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alpha_PCA Statistical Inference for High-Dimensional Matrix-Variate Factor
Model

Description

This function is to fit the matrix factor model via the α-PCA method by conducting eigen-analysis
of a weighted average of the sample mean and the column (row) sample covariance matrix through
a hyper-parameter α.

Usage

alpha_PCA(X, m1, m2, alpha = 0)

Arguments

X Input an array with T × p1 × p2, where T is the sample size, p1 is the the row
dimension of each matrix observation and p2 is the the column dimension of
each matrix observation.

m1 A positive integer indicating the row factor numbers.

m2 A positive integer indicating the column factor numbers.

alpha A hyper-parameter balancing the information of the first and second moments
(α ≥ −1 ). The default is 0.

Details

For the matrix factor models, Chen & Fan (2021) propose an estimation procedure, i.e. α-PCA. The
method aggregates the information in both first and second moments and extract it via a spectral
method. In detail, for observations Xt, t = 1, 2, · · · , T , define

M̂R =
1

p1p2

(
(1 + α)X̄X̄⊤ +

1

T

T∑
t=1

(Xt − X̄)(Xt − X̄)⊤

)
,

M̂C =
1

p1p2

(
(1 + α)X̄⊤X̄ +

1

T

T∑
t=1

(Xt − X̄)⊤(Xt − X̄)

)
,
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where α ∈ [-1,+∞], X̄ = 1
T

∑T
t=1 Xt, 1

T

∑T
t=1(Xt − X̄)(Xt − X̄)⊤ and 1

T

∑T
t=1(Xt −

X̄)⊤(Xt − X̄) are the sample row and column covariance matrix, respectively. The loading ma-
trices R and C are estimated as

√
p1 times the top k1 eigenvectors of M̂R and

√
p2 times the top

k2 eigenvectors of M̂C , respectively. For details, see Chen & Fan (2021).

Value

The return value is a list. In this list, it contains the following:

F The estimated factor matrix of dimension T ×m1 ×m2.

R The estimated row loading matrix of dimension p1 × m1, satisfying R⊤R =
p1Im1

.

C The estimated column loading matrix of dimension p2×m2, satisfying C⊤C =
p2Im2

.

Author(s)

Yong He, Changwei Zhao, Ran Zhao.

References

Chen, E. Y., & Fan, J. (2021). Statistical inference for high-dimensional matrix-variate factor mod-
els. Journal of the American Statistical Association, 1-18.

Examples

set.seed(11111)
T=20;p1=20;p2=20;k1=3;k2=3
R=matrix(runif(p1*k1,min=-1,max=1),p1,k1)
C=matrix(runif(p2*k2,min=-1,max=1),p2,k2)
X=array(0,c(T,p1,p2))
Y=X;E=Y
F=array(0,c(T,k1,k2))
for(t in 1:T){

F[t,,]=matrix(rnorm(k1*k2),k1,k2)
E[t,,]=matrix(rnorm(p1*p2),p1,p2)
Y[t,,]=R%*%F[t,,]%*%t(C)

}
X=Y+E

#Estimate the factor matrices and loadings
fit=alpha_PCA(X, k1, k2, alpha = 0)
Rhat=fit$R
Chat=fit$C
Fhat=fit$F

#Estimate the common component
CC=array(0,c(T,p1,p2))
for (t in 1:T){
CC[t,,]=Rhat%*%Fhat[t,,]%*%t(Chat)
}
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KMHFA Estimating the Pair of Factor Numbers via Eigenvalue Ratios or Rank
Minimization.

Description

The function is to estimate the pair of factor numbers via eigenvalue-ratio corresponding to RMFA
method or rank minimization and eigenvalue-ratio corresponding to Iterative Huber Regression
(IHR).

Usage

KMHFA(X, W1 = NULL, W2 = NULL, kmax, method, max_iter = 100, c = 1e-04, ep = 1e-04)

Arguments

X Input an array with T × p1 × p2, where T is the sample size, p1 is the the row
dimension of each matrix observation and p2 is the the column dimension of
each matrix observation.

W1 Only if method="E_RM" or method="E_ER", the inital value of row loadings
matrix. The default is NULL, which is randomly chosen and all entries from a
standard normal distribution.

W2 Only if method="E_RM" or method="E_ER", the inital value of column loadings
matrix. The default is NULL, which is randomly chosen and all entries from a
standard normal distribution.

kmax The user-supplied maximum factor numbers. Here it means the upper bound of
the number of row factors and column factors.

method Character string, specifying the type of the estimation method to be used.

"P", the robust iterative eigenvalue-ratio based on RMFA

"E_RM", the rank-minimization based on IHR

"E_ER", the eigenvalue-ratio based on IHR

max_iter Only if method="E_RM" or method="E_ER", the maximum number of iterations
in the iterative Huber regression algorithm. The default is 100.

c A constant to avoid vanishing denominators. The default is 10−4.

ep Only if method="E_RM" or method="E_ER", the stopping critetion parameter in
the iterative Huber regression algorithm. The default is 10−4 × Tp1p2.
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Details

If method="P", the number of factors k1 and k2 are estimated by

k̂1 = arg max
j≤kmax

λj(M
w
c )

λj+1(Mw
c )

, k̂2 = arg max
j≤kmax

λj(M
w
r )

λj+1(Mw
r )

,

where kmax is a predetermined value larger than k1 and k2. λj(·) is the j-th largest eigenvalue of
a nonnegative definitive matrix. See the function MHFA for the definition of Mw

c and Mw
r . For

details, see He et al. (2023).

Define D = min(
√
Tp1,

√
Tp2,

√
p1p2),

Σ̂1 =
1

T

T∑
t=1

F̂tF̂
⊤
t , Σ̂2 =

1

T

T∑
t=1

F̂⊤
t F̂t,

where F̂t, t = 1, . . . , T is estimated by IHR under the number of factor is kmax.

If method="E_RM", the number of factors k1 and k2 are estimated by

k̂1 =

kmax∑
i=1

I
(
diag(Σ̂1) > P1

)
, k̂2 =

kmax∑
j=1

I
(
diag(Σ̂2) > P2

)
,

where I is the indicator function. In practice, P1 is set as max
(
diag(Σ̂1)

)
· D−2/3, P2 is set as

max
(
diag(Σ̂2)

)
·D−2/3.

If method="E_ER", the number of factors k1 and k2 are estimated by

k̂1 = arg max
i≤kmax

λi(Σ̂1)

λi+1(Σ̂1) + cD−2
, k̂2 = arg max

j≤kmax

λj(Σ̂2)

λj+1(Σ̂2) + cD−2
.

Value

\eqn{k_1} The estimated row factor number.

\eqn{k_2} The estimated column factor number.

Author(s)

Yong He, Changwei Zhao, Ran Zhao.

References

He, Y., Kong, X., Yu, L., Zhang, X., & Zhao, C. (2023). Matrix factor analysis: From least squares
to iterative projection. Journal of Business & Economic Statistics, 1-26.

He, Y., Kong, X. B., Liu, D., & Zhao, R. (2023). Robust Statistical Inference for Large-dimensional
Matrix-valued Time Series via Iterative Huber Regression. <arXiv:2306.03317>.
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Examples

set.seed(11111)
T=20;p1=20;p2=20;k1=3;k2=3
R=matrix(runif(p1*k1,min=-1,max=1),p1,k1)
C=matrix(runif(p2*k2,min=-1,max=1),p2,k2)
X=array(0,c(T,p1,p2))
Y=X;E=Y
F=array(0,c(T,k1,k2))
for(t in 1:T){

F[t,,]=matrix(rnorm(k1*k2),k1,k2)
E[t,,]=matrix(rnorm(p1*p2),p1,p2)
Y[t,,]=R%*%F[t,,]%*%t(C)

}
X=Y+E

KMHFA(X, kmax=6, method="P")

KMHFA(X, W1 = NULL, W2 = NULL, 6, "E_RM")
KMHFA(X, W1 = NULL, W2 = NULL, 6, "E_ER")

KPCA Estimating the Pair of Factor Numbers via Eigenvalue Ratios Corre-
sponding to α-PCA

Description

The function is to estimate the pair of factor numbers via eigenvalue ratios corresponding to α-PCA.

Usage

KPCA(X, kmax, alpha = 0)

Arguments

X Input an array with T × p1 × p2, where T is the sample size, p1 is the the row
dimension of each matrix observation and p2 is the the column dimension of
each matrix observation.

kmax The user-supplied maximum factor numbers. Here it means the upper bound of
the number of row factors and column factors.

alpha A hyper-parameter balancing the information of the first and second moments
(α ≥ −1 ). The default is 0.
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Details

The function KPCA uses the eigenvalue-ratio idea to estimate the number of factors. In details, the
number of factors k1 is estimated by

k̂1 = arg max
j≤kmax

λj(M̂R)

λj+1(M̂R)
,

where kmax is a given upper bound. k2 is defined similarly with respect to M̂C . See the function
alpha_PCA for the definition of M̂R and M̂C . For more details, see Chen & Fan (2021).

Value

\eqn{k_1} The estimated row factor number.

\eqn{k_2} The estimated column factor number.

Author(s)

Yong He, Changwei Zhao, Ran Zhao.

References

Chen, E. Y., & Fan, J. (2021). Statistical inference for high-dimensional matrix-variate factor mod-
els. Journal of the American Statistical Association, 1-18.

Examples

set.seed(11111)
T=20;p1=20;p2=20;k1=3;k2=3
R=matrix(runif(p1*k1,min=-1,max=1),p1,k1)
C=matrix(runif(p2*k2,min=-1,max=1),p2,k2)
X=array(0,c(T,p1,p2))
Y=X;E=Y
F=array(0,c(T,k1,k2))
for(t in 1:T){

F[t,,]=matrix(rnorm(k1*k2),k1,k2)
E[t,,]=matrix(rnorm(p1*p2),p1,p2)
Y[t,,]=R%*%F[t,,]%*%t(C)

}
X=Y+E

KPCA(X, 8, alpha = 0)
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KPE Estimating the Pair of Factor Numbers via Eigenvalue Ratios Corre-
sponding to PE

Description

The function is to estimate the pair of factor numbers via eigenvalue ratios corresponding to PE
method.

Usage

KPE(X, kmax, c = 0)

Arguments

X Input an array with T × p1 × p2, where T is the sample size, p1 is the the row
dimension of each matrix observation and p2 is the the column dimension of
each matrix observation.

kmax The user-supplied maximum factor numbers. Here it means the upper bound of
the number of row factors and column factors.

c A constant to avoid vanishing denominators. The default is 0.

Details

The function KPE uses the eigenvalue-ratio idea to estimate the number of factors. First, obtain the
initial estimators R̂ and Ĉ. Second, define

Ŷt =
1

p2
XtĈ, Ẑt =

1

p1
X⊤

t R̂,

and

M̃1 =
1

Tp1
ŶtŶ

⊤
t ,M̃2 =

1

Tp2

T∑
t=1

ẐtẐ
⊤
t ,

the number of factors k1 is estimated by

k̂1 = arg max
j≤kmax

λj(M̃1)

λj+1(M̃1)
,

where kmax is a predetermined upper bound for k1. The estimation of k2 is defined similarly with
respect to M̃2. For details, see Yu et al. (2022).

Value

\eqn{k_1} The estimated row factor number.

\eqn{k_2} The estimated column factor number.
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Author(s)

Yong He, Changwei Zhao, Ran Zhao.

References

Yu, L., He, Y., Kong, X., & Zhang, X. (2022). Projected estimation for large-dimensional matrix
factor models. Journal of Econometrics, 229(1), 201-217.

Examples

set.seed(11111)
T=20;p1=20;p2=20;k1=3;k2=3
R=matrix(runif(p1*k1,min=-1,max=1),p1,k1)
C=matrix(runif(p2*k2,min=-1,max=1),p2,k2)
X=array(0,c(T,p1,p2))
Y=X;E=Y
F=array(0,c(T,k1,k2))
for(t in 1:T){

F[t,,]=matrix(rnorm(k1*k2),k1,k2)
E[t,,]=matrix(rnorm(p1*p2),p1,p2)
Y[t,,]=R%*%F[t,,]%*%t(C)

}
X=Y+E

KPE(X, 8, c = 0)

MHFA Matrix Huber Factor Analysis

Description

This function is to fit the matrix factor models via the Huber loss. We propose two algorithms to
do robust factor analysis. One is based on minimizing the Huber loss of the idiosyncratic error’s
Frobenius norm, which leads to a weighted iterative projection approach to compute and learn the
parameters and thereby named as Robust-Matrix-Factor-Analysis (RMFA). The other one is based
on minimizing the element-wise Huber loss, which can be solved by an iterative Huber regression
algorithm (IHR).

Usage

MHFA(X, W1=NULL, W2=NULL, m1, m2, method, max_iter = 100, ep = 1e-04)

Arguments

X Input an array with T × p1 × p2, where T is the sample size, p1 is the the row
dimension of each matrix observation and p2 is the the column dimension of
each matrix observation.
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W1 Only if method="E", the inital value of row loadings matrix. The default is
NULL, which is randomly chosen and all entries from a standard normal distri-
bution.

W2 Only if method="E", the inital value of column loadings matrix. The default
is NULL, which is randomly chosen and all entries from a standard normal
distribution.

m1 A positive integer indicating the row factor numbers.

m2 A positive integer indicating the column factor numbers.

method Character string, specifying the type of the estimation method to be used.

"P", indicates minimizing the Huber loss of the idiosyncratic error’s Frobenius
norm. (RMFA)

"E", indicates minimizing the elementwise Huber loss. (IHR)

max_iter Only if method="E", the maximum number of iterations in the iterative Huber
regression algorithm. The default is 100.

ep Only if method="E", the stopping critetion parameter in the iterative Huber re-
gression algorithm. The default is 10−4 × Tp1p2.

Details

For the matrix factor models, He et al. (2021) propose a weighted iterative projection approach to
compute and learn the parameters by minimizing the Huber loss function of the idiosyncratic error’s
Frobenius norm. In details, for observations Xt, t = 1, 2, · · · , T , define

Mw
c =

1

Tp2

T∑
t=1

wtXtCC⊤X⊤
t ,Mw

r =
1

Tp1

T∑
t=1

wtX
⊤
t RR⊤Xt.

The estimators of loading matrics R̂ and Ĉ are calculated by
√
p1 times the leading k1 eigenvectors

of Mw
c and

√
p2 times the leading k2 eigenvectors of Mw

r . And

F̂t =
1

p1p2
R̂⊤XtĈ.

For details, see He et al. (2023).

The other one is based on minimizing the element-wise Huber loss. Define

Mi,Tp2
(r,Ft,C) =

1

Tp2

T∑
t=1

p2∑
j=1

Hτ

(
xt,ij − r⊤i Ftcj

)
,

Mi,Tp1
(R,Ft, c) =

1

Tp1

T∑
t=1

p1∑
i=1

Hτ

(
xt,ij − r⊤i Ftcj

)
,

Mt,p1p2(R, vec(F ),C) =
1

p1p2

p1∑
i=1

p2∑
j=1

Hτ

(
xt,ij − (cj ⊗ ri)

⊤vec(F )
)
.

This can be seen as Huber regression as each time optimizing one argument while keeping the other
two fixed.
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Value

The return value is a list. In this list, it contains the following:

F The estimated factor matrix of dimension T ×m1 ×m2.

R The estimated row loading matrix of dimension p1 × m1, satisfying R⊤R =
p1Im1

.

C The estimated column loading matrix of dimension p2×m2, satisfying C⊤C =
p2Im2

.

Author(s)

Yong He, Changwei Zhao, Ran Zhao.

References

He, Y., Kong, X., Yu, L., Zhang, X., & Zhao, C. (2023). Matrix factor analysis: From least squares
to iterative projection. Journal of Business & Economic Statistics, 1-26.

He, Y., Kong, X. B., Liu, D., & Zhao, R. (2023). Robust Statistical Inference for Large-dimensional
Matrix-valued Time Series via Iterative Huber Regression. <arXiv:2306.03317>.

Examples

set.seed(11111)
T=20;p1=20;p2=20;k1=3;k2=3
R=matrix(runif(p1*k1,min=-1,max=1),p1,k1)
C=matrix(runif(p2*k2,min=-1,max=1),p2,k2)
X=array(0,c(T,p1,p2))
Y=X;E=Y
F=array(0,c(T,k1,k2))
for(t in 1:T){

F[t,,]=matrix(rnorm(k1*k2),k1,k2)
E[t,,]=matrix(rnorm(p1*p2),p1,p2)
Y[t,,]=R%*%F[t,,]%*%t(C)

}
X=Y+E

#Estimate the factor matrices and loadings by RMFA
fit1=MHFA(X, m1=3, m2=3, method="P")
Rhat1=fit1$R
Chat1=fit1$C
Fhat1=fit1$F

#Estimate the factor matrices and loadings by IHR
fit2=MHFA(X, W1=NULL, W2=NULL, 3, 3, "E")
Rhat2=fit2$R
Chat2=fit2$C
Fhat2=fit2$F

#Estimate the common component by RMFA
CC1=array(0,c(T,p1,p2))
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for (t in 1:T){
CC1[t,,]=Rhat1%*%Fhat1[t,,]%*%t(Chat1)
}
CC1

#Estimate the common component by IHR
CC2=array(0,c(T,p1,p2))
for (t in 1:T){
CC2[t,,]=Rhat2%*%Fhat2[t,,]%*%t(Chat2)
}
CC2

PE Projected Estimation for Large-Dimensional Matrix Factor Models

Description

This function is to fit the matrix factor model via the PE method by projecting the observation
matrix onto the row or column factor space.

Usage

PE(X, m1, m2)

Arguments

X Input an array with T × p1 × p2, where T is the sample size, p1 is the the row
dimension of each matrix observation and p2 is the the column dimension of
each matrix observation.

m1 A positive integer indicating the row factor numbers.

m2 A positive integer indicating the column factor numbers.

Details

For the matrix factor models, Yu et al. (2022) propose a projection estimation method to estimate
the model parameters. In details, for observations Xt, t = 1, 2, · · · , T , the data matrix is projected
to a lower dimensional space by setting

Yt =
1

p2
XtC.

Given Yt, define

M1 =
1

Tp1

T∑
t=1

YtY
⊤
t ,

and then the row factor loading matrix R can be estimated by
√
p1 times the leading k1 eigenvectors

of M1. However, the projection matrix C is unavailable in practice. A natural solution is to replace
it with a consistent initial estimator. The column factor loading matrix C can be similarly estimated
by projecting Xt onto the space of C with R. See Yu et al. (2022) for the detailed algorithm.
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Value

The return value is a list. In this list, it contains the following:

F The estimated factor matrix of dimension T ×m1 ×m2.

R The estimated row loading matrix of dimension p1 × m1, satisfying R⊤R =
p1Im1

.

C The estimated column loading matrix of dimension p2×m2, satisfying C⊤C =
p2Im2 .

Author(s)

Yong He, Changwei Zhao, Ran Zhao.

References

Yu, L., He, Y., Kong, X., & Zhang, X. (2022). Projected estimation for large-dimensional matrix
factor models. Journal of Econometrics, 229(1), 201-217.

Examples

set.seed(11111)
T=20;p1=20;p2=20;k1=3;k2=3
R=matrix(runif(p1*k1,min=-1,max=1),p1,k1)
C=matrix(runif(p2*k2,min=-1,max=1),p2,k2)
X=array(0,c(T,p1,p2))
Y=X;E=Y
F=array(0,c(T,k1,k2))
for(t in 1:T){

F[t,,]=matrix(rnorm(k1*k2),k1,k2)
E[t,,]=matrix(rnorm(p1*p2),p1,p2)
Y[t,,]=R%*%F[t,,]%*%t(C)

}
X=Y+E

#Estimate the factor matrices and loadings
fit=PE(X, k1, k2)
Rhat=fit$R
Chat=fit$C
Fhat=fit$F

#Estimate the common component
CC=array(0,c(T,p1,p2))
for (t in 1:T){
CC[t,,]=Rhat%*%Fhat[t,,]%*%t(Chat)
}
CC
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