y_S |
Response object that can be coersed into a column vector. The
|
X_S |
Object of predictors variables that can be coersed into a matrix.
The rows of |
X_Sa |
Object of predictor variables that can be coresed into a matrix. The set Sa is the intermediate sample. |
Z_Sa |
Object of predictor variables that can be coresed into a matrix.
The set Sa is the intermediate sample, and the Z-variables often some
sort of auxilairy, inexpensive data. The rows of |
Z_U |
Object of predictor variables that can be coresed into a matrix. The set U is the universal population sample. |
Details
The TSMB assumes the superpopulations
y = \boldsymbol{x}^T \boldsymbol{\beta} + \epsilon
x_k = \boldsymbol{z}^T \boldsymbol{\gamma}_k + \xi_k
\epsilon \perp \xi_k
For a sample from the superpopulation, the TSMB assumes
E(\boldsymbol{\epsilon}) = \mathbf{0},
E(\boldsymbol{\epsilon} \boldsymbol{\epsilon}^T) = \omega^2 \mathbf{I}
E(\boldsymbol{\xi}_k) = \mathbf{0},
E(\boldsymbol{\xi}_k \boldsymbol{\xi}_j^T) = \phi_{k,j}^2 \mathbf{I}
Value
A fitted object of class HMB.
References
Saarela, S., Holm, S., Grafström, A., Schnell, S., Næsset, E., Gregoire, T.G., Nelson, R.F. & Ståhl, G. (2016). Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of Forest Science, 73(4), 895-910.
See Also
Examples
pop_U = sample(nrow(HMB_data), 20000)
pop_Sa = sample(pop_U, 5000)
pop_S = sample(pop_U, 300)
y_S = HMB_data[pop_S, "GSV"]
X_S = HMB_data[pop_S, c("hMAX", "h80", "CRR", "pVeg")]
X_Sa = HMB_data[pop_Sa, c("hMAX", "h80", "CRR", "pVeg")]
Z_Sa = HMB_data[pop_Sa, c("B20", "B30", "B50")]
Z_U = HMB_data[pop_U, c("B20", "B30", "B50")]
tsmb_model = tsmb(y_S, X_S, X_Sa, Z_Sa, Z_U)
tsmb_model