Type: | Package |
Title: | High-Dimensional Mediation Analysis |
Version: | 2.3.2 |
Date: | 2025-06-10 |
Description: | Allows to estimate and test high-dimensional mediation effects based on advanced mediator screening and penalized regression techniques. Methods used in the package refer to Zhang H, Zheng Y, Zhang Z, Gao T, Joyce B, Yoon G, Zhang W, Schwartz J, Just A, Colicino E, Vokonas P, Zhao L, Lv J, Baccarelli A, Hou L, Liu L. Estimating and Testing High-dimensional Mediation Effects in Epigenetic Studies. Bioinformatics. (2016) <doi:10.1093/bioinformatics/btw351>. PMID: 27357171. |
License: | GPL-3 |
Depends: | R (≥ 3.4.0), ncvreg, glmnet |
Imports: | utils, stats, MASS, survival, HDMT, hdi, conquer, quantreg, hommel, iterators, parallel, foreach, doParallel |
Collate: | utils.R hima_classic.R hima_dblasso.R hima_survival.R hima_microbiome.R hima_quantile.R hima_efficient.R hima.R hima_data.R onAttach.R HIMA-package.R |
VignetteBuilder: | knitr |
Suggests: | knitr, rmarkdown, testthat |
Encoding: | UTF-8 |
LazyData: | true |
URL: | https://github.com/YinanZheng/HIMA/ |
BugReports: | https://github.com/YinanZheng/HIMA/issues/ |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-06-11 22:26:43 UTC; y-zhe |
Author: | Yinan Zheng |
Maintainer: | Yinan Zheng <y-zheng@northwestern.edu> |
Repository: | CRAN |
Date/Publication: | 2025-06-11 22:40:02 UTC |
High-Dimensional Mediation Analysis for 'Omic' Data
Description
HIMA is an R package for estimating and testing high-dimensional mediation effects in omic studies. HIMA can perform high-dimensional mediation analysis on a wide range of omic data types as potential mediators, including epigenetics, transcriptomics, proteomics, metabolomics, and microbiomics. HIMA can also handle survival data mediation analysis and perform quantile mediation analysis.
Package: | HIMA |
Type: | Package |
Version: | 2.3.2 |
Date: | 2025-06-10 |
License: | GPL-3 |
Details
# If package "qvalue" is not found during installation, please first install "qvalue" package # through Bioconductor: https://www.bioconductor.org/packages/release/bioc/html/qvalue.html
Author(s)
Yinan Zheng y-zheng@northwestern.edu, Haixiang Zhang haixiang.zhang@tju.edu.cn, Lei liu (Contact) lei.liu@wustl.edu
Maintainer: Yinan Zheng y-zheng@northwestern.edu
References
1. Zhang H, Zheng Y, Zhang Z, Gao T, Joyce B, Yoon G, Zhang W, Schwartz J, Just A, Colicino E, Vokonas P, Zhao L, Lv J, Baccarelli A, Hou L, Liu L. Estimating and Testing High-dimensional Mediation Effects in Epigenetic Studies. Bioinformatics. 2016. DOI: 10.1093/bioinformatics/btw351. PMID: 27357171; PMCID: PMC5048064
2. Zhang H, Zheng Y, Hou L, Zheng C, Liu L. Mediation Analysis for Survival Data with High-Dimensional Mediators. Bioinformatics. 2021. DOI: 10.1093/bioinformatics/btab564. PMID: 34343267; PMCID: PMC8570823
3. Zhang H, Chen J, Feng Y, Wang C, Li H, Liu L. Mediation Effect Selection in High-dimensional and Compositional Microbiome data. Stat Med. 2021. DOI: 10.1002/sim.8808. PMID: 33205470; PMCID: PMC7855955
4. Zhang H, Chen J, Li Z, Liu L. Testing for Mediation Effect with Application to Human Microbiome Data. Stat Biosci. 2021. DOI: 10.1007/s12561-019-09253-3. PMID: 34093887; PMCID: PMC8177450
5. Perera C, Zhang H, Zheng Y, Hou L, Qu A, Zheng C, Xie K, Liu L. HIMA2: High-dimensional Mediation Analysis and Its Application in Epigenome-wide DNA Methylation Data. BMC Bioinformatics. 2022. DOI: 10.1186/s12859-022-04748-1. PMID: 35879655; PMCID: PMC9310002
6. Zhang H, Hong X, Zheng Y, Hou L, Zheng C, Wang X, Liu L. High-Dimensional Quantile Mediation Analysis with Application to a Birth Cohort Study of Mother–Newborn Pairs. Bioinformatics. 2024. DOI: 10.1093/bioinformatics/btae055. PMID: 38290773; PMCID: PMC10873903
7. Bai X, Zheng Y, Hou L, Zheng C, Liu L, Zhang H. An Efficient Testing Procedure for High-dimensional Mediators with FDR Control. Statistics in Biosciences. 2024. DOI: 10.1007/s12561-024-09447-4.
Binary Outcome Dataset for HIMA Demo
Description
A dataset containing phenotype data and high-dimensional mediators for binary outcome analysis. The dataset was simulated using parameters generated from real data.
Usage
BinaryOutcome
Format
A list with the following components:
- PhenoData
A data frame containing:
- Treatment
treated (value = 1) or not treated (value = 0).
- Disease
binary outcome: diseased (value = 1) or healthy (value = 0).
- Sex
female (value = 1) or male (value = 0).
- Age
age of the participant.
- Mediator
A matrix of high-dimensional mediators (rows: samples, columns: variables).
Examples
data(BinaryOutcome)
head(BinaryOutcome$PhenoData)
Continuous Outcome Dataset for HIMA Demo
Description
A dataset containing phenotype data and high-dimensional mediators for continuous outcome analysis. The dataset was simulated using parameters generated from real data.
Usage
ContinuousOutcome
Format
A list with the following components:
- PhenoData
A data frame containing:
- Treatment
treated (value = 1) or not treated (value = 0).
- Outcome
a normally distributed continuous outcome variable.
- Sex
female (value = 1) or male (value = 0).
- Age
age of the participant.
- Mediator
A matrix of high-dimensional mediators (rows: samples, columns: variables).
Examples
data(ContinuousOutcome)
head(ContinuousOutcome$PhenoData)
Compositional Mediator Dataset for HIMA Demo
Description
A dataset containing phenotype data and high-dimensional compositional mediators (e.g., microbiome). The dataset was simulated using parameters generated from real data.
Usage
MicrobiomeData
Format
A list with the following components:
- PhenoData
A data frame containing:
- Treatment
treated (value = 1) or not treated (value = 0).
- Outcome
a normally distributed continuous outcome variable.
- Sex
female (value = 1) or male (value = 0).
- Age
age of the participant.
- Mediator
A matrix of high-dimensional compositional mediators (rows: samples, columns: variables).
Examples
data(MicrobiomeData)
head(MicrobiomeData$PhenoData)
Quantile Mediation Dataset for HIMA Demo
Description
A dataset containing phenotype data and high-dimensional mediators for quantile mediation analysis. The dataset was simulated using parameters generated from real data.
Usage
QuantileData
Format
A list with the following components:
- PhenoData
A data frame containing:
- Treatment
treated (value = 1) or not treated (value = 0).
- Outcome
an abnormally distributed continuous outcome variable.
- Sex
female (value = 1) or male (value = 0).
- Age
age of the participant.
- Mediator
A matrix of high-dimensional mediators (rows: samples, columns: variables).
Examples
data(QuantileData)
head(QuantileData$PhenoData)
Survival Outcome Dataset for HIMA Demo
Description
A dataset containing phenotype data and high-dimensional mediators for survival outcome analysis. The dataset was simulated using parameters generated from real data.
Usage
SurvivalData
Format
A list with the following components:
- PhenoData
A data frame containing:
- Treatment
treated (value = 1) or not treated (value = 0).
- Status
status indicator: dead (value = 1) or alive (value = 0).
- Time
time to the event or censoring.
- Sex
female (value = 1) or male (value = 0).
- Age
age of the participant.
- Mediator
A matrix of high-dimensional mediators (rows: samples, columns: variables).
Examples
data(SurvivalData)
head(SurvivalData$PhenoData)
High-dimensional Mediation Analysis
Description
hima
is a wrapper function designed to perform various HIMA methods for estimating and testing high-dimensional mediation effects.
hima
can automatically select the appropriate HIMA method based on the outcome and mediator data type.
Usage
hima(
formula,
data.pheno,
data.M,
mediator.type = c("gaussian", "negbin", "compositional"),
penalty = c("DBlasso", "MCP", "SCAD", "lasso"),
quantile = FALSE,
efficient = FALSE,
scale = TRUE,
sigcut = 0.05,
contrast = NULL,
subset = NULL,
verbose = FALSE,
parallel = FALSE,
ncore = 1,
...
)
Arguments
formula |
an object of class |
data.pheno |
a data frame containing the exposure, outcome, and covariates specified in the formula. Variable names in |
data.M |
a |
mediator.type |
a character string indicating the data type of the high-dimensional mediators ( |
penalty |
a character string specifying the penalty method to apply in the model. Options are: |
quantile |
logical. Indicates whether to use quantile HIMA ( |
efficient |
logical. Indicates whether to use efficient HIMA ( |
scale |
logical. Determines whether the function scales the data (exposure, mediators, and covariates). Default is |
sigcut |
numeric. The significance cutoff for selecting mediators. Default is |
contrast |
a named list of contrasts to be applied to factor variables in the covariates (cannot be the variable of interest). |
subset |
an optional vector specifying a subset of observations to use in the analysis. |
verbose |
logical. Determines whether the function displays progress messages. Default is |
parallel |
logical. Enable parallel computing feature? Default = |
ncore |
number of cores to run parallel computing Valid when |
... |
reserved passing parameter (or for future use). |
Value
A data.frame containing mediation testing results of selected mediators.
- ID:
Mediator ID/name.
- alpha:
Coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- beta:
Coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- alpha*beta:
The estimated indirect (mediation) effect of exposure on outcome through each mediator.
- rimp:
Relative importance- the proportion of each mediator's mediation effect relative to the sum of the absolute mediation effects of all significant mediators.
- p-value:
The joint p-value assessing the significance of each mediator's indirect effect, calculated based on the corresponding statistical approach.
- tau:
The quantile level of the outcome (applicable only when using the quantile mediation model).
References
1. Zhang H, Zheng Y, Zhang Z, Gao T, Joyce B, Yoon G, Zhang W, Schwartz J, Just A, Colicino E, Vokonas P, Zhao L, Lv J, Baccarelli A, Hou L, Liu L. Estimating and Testing High-dimensional Mediation Effects in Epigenetic Studies. Bioinformatics. 2016. DOI: 10.1093/bioinformatics/btw351. PMID: 27357171; PMCID: PMC5048064
2. Zhang H, Zheng Y, Hou L, Zheng C, Liu L. Mediation Analysis for Survival Data with High-Dimensional Mediators. Bioinformatics. 2021. DOI: 10.1093/bioinformatics/btab564. PMID: 34343267; PMCID: PMC8570823
3. Zhang H, Chen J, Feng Y, Wang C, Li H, Liu L. Mediation Effect Selection in High-dimensional and Compositional Microbiome data. Stat Med. 2021. DOI: 10.1002/sim.8808. PMID: 33205470; PMCID: PMC7855955
4. Zhang H, Chen J, Li Z, Liu L. Testing for Mediation Effect with Application to Human Microbiome Data. Stat Biosci. 2021. DOI: 10.1007/s12561-019-09253-3. PMID: 34093887; PMCID: PMC8177450
5. Perera C, Zhang H, Zheng Y, Hou L, Qu A, Zheng C, Xie K, Liu L. HIMA2: High-dimensional Mediation Analysis and Its Application in Epigenome-wide DNA Methylation Data. BMC Bioinformatics. 2022. DOI: 10.1186/s12859-022-04748-1. PMID: 35879655; PMCID: PMC9310002
6. Zhang H, Hong X, Zheng Y, Hou L, Zheng C, Wang X, Liu L. High-Dimensional Quantile Mediation Analysis with Application to a Birth Cohort Study of Mother–Newborn Pairs. Bioinformatics. 2024. DOI: 10.1093/bioinformatics/btae055. PMID: 38290773; PMCID: PMC10873903
7. Bai X, Zheng Y, Hou L, Zheng C, Liu L, Zhang H. An Efficient Testing Procedure for High-dimensional Mediators with FDR Control. Statistics in Biosciences. 2024. DOI: 10.1007/s12561-024-09447-4.
Examples
## Not run:
# Note: In the following examples, M1, M2, and M3 are true mediators.
# Example 1 (continuous outcome - linear HIMA):
data(ContinuousOutcome)
pheno_data <- ContinuousOutcome$PhenoData
mediator_data <- ContinuousOutcome$Mediator
e1 <- hima(Outcome ~ Treatment + Sex + Age,
data.pheno = pheno_data,
data.M = mediator_data,
mediator.type = "gaussian",
penalty = "MCP", # Can be "DBlasso" for hima_dblasso
scale = FALSE
) # Disabled only for simulation data
summary(e1)
# Efficient HIMA (only applicable to mediators and outcomes that are
# both continuous and normally distributed.)
e1e <- hima(Outcome ~ Treatment + Sex + Age,
data.pheno = pheno_data,
data.M = mediator_data,
mediator.type = "gaussian",
efficient = TRUE,
penalty = "MCP", # Efficient HIMA does not support DBlasso
scale = FALSE
) # Disabled only for simulation data
summary(e1e)
# Example 2 (binary outcome - logistic HIMA):
data(BinaryOutcome)
pheno_data <- BinaryOutcome$PhenoData
mediator_data <- BinaryOutcome$Mediator
e2 <- hima(Disease ~ Treatment + Sex + Age,
data.pheno = pheno_data,
data.M = mediator_data,
mediator.type = "gaussian",
penalty = "MCP",
scale = FALSE
) # Disabled only for simulation data
summary(e2)
# Example 3 (time-to-event outcome - survival HIMA):
data(SurvivalData)
pheno_data <- SurvivalData$PhenoData
mediator_data <- SurvivalData$Mediator
e3 <- hima(Surv(Time, Status) ~ Treatment + Sex + Age,
data.pheno = pheno_data,
data.M = mediator_data,
mediator.type = "gaussian",
penalty = "DBlasso",
scale = FALSE
) # Disabled only for simulation data
summary(e3)
# Example 4 (compositional data as mediator, e.g., microbiome):
data(MicrobiomeData)
pheno_data <- MicrobiomeData$PhenoData
mediator_data <- MicrobiomeData$Mediator
e4 <- hima(Outcome ~ Treatment + Sex + Age,
data.pheno = pheno_data,
data.M = mediator_data,
mediator.type = "compositional",
penalty = "DBlasso"
) # Scaling is always enabled internally for hima_microbiome
summary(e4)
#' # Example 5 (quantile mediation anlaysis - quantile HIMA):
data(QuantileData)
pheno_data <- QuantileData$PhenoData
mediator_data <- QuantileData$Mediator
# Note that the function will prompt input for quantile level.
e5 <- hima(Outcome ~ Treatment + Sex + Age,
data.pheno = pheno_data,
data.M = mediator_data,
mediator.type = "gaussian",
quantile = TRUE,
penalty = "MCP", # Quantile HIMA does not support DBlasso
scale = FALSE, # Disabled only for simulation data
tau = c(0.3, 0.5, 0.7)
) # Specify multiple quantile level
summary(e5)
## End(Not run)
Classic high-dimensional mediation analysis
Description
hima_classic
is used to estimate and test classic high-dimensional mediation effects (linear & logistic regression).
Usage
hima_classic(
X,
M,
Y,
COV.XM = NULL,
COV.MY = COV.XM,
Y.type = c("continuous", "binary"),
M.type = c("gaussian", "negbin"),
penalty = c("MCP", "SCAD", "lasso"),
topN = NULL,
scale = TRUE,
Bonfcut = 0.05,
verbose = FALSE,
parallel = FALSE,
ncore = 1,
...
)
Arguments
X |
a vector of exposure. Do not use |
M |
a |
Y |
a vector of outcome. Can be either continuous or binary (0-1). Do not use |
COV.XM |
a |
COV.MY |
a |
Y.type |
data type of outcome ( |
M.type |
data type of mediator ( |
penalty |
the penalty to be applied to the model. Either |
topN |
an integer specifying the number of top markers from sure independent screening.
Default = |
scale |
logical. Should the function scale the data? Default = |
Bonfcut |
Bonferroni-corrected p value cutoff applied to select significant mediators. Default = |
verbose |
logical. Should the function be verbose? Default = |
parallel |
logical. Enable parallel computing feature? Default = |
ncore |
number of cores to run parallel computing Valid when |
... |
other arguments passed to |
Value
A data.frame containing mediation testing results of selected mediators.
- Index:
mediation name of selected significant mediator.
- alpha_hat:
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- beta_hat:
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- IDE:
mediation (indirect) effect, i.e., alpha*beta.
- rimp:
relative importance of the mediator.
- pmax:
joint raw p-value of selected significant mediator (based on Bonferroni method).
References
Zhang H, Zheng Y, Zhang Z, Gao T, Joyce B, Yoon G, Zhang W, Schwartz J, Just A, Colicino E, Vokonas P, Zhao L, Lv J, Baccarelli A, Hou L, Liu L. Estimating and Testing High-dimensional Mediation Effects in Epigenetic Studies. Bioinformatics. 2016. DOI: 10.1093/bioinformatics/btw351. PMID: 27357171; PMCID: PMC5048064
Examples
## Not run:
# Note: In the following examples, M1, M2, and M3 are true mediators.
# When Y is continuous and normally distributed
# Example 1 (continuous outcome):
data(ContinuousOutcome)
pheno_data <- ContinuousOutcome$PhenoData
mediator_data <- ContinuousOutcome$Mediator
hima.fit <- hima_classic(
X = pheno_data$Treatment,
Y = pheno_data$Outcome,
M = mediator_data,
COV.XM = pheno_data[, c("Sex", "Age")],
Y.type = "continuous",
scale = FALSE, # Disabled only for simulation data
verbose = TRUE
)
hima.fit
# When Y is binary
# Example 2 (binary outcome):
data(BinaryOutcome$PhenoData)
pheno_data <- BinaryOutcome$PhenoData
mediator_data <- BinaryOutcome$Mediator
hima.logistic.fit <- hima_classic(
X = pheno_data$Treatment,
Y = pheno_data$Disease,
M = mediator_data,
COV.XM = pheno_data[, c("Sex", "Age")],
Y.type = "binary",
scale = FALSE, # Disabled only for simulation data
verbose = TRUE
)
hima.logistic.fit
## End(Not run)
High-dimensional mediation analysis with de-biased lasso penalty
Description
hima_dblasso
is used to estimate and test high-dimensional mediation effects using de-biased lasso penalty.
Usage
hima_dblasso(
X,
M,
Y,
COV = NULL,
topN = NULL,
scale = TRUE,
FDRcut = 0.05,
verbose = FALSE,
parallel = FALSE,
ncore = 1
)
Arguments
X |
a vector of exposure. Do not use |
M |
a |
Y |
a vector of outcome. Can be either continuous or binary (0-1). Do not use |
COV |
a |
topN |
an integer specifying the number of top markers from sure independent screening.
Default = |
scale |
logical. Should the function scale the data? Default = |
FDRcut |
HDMT pointwise FDR cutoff applied to select significant mediators. Default = |
verbose |
logical. Should the function be verbose? Default = |
parallel |
logical. Enable parallel computing feature? Default = |
ncore |
number of cores to run parallel computing Valid when |
Value
A data.frame containing mediation testing results of significant mediators (FDR <FDRcut
).
- Index:
mediation name of selected significant mediator.
- alpha_hat:
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- alpha_se:
standard error for alpha.
- beta_hat:
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- beta_se:
standard error for beta.
- IDE:
mediation (indirect) effect, i.e., alpha*beta.
- rimp:
relative importance of the mediator.
- pmax:
joint raw p-value of selected significant mediator (based on HDMT pointwise FDR method).
References
Perera C, Zhang H, Zheng Y, Hou L, Qu A, Zheng C, Xie K, Liu L. HIMA2: high-dimensional mediation analysis and its application in epigenome-wide DNA methylation data. BMC Bioinformatics. 2022. DOI: 10.1186/s12859-022-04748-1. PMID: 35879655; PMCID: PMC9310002
Examples
## Not run:
# Note: In the following examples, M1, M2, and M3 are true mediators.
# Y is continuous and normally distributed
# Example:
data(ContinuousOutcome)
pheno_data <- ContinuousOutcome$PhenoData
mediator_data <- ContinuousOutcome$Mediator
hima_dblasso.fit <- hima_dblasso(
X = pheno_data$Treatment,
Y = pheno_data$Outcome,
M = mediator_data,
COV = pheno_data[, c("Sex", "Age")],
scale = FALSE, # Disabled only for simulation data
FDRcut = 0.05,
verbose = TRUE
)
hima_dblasso.fit
## End(Not run)
Efficient high-dimensional mediation analysis
Description
hima_efficient
is used to estimate and test high-dimensional mediation effects using an efficient algorithm. It provides
higher statistical power than the standard hima
. Note: efficient HIMA is only applicable to mediators and outcomes that
are both continuous and normally distributed.
Usage
hima_efficient(
X,
M,
Y,
COV = NULL,
topN = NULL,
scale = TRUE,
FDRcut = 0.05,
verbose = FALSE,
parallel = FALSE,
ncore = 1
)
Arguments
X |
a vector of exposure. Do not use |
M |
a |
Y |
a vector of continuous outcome. Do not use |
COV |
a matrix of adjusting covariates. Rows represent samples, columns represent variables. Can be |
topN |
an integer specifying the number of top markers from sure independent screening.
Default = |
scale |
logical. Should the function scale the data? Default = |
FDRcut |
Benjamini-Hochberg FDR cutoff applied to select significant mediators. Default = |
verbose |
logical. Should the function be verbose? Default = |
parallel |
logical. Enable parallel computing feature? Default = |
ncore |
number of cores to run parallel computing Valid when |
Value
A data.frame containing mediation testing results of significant mediators (FDR <FDRcut
).
- Index:
mediation name of selected significant mediator.
- alpha_hat:
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- alpha_se:
standard error for alpha.
- beta_hat:
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- beta_se:
standard error for beta.
- IDE:
mediation (indirect) effect, i.e., alpha*beta.
- rimp:
relative importance of the mediator.
- pmax:
joint raw p-value of selected significant mediator (based on divide-aggregate composite-null test [DACT] method).
References
Bai X, Zheng Y, Hou L, Zheng C, Liu L, Zhang H. An Efficient Testing Procedure for High-dimensional Mediators with FDR Control. Statistics in Biosciences. 2024. DOI: 10.1007/s12561-024-09447-4.
Examples
## Not run:
# Note: In the following example, M1, M2, and M3 are true mediators.
# Y is continuous and normally distributed
# Example (continuous outcome):
data(ContinuousOutcome)
pheno_data <- ContinuousOutcome$PhenoData
mediator_data <- ContinuousOutcome$Mediator
hima_efficient.fit <- hima_efficient(
X = pheno_data$Treatment,
Y = pheno_data$Outcome,
M = mediator_data,
COV = pheno_data[, c("Sex", "Age")],
scale = FALSE, # Disabled only for simulation data
FDRcut = 0.05,
verbose = TRUE
)
hima_efficient.fit
## End(Not run)
High-dimensional mediation analysis for compositional microbiome data
Description
hima_microbiome
is used to estimate and test high-dimensional mediation effects for compositional microbiome data.
Usage
hima_microbiome(
X,
OTU,
Y,
COV = NULL,
FDRcut = 0.05,
verbose = FALSE,
parallel = FALSE,
ncore = 1
)
Arguments
X |
a vector of exposure. Do not use |
OTU |
a |
Y |
a vector of continuous outcome. Binary outcome is not allowed. Do not use |
COV |
a |
FDRcut |
Hommel FDR cutoff applied to select significant mediators. Default = |
verbose |
logical. Should the function be verbose? Default = |
parallel |
logical. Enable parallel computing feature? Default = |
ncore |
number of cores to run parallel computing Valid when |
Value
A data.frame containing mediation testing results of significant mediators (FDR <FDRcut
).
- Index:
mediation name of selected significant mediator.
- alpha_hat:
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- alpha_se:
standard error for alpha.
- beta_hat:
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- beta_se:
standard error for beta.
- IDE:
mediation (indirect) effect, i.e., alpha*beta.
- rimp:
relative importance of the mediator.
- pmax:
joint raw p-value of selected significant mediator (based on Hommel FDR method).
References
1. Zhang H, Chen J, Feng Y, Wang C, Li H, Liu L. Mediation effect selection in high-dimensional and compositional microbiome data. Stat Med. 2021. DOI: 10.1002/sim.8808. PMID: 33205470; PMCID: PMC7855955
2. Zhang H, Chen J, Li Z, Liu L. Testing for mediation effect with application to human microbiome data. Stat Biosci. 2021. DOI: 10.1007/s12561-019-09253-3. PMID: 34093887; PMCID: PMC8177450
Examples
## Not run:
# Note: In the following example, M1, M2, and M3 are true mediators.
data(MicrobiomeData)
pheno_data <- MicrobiomeData$PhenoData
mediator_data <- MicrobiomeData$Mediator
hima_microbiome.fit <- hima_microbiome(
X = pheno_data$Treatment,
Y = pheno_data$Outcome,
OTU = mediator_data,
COV = pheno_data[, c("Sex", "Age")],
FDRcut = 0.05,
verbose = TRUE
)
hima_microbiome.fit
## End(Not run)
High-dimensional quantile mediation analysis
Description
hima_quantile
is used to estimate and test high-dimensional quantile mediation effects.
Usage
hima_quantile(
X,
M,
Y,
COV = NULL,
penalty = c("MCP", "SCAD", "lasso"),
topN = NULL,
tau = 0.5,
scale = TRUE,
Bonfcut = 0.05,
verbose = FALSE,
parallel = FALSE,
ncore = 1,
...
)
Arguments
X |
a vector of exposure. Do not use |
M |
a |
Y |
a vector of continuous outcome. Do not use |
COV |
a matrix of adjusting covariates. Rows represent samples, columns represent variables. Can be |
penalty |
the penalty to be applied to the model (a parameter passed to function |
topN |
an integer specifying the number of top markers from sure independent screening.
Default = |
tau |
quantile level of outcome. Default = |
scale |
logical. Should the function scale the data? Default = |
Bonfcut |
Bonferroni-corrected p value cutoff applied to select significant mediators. Default = |
verbose |
logical. Should the function be verbose? Default = |
parallel |
logical. Enable parallel computing feature? Default = |
ncore |
number of cores to run parallel computing Valid when |
... |
reserved passing parameter. |
Value
A data.frame containing mediation testing results of selected mediators (Bonferroni-adjusted p value <Bonfcut
).
- Index:
mediation name of selected significant mediator.
- alpha_hat:
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- alpha_se:
standard error for alpha.
- beta_hat:
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- beta_se:
standard error for beta.
- IDE:
mediation (indirect) effect, i.e., alpha*beta.
- rimp:
relative importance of the mediator.
- pmax:
joint raw p-value of selected significant mediator (based on Bonferroni method).
References
Zhang H, Hong X, Zheng Y, Hou L, Zheng C, Wang X, Liu L. High-Dimensional Quantile Mediation Analysis with Application to a Birth Cohort Study of Mother–Newborn Pairs. Bioinformatics. 2024. DOI: 10.1093/bioinformatics/btae055. PMID: 38290773; PMCID: PMC10873903
Examples
## Not run:
# Note: In the following example, M1, M2, and M3 are true mediators.
data(QuantileData)
pheno_data <- QuantileData$PhenoData
mediator_data <- QuantileData$Mediator
hima_quantile.fit <- hima_quantile(
X = pheno_data$Treatment,
Y = pheno_data$Outcome,
M = mediator_data,
COV = pheno_data[, c("Sex", "Age")],
tau = c(0.3, 0.5, 0.7),
scale = FALSE, # Disabled only for simulation data
Bonfcut = 0.05,
verbose = TRUE
)
hima_quantile.fit
## End(Not run)
High-dimensional mediation analysis for survival data
Description
hima_survival
is used to estimate and test high-dimensional mediation effects for survival data.
Usage
hima_survival(
X,
M,
OT,
status,
COV = NULL,
topN = NULL,
scale = TRUE,
FDRcut = 0.05,
verbose = FALSE,
parallel = FALSE,
ncore = 1
)
Arguments
X |
a vector of exposure. Do not use |
M |
a |
OT |
a vector of observed failure times. |
status |
a vector of censoring indicator ( |
COV |
a matrix of adjusting covariates. Rows represent samples, columns represent variables. Can be |
topN |
an integer specifying the number of top markers from sure independent screening.
Default = |
scale |
logical. Should the function scale the data? Default = |
FDRcut |
HDMT pointwise FDR cutoff applied to select significant mediators. Default = |
verbose |
logical. Should the function be verbose? Default = |
parallel |
logical. Enable parallel computing feature? Default = |
ncore |
number of cores to run parallel computing Valid when |
Value
A data.frame containing mediation testing results of significant mediators (FDR <FDRcut
).
- Index:
mediation name of selected significant mediator.
- alpha_hat:
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- alpha_se:
standard error for alpha.
- beta_hat:
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- beta_se:
standard error for beta.
- IDE:
mediation (indirect) effect, i.e., alpha*beta.
- rimp:
relative importance of the mediator.
- pmax:
joint raw p-value of selected significant mediator (based on HDMT pointwise FDR method).
References
Zhang H, Zheng Y, Hou L, Zheng C, Liu L. Mediation Analysis for Survival Data with High-Dimensional Mediators. Bioinformatics. 2021. DOI: 10.1093/bioinformatics/btab564. PMID: 34343267; PMCID: PMC8570823
Examples
## Not run:
# Note: In the following example, M1, M2, and M3 are true mediators.
data(SurvivalData)
pheno_data <- SurvivalData$PhenoData
mediator_data <- SurvivalData$Mediator
hima_survival.fit <- hima_survival(
X = pheno_data$Treatment,
OT = pheno_data$Time,
status = pheno_data$Status,
M = mediator_data,
COV = pheno_data[, c("Sex", "Age")],
scale = FALSE, # Disabled only for simulation data
FDRcut = 0.05,
verbose = TRUE
)
hima_survival.fit
## End(Not run)