
Package ‘HDCD’
July 21, 2025

Type Package

Title High-Dimensional Changepoint Detection

Version 1.1

Date 2024-06-02

Maintainer Per August Jarval Moen <pamoen@math.uio.no>

Description Efficient implementations of the following multiple changepoint detection algorithms: Ef-
ficient Sparsity Adaptive Change-point estima-
tor by Moen, Glad and Tveten (2023) <doi:10.48550/arXiv.2306.04702> , Informa-
tive Sparse Projection for Estimating Changepoints by Wang and Sam-
worth (2017) <doi:10.1111/rssb.12243>, and the method of Pilliat et al (2023) <doi:10.1214/23-
EJS2126>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Imports mclust, Rdpack

RdMacros Rdpack

NeedsCompilation yes

Author Per August Jarval Moen [cre, aut] (ORCID:
<https://orcid.org/0009-0003-9990-8341>)

Repository CRAN

Date/Publication 2024-06-02 23:20:26 UTC

Contents
ARI . 2
CUSUM . 3
ESAC . 4
ESAC_calibrate . 6
ESAC_test . 8
ESAC_test_calibrate . 10
hausdorff . 12

1

https://doi.org/10.48550/arXiv.2306.04702
https://doi.org/10.1111/rssb.12243
https://doi.org/10.1214/23-EJS2126
https://doi.org/10.1214/23-EJS2126
https://orcid.org/0009-0003-9990-8341

2 ARI

Inspect . 12
Inspect_calibrate . 14
Inspect_test . 16
Inspect_test_calibrate . 18
Pilliat . 19
Pilliat_calibrate . 22
Pilliat_test . 24
Pilliat_test_calibrate . 26
rescale_variance . 28
single_CUSUM . 29
single_ESAC . 30
single_Inspect . 31
single_SBS . 32
single_SBS_calibrate . 34

Index 36

ARI ARI

Description

Computes the Adjusted Rand Index (ARI) of a vector of estimated change-points.

Usage

ARI(etas, eta_hats, n)

Arguments

etas Vector of true change-points

eta_hats Vector of estimated change-points

n Sample size

Value

The ARI

Examples

library(HDCD)
n = 400
true_changepoints = c(50,100)
est_changepoints = c(51,110)
ARI(true_changepoints, est_changepoints,n)

CUSUM 3

CUSUM CUSUM transformation of a matrix

Description

R wrapper for C function computing the CUSUM transformation of a matrix over an interval (s, e].
For compatibility with C indexing, the user should subtract 1 from both s and e when supplying
the arguments to the function. If start and stop are not supplied, the CUSUM is computed over the
full data, so (s, e] = (0, n]. In this case, CUSUM returns the same result as cusum.transform in the
package InspectChangepoint (Wang and Samworth 2020).

Usage

CUSUM(X, start = NULL, stop = NULL)

Arguments

X Matrix of observations, where each row contains a time series
start Starting point of interval over which the CUSUM should be computed, sub-

tracted by one
stop Ending point of interval over which the CUSUM should be computed, subtracted

by one

Value

A matrix of CUSUM values. The (i, j)-th element corresponds to the CUSUM transformation
of the i-th row of X , computed over the interval (start + 1, end + 1] and evaluated at position
start+1+j, i.e.

√
e−v

(e−s)(v−s)

∑v
t=s+1 Xi,t−

√
v−s

(e−s)(e−v)

∑e
t=v+1 Xi,t, where s = (start+1),

e = (stop+ 1) and v = start+ 1 + j.

References

Wang T, Samworth R (2020). InspectChangepoint: High-Dimensional Changepoint Estimation via
Sparse Projection. R package version 1.1, https://CRAN.R-project.org/package=InspectChangepoint.

Examples

n = 10
p = 10
set.seed(101)
X = matrix(rnorm(n*p), ncol = n, nrow=p)
CUSUM over the full data (s,e] = (0,n]
X_cusum = CUSUM(X)

CUSUM over (s,e] = (3,9]:
s = 3
e = 9
X_cusum = CUSUM(X, start = s-1, stop = e-1)

https://CRAN.R-project.org/package=InspectChangepoint

4 ESAC

ESAC Efficient Sparsity Adaptive Change-point estimator

Description

R wrapper for C function implementing the full ESAC algorithm (see Moen et al. 2023).

Usage

ESAC(
X,
threshold_d = 1.5,
threshold_s = 1,
alpha = 1.5,
K = 5,
debug = FALSE,
empirical = FALSE,
tol = 0.001,
N = 1000,
thresholds = NULL,
thresholds_test = NULL,
threshold_d_test = threshold_d,
threshold_s_test = threshold_s,
fast = FALSE,
rescale_variance = TRUE,
trim = FALSE,
NOT = TRUE,
midpoint = FALSE

)

Arguments

X Matrix of observations, where each row contains a time series

threshold_d Leading constant for λ(t) ∝ r(t) for t = p. Only relevant when thresholds=NULL

threshold_s Leading constant for λ(t) ∝ r(t) for t ≤
√
p log n. Only relevant when

thresholds=NULL

alpha Parameter for generating seeded intervals

K Parameter for generating seeded intervals

debug If TRUE, diagnostic prints are provided during execution

empirical If TRUE, detection thresholds are based on Monte Carlo simulation using ESAC_calibrate

tol If empirical=TRUE, tol is the false error probability tolerance

N If empirical=TRUE, N is the number of Monte Carlo samples used

thresholds Vector of manually chosen values of λ(t) for t ∈ T , decreasing in t

ESAC 5

thresholds_test

Vector of manually chosen values of γ(t) for t ∈ T , decreasing in t

threshold_d_test

Leading constant for γ(t) ∝ r(t) for t = p. Only relevant when empirical=FALSE
and thresholds_test=NULL

threshold_s_test

Leading constant for γ(t) ∝ r(t) for t ≤
√
p log n. Only relevant when

empirical=FALSE and thresholds_test=NULL

fast If TRUE, ESAC only tests for a change-point at the midpoint of each seeded
interval

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

trim If TRUE, interval trimming is performed

NOT If TRUE, ESAC uses Narrowest-Over-Threshold selection of change-points

midpoint If TRUE, change-point positions are estimated by the mid-point of the seeded
interval in which the penalized score is the largest

Value

A list containing

changepoints vector of estimated change-points

changepointnumber

number of changepoints

CUSUMval the penalized score at the corresponding change-point in changepoints

coordinates a matrix of zeros and ones indicating which time series are affected by a change
in mean, with each row corresponding to the change-point in changepoints

scales vector of estimated noise level for each series

startpoints start point of the seeded interval detecting the corresponding change-point in
changepoints

endpoints end point of the seeded interval detecting the corresponding change-point in
changepoints

thresholds vector of values of λ(t) for t ∈ T in decreasing order

thresholds_test

vector of values of γ(t) for t ∈ T in decreasing order

References

Moen PAJ, Glad IK, Tveten M (2023). “Efficient sparsity adaptive changepoint estimation.” Arxiv
preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

https://doi.org/10.48550/arXiv.2306.04702

6 ESAC_calibrate

Examples

library(HDCD)
n = 50
p = 50
set.seed(100)
Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1

Vanilla ESAC:
res = ESAC(X)
res$changepoints

Manually setting leading constants for \lambda(t) and \gamma(t)
res = ESAC(X,

threshold_d = 2, threshold_s = 2, #leading constants for \lambda(t)
threshold_d_test = 2, threshold_s_test = 2 #leading constants for \gamma(t)

)
res$changepoints #estimated change-point locations

Empirical choice of thresholds:
res = ESAC(X, empirical = TRUE, N = 100, tol = 1/100)
res$changepoints

Manual empirical choice of thresholds (equivalent to the above)
thresholds_emp = ESAC_calibrate(n,p, N=100, tol=1/100)
res = ESAC(X, thresholds_test = thresholds_emp[[1]])
res$changepoints

ESAC_calibrate Generates empirical penalty function γ(t) for the ESAC algorithm us-
ing Monte Carlo simulation

Description

R wrapper for C function choosing the penalty function γ(t) by Monte Carlo simulation, as de-
scribed in Appendix B in Moen et al. (2023).

Usage

ESAC_calibrate(
n,
p,
alpha = 1.5,
K = 5,
N = 1000,
tol = 0.001,
bonferroni = TRUE,

ESAC_calibrate 7

fast = FALSE,
rescale_variance = TRUE,
tdf = NULL,
debug = FALSE

)

Arguments

n Number of observations

p Number time series

alpha Parameter for generating seeded intervals

K Parameter for generating seeded intervals

N Number of Monte Carlo samples used

tol False error probability tolerance

bonferroni If TRUE, a Bonferroni correction applied and the empirical penalty function γ(t)
is chosen by simulating leading constants of r(t) through Monte Carlo simula-
tion.

fast If TRUE, ESAC only tests for a change-point at the midpoint of each seeded
interval

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

tdf If NULL, samples are drawn from a Gaussian distribution. Otherwise, they are
drawn from a t distribution with tdf degrees of freedom.

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

without_partial

a vector of values of γ(t) for t ∈ T decreasing in t

with_partial same as without_partial

as vector of threshold values a(t) for t ∈ T decreasing in t

nu_as vector of conditional expectations νa(t) of a thresholded Gaussian, for t ∈ T
decreasing in t

#’

References

Moen PAJ, Glad IK, Tveten M (2023). “Efficient sparsity adaptive changepoint estimation.” Arxiv
preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

https://doi.org/10.48550/arXiv.2306.04702

8 ESAC_test

Examples

library(HDCD)
n = 50
p = 50

set.seed(100)
thresholds_emp = ESAC_calibrate(n,p, N=100, tol=1/100)
set.seed(100)
thresholds_emp_without_bonferroni = ESAC_calibrate(n,p, N=100, tol=1/100,bonferroni=FALSE)
thresholds_emp[[1]] # vector of \gamma(t) for t = p,...,1
thresholds_emp_without_bonferroni[[1]] # vector of \gamma(t) for t = p,...,1

Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2

res = ESAC(X, thresholds_test = thresholds_emp[[1]])
res$changepoints

ESAC_test ESAC single change-point test

Description

R wrapper for C function testing for a single change-point using ESAC (see Moen et al. 2023).

Usage

ESAC_test(
X,
threshold_d = 1.5,
threshold_s = 1,
debug = FALSE,
empirical = FALSE,
thresholds = NULL,
fast = FALSE,
tol = 0.001,
N = 1000,
rescale_variance = TRUE

)

Arguments

X Matrix of observations, where each row contains a time series

threshold_d Leading constant for γ(t) ∝ r(t) for t = p. Only relevant when empirical=FALSE
and thresholds=NULL

ESAC_test 9

threshold_s Leading constant for γ(t) ∝ r(t) for t ≤
√
p log n. Only relevant when

empirical=FALSE and thresholds=NULL

debug If TRUE, diagnostic prints are provided during execution

empirical If TRUE, detection thresholds are based on Monte Carlo simulation using ESAC_test_calibrate

thresholds Vector of manually chosen values of γ(t) for t ∈ T , decreasing in t

fast If TRUE, ESAC only tests for a change-point at the midpoint of each seeded
interval

tol If empirical=TRUE, tol is the false error probability tolerance

N If empirical=TRUE, N is the number of Monte Carlo samples used
rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

Value

1 if a change-point is detected, 0 otherwise

References

Moen PAJ, Glad IK, Tveten M (2023). “Efficient sparsity adaptive changepoint estimation.” Arxiv
preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Examples

library(HDCD)
n = 50
p = 50

Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)

Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +1

Vanilla ESAC:
resX = ESAC_test(X)
resX
resY = ESAC_test(Y)
resY

Manually setting leading constants for \lambda(t) and \gamma(t)
resX = ESAC_test(X,

threshold_d = 2, threshold_s = 2, #leading constants for \gamma(t)
)
resX
resY = ESAC_test(Y,

threshold_d = 2, threshold_s = 2, #leading constants for \gamma(t)
)
resY

https://doi.org/10.48550/arXiv.2306.04702

10 ESAC_test_calibrate

Empirical choice of thresholds:
resX = ESAC_test(X, empirical = TRUE, N = 100, tol = 1/100)
resX
resY = ESAC_test(Y, empirical = TRUE, N = 100, tol = 1/100)
resY

Manual empirical choice of thresholds (equivalent to the above)
thresholds_test_emp = ESAC_test_calibrate(n,p, N=100, tol=1/100,bonferroni=TRUE)
resX = ESAC_test(X, thresholds = thresholds_test_emp[[1]])
resX
resY = ESAC_test(Y, thresholds = thresholds_test_emp[[1]])
resY

ESAC_test_calibrate Generates empirical penalty function γ(t) for single change-point test-
ing using Monte Carlo simulation

Description

R wrapper for C function choosing the penalty function γ(t) by Monte Carlo simulation, as de-
scribed in Appendix B in Moen et al. (2023), for testing for a single change-point.

Usage

ESAC_test_calibrate(
n,
p,
bonferroni = TRUE,
N = 1000,
tol = 1/1000,
fast = FALSE,
rescale_variance = TRUE,
debug = FALSE

)

Arguments

n Number of observations

p Number time series

bonferroni If TRUE, a Bonferroni correction applied and the empirical penalty function γ(t)
is chosen by simulating leading constants of r(t) through Monte Carlo simula-
tion.

N Number of Monte Carlo samples used

tol False positive probability tolerance

fast If TRUE, ESAC only tests for a change-point at the midpoint of the interval
(0, . . . , n]

ESAC_test_calibrate 11

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing a vector of values of γ(t) for t ∈ T decreasing (element #1), a vector of corre-
sponding values of the threshold a(t) (element # 3), a vector of corresponding values of νa(t)

A list containing

without_partial

a vector of values of γ(t) for t ∈ T decreasing in t

with_partial same as without_partial

as vector of threshold values a(t) for t ∈ T decreasing in t

nu_as vector of conditional expectations νa(t) of a thresholded Gaussian, for t ∈ T
decreasing in t

References

Moen PAJ, Glad IK, Tveten M (2023). “Efficient sparsity adaptive changepoint estimation.” Arxiv
preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Examples

library(HDCD)
n = 50
p = 50

set.seed(100)
thresholds_emp = ESAC_test_calibrate(n,p, bonferroni=TRUE,N=100, tol=1/100)
set.seed(100)
thresholds_emp_without_bonferroni = ESAC_test_calibrate(n,p, bonferroni=FALSE,N=100, tol=1/100)
thresholds_emp[[1]] # vector of \gamma(t) for t = p,...,1
thresholds_emp_without_bonferroni[[1]] # vector of \gamma(t) for t = p,...,1

Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)

Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +2
resX = ESAC_test(X, thresholds = thresholds_emp[[1]])
resX
resY = ESAC_test(Y, thresholds = thresholds_emp[[1]])
resY

https://doi.org/10.48550/arXiv.2306.04702

12 Inspect

hausdorff Hausdorff distance between two sets

Description

Computes the Hausdorff distance between two sets represented as vectors v1 and v2. If v1 == NULL
and v2 != NULL, then the largest distance between an element of v1 and the set {1, n} is returned,
and vice versa. If both vectors are NULL, 0 is returned.

Usage

hausdorff(v1, v2, n)

Arguments

v1 Vector representing set 1

v2 Vector representing set 2

n Sample size (only relevant when either v1 or v2 is NULL)

Value

The Hausdorff distance between v1 and v2

Examples

library(HDCD)
n = 400
true_changepoints = c(50,100)
est_changepoints = c(51,110)
hausdorff(true_changepoints, est_changepoints,n)
hausdorff(true_changepoints, NULL,n)
hausdorff(NULL, est_changepoints,n)
hausdorff(NULL,NULL)

Inspect Informative sparse projection for estimating change-points (Inspect)

Description

R wrapper for C function implementing a Narrowest-Over-Threshold variant of Inspect Wang and
Samworth (2018) as specified in Appendix C in Moen et al. (2023). Note that the algorithm is only
implemented for S = S2, in the notation of Moen et al. (2023).

Inspect 13

Usage

Inspect(
X,
lambda = NULL,
xi = NULL,
alpha = 1.5,
K = 5,
eps = 1e-10,
empirical = FALSE,
maxiter = 10000,
N = 100,
tol = 1/100,
rescale_variance = TRUE,
debug = FALSE

)

Arguments

X Matrix of observations, where each row contains a time series

lambda Manually specified value of λ (can be NULL, in which case λ←
√
log(p log n)/2)

xi Manually specified value of ξ (can be NULL, in which case ξ ← 4
√
log(np))

alpha Parameter for generating seeded intervals

K Parameter for generating seeded intervals

eps Threshold for declaring numerical convergence of the power method

empirical If TRUE, the detection threshold xi is based on Monte Carlo simulation using
Inspect_calibrate

maxiter Maximum number of iterations for the power method

N If empirical=TRUE, N is the number of Monte Carlo samples used

tol If empirical=TRUE, tol is the false error probability tolerance
rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

changepoints vector of estimated change-points
changepointnumber

number of changepoints

CUSUMval vector with the sparse projected CUSUMs corresponding to changepoints

coordinates a matrix of zeros and ones indicating which time series are affected by a change
in mean, with each row corresponding to the change-point in changepoints

scales vector of estimated noise level for each series

14 Inspect_calibrate

References

Moen PAJ, Glad IK, Tveten M (2023). “Efficient sparsity adaptive changepoint estimation.” Arxiv
preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Wang T, Samworth RJ (2018). “High dimensional change point estimation via sparse projec-
tion.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1), 57–83.
ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/rssb.12243.

Examples

library(HDCD)
n = 50
p = 50
set.seed(100)
Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1

Vanilla Inspect:
res = Inspect(X)
res$changepoints

Manually setting leading constants for \lambda(t) and \gamma(t)
res = Inspect(X,

lambda = sqrt(log(p*log(n))/2),
xi = 4*sqrt(log(n*p))

)
res$changepoints #estimated change-point locations

Empirical choice of thresholds:
res = Inspect(X, empirical=TRUE, N = 100, tol = 1/100)
res$changepoints

Manual empirical choice of thresholds (equivalent to the above)
thresholds_emp = Inspect_calibrate(n,p, N=100, tol=1/100)
res = Inspect(X, xi = thresholds_emp$max_value)
res$changepoints

Inspect_calibrate Generates empirical detection threshold ξ using Monte Carlo simula-
tion

Description

R wrapper for C function choosing empirical detection threshold ξ for the Narrowest-Over-Threshold
variant of Inspect (as specified in section 4.2 in Moen et al. 2023) using Monte Carlo simulation.

https://doi.org/10.48550/arXiv.2306.04702
https://doi.org/10.1111/rssb.12243
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243

Inspect_calibrate 15

Usage

Inspect_calibrate(
n,
p,
N = 100,
tol = 1/100,
lambda = NULL,
alpha = 1.5,
K = 5,
eps = 1e-10,
maxiter = 10000,
rescale_variance = TRUE,
debug = FALSE

)

Arguments

n Number of observations

p Number time series

N Number of Monte Carlo samples used

tol False positive probability tolerance

lambda Manually specified value of λ (can be NULL, in which case λ←
√
log(p log n)/2)

alpha Parameter for generating seeded intervals

K Parameter for generating seeded intervals

eps Threshold for declaring numerical convergence of the power method

maxiter Maximum number of iterations for the power method
rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

max_value the empirical threshold

References

Moen PAJ, Glad IK, Tveten M (2023). “Efficient sparsity adaptive changepoint estimation.” Arxiv
preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Examples

library(HDCD)
n = 50
p = 50

https://doi.org/10.48550/arXiv.2306.04702

16 Inspect_test

set.seed(100)
thresholds_emp = Inspect_calibrate(n,p, N=100, tol=1/100)
thresholds_emp$max_value # xi

Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2

res = Inspect(X, xi = thresholds_emp$max_value)
res$changepoints

Inspect_test Inspect single change-point test

Description

R wrapper for C function testing for a single change-point using Inspect Wang and Samworth
(2018).

Usage

Inspect_test(
X,
lambda = NULL,
xi = NULL,
eps = 1e-10,
empirical = FALSE,
N = 100,
tol = 1/100,
maxiter = 10000,
rescale_variance = TRUE,
debug = FALSE

)

Arguments

X Matrix of observations, where each row contains a time series

lambda Manually specified value of λ (can be NULL, in which case λ←
√
log(p log n)/2)

xi Manually specified value of ξ (can be NULL, in which case ξ ← 4
√
log(np))

eps Threshold for declaring numerical convergence of the power method

empirical If TRUE, the detection threshold xi is based on Monte Carlo simulation using
Inspect_test_calibrate

N If empirical=TRUE, N is the number of Monte Carlo samples used

tol If empirical=TRUE, tol is the false error probability tolerance

Inspect_test 17

maxiter Maximum number of iterations for the power method
rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

debug If TRUE, diagnostic prints are provided during execution

Value

1 if a change-point is detected, 0 otherwise

References

Wang T, Samworth RJ (2018). “High dimensional change point estimation via sparse projec-
tion.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1), 57–83.
ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/rssb.12243.

Examples

library(HDCD)
n = 50
p = 50

Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)

Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +1

Vanilla Inspect:
resX = Inspect_test(X)
resX
resY = Inspect_test(Y)
resY

Manually setting \lambda and \xi:
resX = Inspect_test(X,

lambda = sqrt(log(p*log(n))/2),
xi = 4*sqrt(log(n*p))

)
resX
resY = Inspect_test(Y,

lambda = sqrt(log(p*log(n))/2),
xi = 4*sqrt(log(n*p))

)
resY

Empirical choice of thresholds:
resX = Inspect_test(X, empirical = TRUE, N = 100, tol = 1/100)
resX
resY = Inspect_test(Y, empirical = TRUE, N = 100, tol = 1/100)

https://doi.org/10.1111/rssb.12243
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243

18 Inspect_test_calibrate

resY

Manual empirical choice of thresholds (equivalent to the above)
thresholds_test_emp = Inspect_test_calibrate(n,p, N=100, tol=1/100)
resX = Inspect_test(X, xi = thresholds_test_emp$max_value)
resX
resY = Inspect_test(Y, xi = thresholds_test_emp$max_value)
resY

Inspect_test_calibrate

Generates empirical detection threshold ξ for single change-point test-
ing using Monte Carlo simulation

Description

R wrapper for C function choosing the empirical detection threshold ξ for Inspect Wang and Sam-
worth (2018) for single change-point testing using Monte Carlo simulation.

Usage

Inspect_test_calibrate(
n,
p,
N = 100,
tol = 1/100,
lambda = NULL,
eps = 1e-10,
maxiter = 10000,
rescale_variance = TRUE,
debug = FALSE

)

Arguments

n Number of observations

p Number time series

N Number of Monte Carlo samples used

tol False positive probability tolerance

lambda Manually specified value of λ (can be NULL, in which case λ←
√
log(p log n)/2)

eps Threshold for declaring numerical convergence of the power method

maxiter Maximum number of iterations for the power method
rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

debug If TRUE, diagnostic prints are provided during execution

Pilliat 19

Value

A list containing

max_value the empirical threshold

References

Wang T, Samworth RJ (2018). “High dimensional change point estimation via sparse projec-
tion.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1), 57–83.
ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/rssb.12243.

Examples

library(HDCD)
n = 50
p = 50

set.seed(100)
thresholds_emp = Inspect_test_calibrate(n,p,N=100, tol=1/100)
thresholds_emp

Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)

Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +2
resX = Inspect_test(X, xi = thresholds_emp$max_value)
resX
resY = Inspect_test(Y, xi = thresholds_emp$max_value)
resY

Pilliat Pilliat multiple change-point detection algorithm

Description

R wrapper function for C implementation of the multiple change-point detection algorithm by Pilliat
et al. (2023), using seeded intervals generated by Algorithm 4 in Moen et al. (2023). For the sake
of simplicity, detection thresholds are chosen independently of the width of the interval in which a
change-point is tested for (so r = 1 is set for all intervals).

https://doi.org/10.1111/rssb.12243
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243

20 Pilliat

Usage

Pilliat(
X,
threshold_d_const = 4,
threshold_bj_const = 6,
threshold_partial_const = 4,
K = 2,
alpha = 1.5,
empirical = FALSE,
threshold_dense = NULL,
thresholds_partial = NULL,
thresholds_bj = NULL,
N = 100,
tol = 0.01,
rescale_variance = TRUE,
test_all = FALSE,
debug = FALSE

)

Arguments

X Matrix of observations, where each row contains a time series
threshold_d_const

Leading constant for the analytical detection threshold for the dense statistic
threshold_bj_const

Leading constant for p0 when computing the detection threshold for the Berk-
Jones statistic

threshold_partial_const

Leading constant for the analytical detection threshold for the partial sum statis-
tic

K Parameter for generating seeded intervals
alpha Parameter for generating seeded intervals
empirical If TRUE, detection thresholds are based on Monte Carlo simulation using Pilliat_calibrate
threshold_dense

Manually specified value of detection threshold for the dense statistic
thresholds_partial

Vector of manually specified detection thresholds for the partial sum statistic,
for sparsities/partial sums t = 1, 2, 4, . . . , 2⌊log2(p)⌋

thresholds_bj Vector of manually specified detection thresholds for the Berk-Jones statistic,
order corresponding to x = 1, 2, . . . , x0

N If empirical=TRUE, N is the number of Monte Carlo samples used
tol If empirical=TRUE, tol is the false error probability tolerance
rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate (see rescale_variance)
test_all If TRUE, the algorithm tests for a change-point in all candidate positions of each

considered interval
debug If TRUE, diagnostic prints are provided during execution

Pilliat 21

Value

A list containing

changepoints vector of estimated change-points
number_of_changepoints

number of changepoints

scales vector of estimated noise level for each series

startpoints start point of the seeded interval detecting the corresponding change-point in
changepoints

endpoints end point of the seeded interval detecting the corresponding change-point in
changepoints

References

Moen PAJ, Glad IK, Tveten M (2023). “Efficient sparsity adaptive changepoint estimation.” Arxiv
preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Pilliat E, Carpentier A, Verzelen N (2023). “Optimal multiple change-point detection for high-
dimensional data.” Electronic Journal of Statistics, 17(1), 1240 – 1315.

Examples

library(HDCD)
n = 50
p = 50
set.seed(100)
Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2

Vanilla Pilliat:
res = Pilliat(X)
res$changepoints

Manually setting leading constants for detection thresholds
res = Pilliat(X, threshold_d_const = 4, threshold_bj_const = 6, threshold_partial_const=4)
res$changepoints #estimated change-point locations

Empirical choice of thresholds:
res = Pilliat(X, empirical = TRUE, N = 100, tol = 1/100)
res$changepoints

Manual empirical choice of thresholds (equivalent to the above)
thresholds_emp = Pilliat_calibrate(n,p, N=100, tol=1/100)
thresholds_emp$thresholds_partial # thresholds for partial sum statistic
thresholds_emp$thresholds_bj # thresholds for Berk-Jones statistic
thresholds_emp$threshold_dense # thresholds for Berk-Jones statistic
res = Pilliat(X, threshold_dense =thresholds_emp$threshold_dense,

thresholds_bj = thresholds_emp$thresholds_bj,

https://doi.org/10.48550/arXiv.2306.04702

22 Pilliat_calibrate

thresholds_partial =thresholds_emp$thresholds_partial)
res$changepoints

Pilliat_calibrate Generates detection thresholds for the Pilliat algorithm using Monte
Carlo simulation

Description

R wrapper for function choosing detection thresholds for the Dense, Partial sum and Berk-Jones
statistics in the multiple change-point detection algorithm of Pilliat et al. (2023) using Monte Carlo
simulation. When Bonferroni==TRUE, the detection thresholds are chosen by simulating the lead-
ing constant in the theoretical detection thresholds given in Pilliat et al. (2023), similarly as de-
scribed in Appendix B in Moen et al. (2023) for ESAC. When Bonferroni==TRUE, the thresholds
for the Berk-Jones statistic are theoretical and not chosen by Monte Carlo simulation.

Usage

Pilliat_calibrate(
n,
p,
N = 100,
tol = 0.01,
bonferroni = TRUE,
threshold_bj_const = 6,
K = 2,
alpha = 1.5,
rescale_variance = TRUE,
test_all = FALSE,
debug = FALSE

)

Arguments

n Number of observations

p Number time series

N Number of Monte Carlo samples used

tol False error probability tolerance

bonferroni If TRUE, a Bonferroni correction applied and the detection thresholds for each
statistic is chosen by simulating the leading constant in the theoretical detection
thresholds

threshold_bj_const

Leading constant for p0 for the Berk-Jones statistic

K Parameter for generating seeded intervals

alpha Parameter for generating seeded intervals

Pilliat_calibrate 23

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate (see rescale_variance)
test_all If TRUE, a change-point test is applied to each candidate change-point position

in each interval. If FALSE, only the mid-point of each interval is considered
debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

thresholds_partial

vector of thresholds for the Partial Sum statistic (respectively for t = 1, 2, 4, . . . , 2⌊log2(p)⌋

number of terms in the partial sum)
threshold_dense

threshold for the dense statistic
thresholds_bj vector of thresholds for the Berk-Jones static (respectively for x = 1, 2, . . . , x0)

References

Moen PAJ, Glad IK, Tveten M (2023). “Efficient sparsity adaptive changepoint estimation.” Arxiv
preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Pilliat E, Carpentier A, Verzelen N (2023). “Optimal multiple change-point detection for high-
dimensional data.” Electronic Journal of Statistics, 17(1), 1240 – 1315.

Examples

library(HDCD)
n = 50
p = 50

set.seed(100)
thresholds_emp = Pilliat_calibrate(n,p, N=100, tol=1/100)
thresholds_emp$thresholds_partial # thresholds for partial sum statistic
thresholds_emp$thresholds_bj # thresholds for Berk-Jones statistic
thresholds_emp$threshold_dense # thresholds for Berk-Jones statistic
set.seed(100)
thresholds_emp_without_bonferroni = Pilliat_calibrate(n,p, N=100, tol=1/100,bonferroni = FALSE)
thresholds_emp_without_bonferroni$thresholds_partial # thresholds for partial sum statistic
thresholds_emp_without_bonferroni$thresholds_bj # thresholds for Berk-Jones statistic
thresholds_emp_without_bonferroni$threshold_dense # thresholds for Berk-Jones statistic

Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2

res = Pilliat(X, threshold_dense =thresholds_emp$threshold_dense,
thresholds_bj = thresholds_emp$thresholds_bj,
thresholds_partial =thresholds_emp$thresholds_partial)

res$changepoints

https://doi.org/10.48550/arXiv.2306.04702

24 Pilliat_test

Pilliat_test Pilliat single change-point test

Description

R wrapper function testing for a single change-point using the three test statistics in the multiple
change point detection algorithm of Pilliat et al. (2023). See also Appendix E in Moen et al. (2023).

Usage

Pilliat_test(
X,
empirical = FALSE,
N = 100,
tol = 0.05,
thresholds_partial = NULL,
threshold_dense = NULL,
thresholds_bj = NULL,
threshold_d_const = 4,
threshold_bj_const = 6,
threshold_partial_const = 4,
rescale_variance = TRUE,
fast = FALSE,
debug = FALSE

)

Arguments

X Matrix of observations, where each row contains a time series

empirical If TRUE, detection thresholds are based on Monte Carlo simulation

N If empirical=TRUE, N is the number of Monte Carlo samples used

tol If empirical=TRUE, tol is the false error probability tolerance
thresholds_partial

Vector of manually specified detection thresholds for the partial sum statistic,
for sparsities/partial sums t = 1, 2, 4, . . . , 2⌊log2(p)⌋

threshold_dense

Manually specified value of detection threshold for the dense statistic

thresholds_bj Vector of manually specified detection thresholds for the Berk-Jones statistic,
order corresponding to x = 1, 2, . . . , x0

threshold_d_const

Leading constant for the analytical detection threshold for the dense statistic
threshold_bj_const

Leading constant for p0 when computing the detection threshold for the Berk-
Jones statistic

Pilliat_test 25

threshold_partial_const

Leading constant for the analytical detection threshold for the partial sum statis-
tic

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate (see rescale_variance)

fast If TRUE, only the mid-point of (0, . . . , n] is tested for a change-point. Otherwise
a test is performed at each candidate change-point poisition

debug If TRUE, diagnostic prints are provided during execution

Value

1 if a change-point is detected, 0 otherwise

References

Moen PAJ, Glad IK, Tveten M (2023). “Efficient sparsity adaptive changepoint estimation.” Arxiv
preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Pilliat E, Carpentier A, Verzelen N (2023). “Optimal multiple change-point detection for high-
dimensional data.” Electronic Journal of Statistics, 17(1), 1240 – 1315.

Examples

library(HDCD)
n = 200
p = 200

Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)

Adding a single sparse change-point to X (and not Y):
X[1:5, 100:200] = X[1:5, 100:200] +1

Vanilla Pilliat test:
resX = Pilliat_test(X)
resX
resY = Pilliat_test(Y)
resY

Manually setting leading constants for the theoretical thresholds for the three
test statistics used
resX = Pilliat_test(X,

threshold_d_const=4,
threshold_bj_const=6,
threshold_partial_const=4

)
resX
resY = Pilliat_test(Y,

threshold_d_const=4,
threshold_bj_const=6,

https://doi.org/10.48550/arXiv.2306.04702

26 Pilliat_test_calibrate

threshold_partial_const=4
)
resY

Empirical choice of thresholds:
resX = Pilliat_test(X, empirical = TRUE, N = 100, tol = 1/100)
resX
resY = Pilliat_test(Y, empirical = TRUE, N = 100, tol = 1/100)
resY

Manual empirical choice of thresholds (equivalent to the above)
thresholds_test_emp = Pilliat_test_calibrate(n,p, N=100, tol=1/100,bonferroni=TRUE)
resX = Pilliat_test(X,

threshold_dense=thresholds_test_emp$threshold_dense,
thresholds_bj = thresholds_test_emp$thresholds_bj,
thresholds_partial = thresholds_test_emp$thresholds_partial

)
resX
resY = Pilliat_test(Y,

threshold_dense=thresholds_test_emp$threshold_dense,
thresholds_bj = thresholds_test_emp$thresholds_bj,
thresholds_partial = thresholds_test_emp$thresholds_partial

)
resY

Pilliat_test_calibrate

Generates detection thresholds for the Pilliat algorithm for testing for
a single change-point using Monte Carlo simulation

Description

R wrapper for function choosing detection thresholds for the Dense, Partial sum and Berk-Jones
statistics in the multiple change-point detection algorithm of Pilliat et al. (2023) for single change-
point testing using Monte Carlo simulation. When Bonferroni==TRUE, the detection thresholds
are chosen by simulating the leading constant in the theoretical detection thresholds given in Pil-
liat et al. (2023), similarly as described in Appendix B in Moen et al. (2023) for ESAC. When
Bonferroni==TRUE, the thresholds for the Berk-Jones statistic are theoretical and not chosen by
Monte Carlo simulation.

Usage

Pilliat_test_calibrate(
n,
p,
N = 100,
tol = 1/100,
threshold_bj_const = 6,
bonferroni = TRUE,

Pilliat_test_calibrate 27

rescale_variance = TRUE,
fast = FALSE,
debug = FALSE

)

Arguments

n Number of observations

p Number time series

N Number of Monte Carlo samples used

tol False error probability tolerance
threshold_bj_const

Leading constant for p0 for the Berk-Jones statistic

bonferroni If TRUE, a Bonferroni correction applied and the detection thresholds for each
statistic is chosen by simulating the leading constant in the theoretical detection
thresholds

rescale_variance

If TRUE, each row of the data is rescaled by a MAD estimate

fast If FALSE, a change-point test is applied to each candidate change-point position
in each interval. If FALSE, only the mid-point of each interval is considered

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

thresholds_partial

vector of thresholds for the Partial Sum statistic (respectively for t = 1, 2, 4, . . . , 2⌊log2(p)⌋

number of terms in the partial sum)
threshold_dense

threshold for the dense statistic

thresholds_bj vector of thresholds for the Berk-Jones static (respectively for x = 1, 2, . . . , x0)

Examples

library(HDCD)
n = 50
p = 50

set.seed(100)
thresholds_test_emp = Pilliat_test_calibrate(n,p, bonferroni=TRUE,N=100, tol=1/100)
set.seed(100)
thresholds_test_emp_without_bonferroni = Pilliat_test_calibrate(n,p,

bonferroni=FALSE,N=100, tol=1/100)
thresholds_test_emp # thresholds with bonferroni correction
thresholds_test_emp_without_bonferroni # thresholds without bonferroni correction

Generating data

28 rescale_variance

X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)

Adding a single sparse change-point to X (and not Y):
X[1:5, 25:50] = X[1:5, 25:50] +2
resX = Pilliat_test(X,

threshold_dense=thresholds_test_emp$threshold_dense,
thresholds_bj = thresholds_test_emp$thresholds_bj,
thresholds_partial = thresholds_test_emp$thresholds_partial

)
resX
resY = Pilliat_test(Y,

threshold_dense=thresholds_test_emp$threshold_dense,
thresholds_bj = thresholds_test_emp$thresholds_bj,
thresholds_partial = thresholds_test_emp$thresholds_partial

)
resY

rescale_variance Re-scales each row of matrix by its MAD estimate

Description

R wrapper for C function computing the (rescaled) median absolute difference in differences for
each row of the input matrix. The rescaling factor is set to 1.05 (corresponding to the Normal
distribution). Each row of the input matrix then re-scaled by the corresponding noise estimate.

Usage

rescale_variance(X, debug = FALSE)

Arguments

X A p× n matrix

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

X the input matrix, variance re-scaled and flattened

scales vector of MAD estimates of the noise level of each row of the input matrix

single_CUSUM 29

Examples

library(HDCD)
n = 200
p = 500
set.seed(101)
Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)

ret = rescale_variance(X)
ret$X #rescaled matrix
ret$scales #estimated noise level for each time series (each row)

Note that the rescaled matrix is in (column wise) vector form. To transform it back to a matrix,
do the following:
rescaled_X = matrix(ret$X, nrow = p, ncol=n)

single_CUSUM CUSUM transformation of matrix at a specific position

Description

R wrapper for C function computing the CUSUM transformation of matrix over an interval (s, e]
evaluated at a specific position. For compatibility with C indexing, the user should subtract 1 from
s, e and v when supplying the arguments to the function. If start and stop are not supplied, the
CUSUM is computed over the full data, so (s, e] = (0, n].

Usage

single_CUSUM(X, start = NULL, stop = NULL, pos)

Arguments

X Matrix of observations, where each row contains a time series

start Starting point of interval over which the CUSUM should be computed, sub-
tracted by one

stop Ending point of interval over which the CUSUM should be computed, subtracted
by one

pos Position at which the CUSUM should be evaluated, subtracted by one

Value

A vector of CUSUM values, each corresponding to a row of the input matrix. The i-th element cor-
responds to the CUSUM transformation of the i-th row of X , computed over the interval (start+
1, end+1] and evaluated at position pos, i.e.

√
e−v

(e−s)(v−s)

∑v
t=s+1 Xi,t−

√
v−s

(e−s)(e−v)

∑e
t=v+1 Xi,t,

where s = (start+ 1), e = (stop+ 1) and v = pos+ 1.

30 single_ESAC

Examples

n = 10
p = 10
set.seed(101)
X = matrix(rnorm(n*p), ncol = n, nrow=p)
CUSUM over the full data (s,e] = (0,n] evaluated at position v=4
position = 4
X_cusum_single = single_CUSUM(X,pos = position-1)
X_cusum_single

verifying that this corresponds to the 4-th row of output of CUSUM():
X_cusum = CUSUM(X)
X_cusum[,4]

single_ESAC Efficient Sparsity Adaptive Change-point estimator for a single
change-point

Description

R wrapper for C function implementing ESAC for single change-point estimation, as described in
section 3.1 in Moen et al. (2023)

Usage

single_ESAC(
X,
threshold_d = 1.5,
threshold_s = 1,
rescale_variance = FALSE,
debug = FALSE

)

Arguments

X Matrix of observations, where each row contains a time series
threshold_d Leading constant for λ(t) ∝ r(t) for t = p

threshold_s Leading constant for λ(t) ∝ r(t) for t ≤
√
p log n.

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

pos estimated change-point location
s the value of t ∈ T at which the sparsity specific score is maximized

single_Inspect 31

References

Moen PAJ, Glad IK, Tveten M (2023). “Efficient sparsity adaptive changepoint estimation.” Arxiv
preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Examples

library(HDCD)
n = 500
p = 500
set.seed(101)
Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Adding a single sparse change-point:
X[1:5, 201:500] = X[1:5, 201:500] +1

res = single_ESAC(X,rescale_variance=TRUE)
res$pos

Manually setting the leading constants for \lambda(t):
here \lambda(t) = 2 (\sqrt{p \log(n^4)} + \log (n^4)) for t=p
and = 2 (t \log (ep\log n^4 / t^2) + \log(n^4))
res = single_ESAC(X, threshold_d = 2, threshold_s = 2)
res$pos

single_Inspect Inspect for single change-point estimation

Description

R wrapper for C function for single change-point estimation using Inspect (Wang and Samworth
2018). Note that the algorithm is only implemented for S = S2, in the notation of Wang and
Samworth (2018).

Usage

single_Inspect(
X,
lambda = sqrt(log(p * log(n))/2),
eps = 1e-10,
rescale_variance = FALSE,
maxiter = 10000,
debug = FALSE

)

Arguments

X Matrix of observations, where each row contains a time series

lambda Manually specified value of λ (can be NULL, in which case λ←
√

log(p log n)/2)

https://doi.org/10.48550/arXiv.2306.04702

32 single_SBS

eps Threshold for declaring numerical convergence of the power method
rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

maxiter Maximum number of iterations for the power method

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

pos estimated change-point location

CUSUMval projected CUSUM value at the estimated change-point position

References

Wang T, Samworth RJ (2018). “High dimensional change point estimation via sparse projec-
tion.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1), 57–83.
ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/rssb.12243.

Examples

library(HDCD)
n = 500
p = 500
set.seed(101)
Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Adding a single sparse change-point:
X[1:5, 201:500] = X[1:5, 201:500] +1

res = single_Inspect(X,rescale_variance=TRUE)
res$pos

Manually setting the value of \lambda:
res = single_Inspect(X, lambda = 2*sqrt(log(p*log(n))/2))
res$pos

single_SBS Sparsified Binary Segmentation for single change-point estimation

Description

R wrapper for C function for single change-point estimation using Sparsified Binary Segmentation
Cho and Fryzlewicz (2015).

https://doi.org/10.1111/rssb.12243
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243

single_SBS 33

Usage

single_SBS(
X,
threshold = NULL,
rescale_variance = TRUE,
empirical = FALSE,
N = 100,
tol = 1/100,
debug = FALSE

)

Arguments

X Matrix of observations, where each row contains a time series

threshold Manually specified value of the threshold πT

rescale_variance

If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance

empirical If TRUE, the threshold is based on Monte Carlo simulation

N If empirical=TRUE, N is the number of Monte Carlo samples used

tol If empirical=TRUE, tol is the false error probability tolerance

debug If TRUE, diagnostic prints are provided during execution

Value

A list containing

pos estimated change-point location

maxval maximum thresholded and aggregated CUSUM at the estimated change-point
position

References

Cho H, Fryzlewicz P (2015). “Multiple-change-point detection for high dimensional time series
via sparsified binary segmentation.” Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 77(2), 475–507. ISSN 1369-7412, Publisher: [Royal Statistical Society, Wiley],
https://www.jstor.org/stable/24774746.

Examples

Single SBS
library(HDCD)
n = 50
p = 50
set.seed(101)
Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1

https://www.jstor.org/stable/24774746

34 single_SBS_calibrate

res = single_SBS(X,threshold=7,rescale_variance=TRUE)
res$pos

Choose threhsold by Monte Carlo:
res = single_SBS(X,empirical=TRUE,rescale_variance=TRUE)
res$pos

single_SBS_calibrate Generates threshold π_T for Sparsified Binary Segmentation for sin-
gle change-point detection

Description

R wrapper for function choosing empirical threshold πT using Monte Carlo simulation for single
change-point Sparsified Binary Segmentation. More specifically, the function returns the empirical
upper tol quantile of CUSUMs over p time series, each of length n, based on N number of runs.

Usage

single_SBS_calibrate(
n,
p,
N = 100,
tol = 1/100,
rescale_variance = TRUE,
debug = FALSE

)

Arguments

n Number of observations

p Number time series

N Number of Monte Carlo samples used

tol False positive probability tolerance

rescale_variance

If TRUE, each row of the data is rescaled by a MAD estimate

debug If TRUE, diagnostic prints are provided during execution

Value

Threshold

single_SBS_calibrate 35

Examples

library(HDCD)
n = 50
p = 50
set.seed(101)

Simulate threshold
pi_T_squared = single_SBS_calibrate(n=n,p=p,N=100, tol=1/100, rescale_variance = TRUE)
pi_T_squared

Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1

Run SBS
res = single_SBS(X,threshold=sqrt(pi_T_squared),rescale_variance=TRUE)
res$pos

Index

ARI, 2

CUSUM, 3

ESAC, 4
ESAC_calibrate, 4, 6
ESAC_test, 8
ESAC_test_calibrate, 9, 10

hausdorff, 12

Inspect, 12
Inspect_calibrate, 13, 14
Inspect_test, 16
Inspect_test_calibrate, 16, 18

Pilliat, 19
Pilliat_calibrate, 20, 22
Pilliat_test, 24
Pilliat_test_calibrate, 26

rescale_variance, 5, 7, 9, 11, 13, 15, 17, 18,
20, 23, 25, 28, 30, 32, 33

single_CUSUM, 29
single_ESAC, 30
single_Inspect, 31
single_SBS, 32
single_SBS_calibrate, 34

36

	ARI
	CUSUM
	ESAC
	ESAC_calibrate
	ESAC_test
	ESAC_test_calibrate
	hausdorff
	Inspect
	Inspect_calibrate
	Inspect_test
	Inspect_test_calibrate
	Pilliat
	Pilliat_calibrate
	Pilliat_test
	Pilliat_test_calibrate
	rescale_variance
	single_CUSUM
	single_ESAC
	single_Inspect
	single_SBS
	single_SBS_calibrate
	Index

